Population Structure and Asset Returns

Stephen Bonnar, Lori Curtis, Miguel Leon-Ledesma, Jaideep Oberoi, Kate Rybzynski, Mark Zhou

> July 17, 2017 ARTC University of Kent

Motivation

Baby boomers entering retirement

→ concerns of diminished returns, compromised pensions

Higher old-age dependency ratio may lead to

- less saving (dissaving) & investment
- shift in asset allocation toward low risk, low return, assets
- reduced labour force growth

With implications for asset returns and retirement outcomes.

Model Framework

Overlapping Generations Model (OLG) with:

- aggregate uncertainty
- two asset classes (risky and risk-free)
- multi-pillar pension systems (saving, pay-go, earnings based)
- endogenous labour supply
- → Generates standard age specific labour, consumption, asset holding, & portfolio allocation qualitatively consistent with data
- → Older population → moderately lower asset returns

Demographics

- Overlapping generations, $j \in \{1, 2, ..., 20\}$, ages 18 97
- Five life stages: YW, MW, W, SR, R
- Intra-cohort heterogeneity, $i \in \{1,2\}$, baseline i = 1
- fertility rate: n
- survival probability: $\phi_i^i \in \{1, 2\}, \ \phi_J^i = 0$

$$N_{j,t}^{i} = \begin{cases} (1+n)\chi^{i}N_{0,t-1}, & \text{if } j=1, \\ \phi_{j-1}^{i}\chi^{i}N_{j-1,t-1}, & \text{if } 1 < j \leq J. \end{cases}$$

Household Time Endowment

$$H_{j} = \begin{cases} H(1 - FC_{j} - FE_{j}), & \text{if } j \in \{YW, MW\}, \\ H, & \text{if } j \in \{W, SR, R\}. \end{cases}$$
 (2.1)

- Fixed constant H units of time
- Education (FE) and child rearing (FC)
- SR can work maximum of $\iota_p H$

Household Preferences

Periodic utility from Consumption and Leisure

$$u^{i}(c,h) = \frac{c^{1-\gamma_c}}{1-\gamma_c} + \Psi^{\frac{(H_j-h)^{1-\gamma_h}}{1-\gamma_h}}$$

- Coefficient of relative risk aversion: γ_c
- Parameter that regulates Frisch elasticity of labour supply: γ_h
- Utility weight of leisure relative to consumption: Ψ

Assets

Total Asset Holdings: $\theta_{j,t}^{i}$

Risk Free Bonds

- Return in period t+1: \bar{r}_t
- Share of total assets in risk free: $\eta_{j,t}^{i}$
- Zero net supply: $\sum_{i} \sum_{i} \eta_{i,t}^{i} \theta_{i,t}^{i} N_{i,t}^{i} = 0$ (2.2)

Risky Capital

- Return in period t+1: r_{t+1}
- Share of total assets: $1 \eta_{i,t}^{i}$
- Total capital: $K_t = \sum_{j} \sum_{i} (1 \eta_{j, t-1}^{i}) \theta_{j, t-1}^{i} N_{j, t-1}^{i}$ (2.3)

Production

$$Y_t = z_t K_t^{\alpha} H_t^{1-\alpha}$$
 and $K_{t+1} = (1-\delta) K_t + q_t I_t$

$$\ln(z_t) = \rho \ln(z_{t-1}) + v_t \quad \text{where} \quad v_t \sim N(0, \sigma_z^2)$$

$$\ln(\mathbf{q}_t) = \rho_q \ln(q_{t-1}) + \nu_{q,t} \quad \text{where} \qquad \qquad \nu_{q,t} \sim N(0, \sigma_q^2)$$

- Aggregate efficient labour is: $H_t = \sum_j \sum_i \varepsilon_j^i h_{j,t}^i N_{j,t}^i$ (2.4)
- Baseline: $\varepsilon_i^i = 1 \rightarrow \text{no age \& type-specific labour productivity.}$
- $corr(\sigma_q^2, \sigma_z^2) = 0$

Pay-as-you-go Pension

Pay-as-you-go proportional pension scheme

$$p_{j,t} = \begin{cases} 0, & \text{if } j \in \{YW, MW, W\}, \\ \frac{\tau_s w_t H_t}{\sum_{j \in \{OW, R\}} \sum_i N_{j,t}^i} & \text{if } j \in \{SR, R\}. \end{cases}$$
 (2.5)

• Fixed tax, τ_s , on labour income uniformly distributed to retirees.

Partially Funded Pension

Partially funded, employment earnings based pension

$$p_{j,t}^{G} = \begin{cases} 0, & \text{if } j \in \{YW, MW, W\}, \\ \kappa_{j} \left(\frac{w_{ss} \sum_{i} \varepsilon_{SR-1}^{i} h_{SR-1, SS}^{i} N_{SR-1, SS}^{i}}{\sum_{i} N_{SR-1, SS}^{i}} \right) & \text{if } j \in \{SR, R\}. \end{cases}$$
 (2.6)

• Government taxes working cohorts at rate τ_s^G , and pays out fraction κ_i of pre-retirement income.

Government Budget

In the three pillar model:

$$\sum_{j=SR}^{R} p_{j}^{G} N_{j,t}^{i} = \left[\eta_{G} (1 + (1 - \tau_{r}) r_{t-1}^{-}) + (1 - \eta_{G}) (1 + (1 - \tau_{r}) r_{t}) \right] \theta_{G} + \tau_{s}^{G} w_{t} H_{t} + B_{t}^{G}$$
(2.7)

Aggregate Asset holdings in the three pillar model:

$$\begin{split} & \sum_{\mathbf{j}} \sum_{i} \boldsymbol{\eta}_{j,\,t}^{\,i} \boldsymbol{\theta}_{\,j,\,t}^{\,i} \boldsymbol{N}_{\,\mathbf{j},\mathrm{t}}^{i} + \boldsymbol{\eta}_{G} \boldsymbol{\theta}_{\,G} = \boldsymbol{B}_{t}^{\,G} \\ & K_{t} = \sum_{\mathbf{j}} \sum_{i} \left(1 - \boldsymbol{\eta}_{j,\,t\text{-}1}^{\,i} \right) \boldsymbol{\theta}_{j,\,t\text{-}1}^{\,i} \boldsymbol{N}_{\,\mathbf{j},\mathrm{t}\text{-}1}^{\,i} + \left(1 - \boldsymbol{\eta}_{G} \right) \boldsymbol{\theta}_{G} \end{split}$$

• Government holds pool of assets, θ_G , with proportion η_G in risk-free bonds, and issues bonds B_t^G to balance budget.

Taxes and Bequests

Taxes

- Consumption tax: τ_c
- Labour Income tax: τ_h
- Investment income tax: τ_r
- Tax on pension income: τ_p
- Tax for pay-go pension and social security: τ_s and τ_s^G

Bequests

- Base model has accidental bequests only.
- Bequest motive utility from leaving bequest $v(X) = \Gamma \frac{X^{1-\gamma_b}}{1-\gamma_b}$

Timeline and State Space (s_t; z_t)

 $s_t = (x_{2,t}^1, ..., x_{j,t}^i, ..., x_{J,t}^I; z_t)$, where $x_{j,t}^i$ is the value of asset holdings pd t

$$\boldsymbol{x}_{\text{j,t}}^{\text{i}} = \left[\ \boldsymbol{\eta}_{\text{\textit{j-1, t-1}}}^{\text{\textit{i}}} \big(\ 1 + \big(\ 1 - \boldsymbol{\tau}_{\!r} \big) \boldsymbol{r}_{\text{\textit{t-1}}}^{-} \big) + \big(\ 1 - \boldsymbol{\eta}_{\text{\textit{j-1, t-1}}}^{\text{\textit{i}}} \big) \big(\ 1 + \big(\ 1 - \boldsymbol{\tau}_{\!r} \big) \boldsymbol{r}_{t} \big) \right] \boldsymbol{\theta}_{\text{\textit{j-1, t-1}}}^{\text{\textit{i}}}$$

Household Decision

$$V_{j}^{i}(s_{t};z_{t}) = \max_{\substack{[c_{j,t}^{i},h_{j,t}^{i},\theta_{j,t}^{i},\eta_{j,t}^{i}]}} u^{i}(c_{j,t}^{i},h_{j,t}^{i}) + \beta \phi_{j}^{i}E_{t}[V_{j+1}^{i}(s_{t+1};z_{t+1})]$$

s.t.

$$(1+\tau_{c})c_{j,t}^{i} + \theta_{j,t}^{i} \leq \left\{ (1-\tau_{s} - \tau_{s}^{G} - \tau_{h})w_{t}\varepsilon_{j}^{i}h_{j,t}^{i} + \chi_{j,t}^{i} + (1-\tau_{p})(p_{j,t} + p_{j}^{G}) + \xi_{t} - HC \right\}$$

where

$$h_{j,t}^{i} \leq H_{j}^{c} = \begin{cases} H_{j}, & \text{if } j \in \{YW, MW, W\}, \\ \iota_{p}H, & \text{if } j \in \{SR\}, \\ 0, & \text{if } j \in \{R\}, \end{cases} & \&$$

$$HC_{j} = \begin{cases} 0, & \text{if } j \in \{YW, MW, W\}, \\ 0.2 \exp(\frac{4(j-12)}{J-12} - 4), & \text{if } j \in \{SR, R\}. \end{cases}$$

Household Decision – oldest generation

$$V_{\mathsf{J}}^{\mathsf{i}}(s_{t};z_{t}) = \max_{\left[c_{\mathsf{J},t}^{\mathsf{i}},\theta_{\mathsf{J},t}^{\mathsf{i}},\eta_{\mathsf{J},t}^{\mathsf{i}}\right]} u^{\mathsf{i}}(c_{\mathsf{J},t}^{\mathsf{i}},0) + \beta E_{t}\left[\mathbf{v}^{\mathsf{i}}(X_{\mathsf{J}+1,t+1}^{\mathsf{i}})\right]$$

where

$$\boldsymbol{X}_{\text{J+1,t+1}}^{\text{i}} = \left[\ \boldsymbol{\eta}_{\text{J, t}}^{\text{i}} \big(\ 1 + \big(\ 1 - \boldsymbol{\tau}_{r} \big) \boldsymbol{\overline{r}}_{\text{t}} \big) + \big(\ 1 - \boldsymbol{\eta}_{\text{J, t}}^{\text{i}} \big) \big(\ 1 + \big(\ 1 - \boldsymbol{\tau}_{r} \big) \boldsymbol{r}_{\text{t+1}} \big) \right] \boldsymbol{\theta}_{\text{J, t}}^{\text{i}}$$

and

$$v(X) = \Gamma \frac{X^{1-\gamma_b}}{1-\gamma_b}$$

Solution to Household Problem

$$(c_{j,t}^{i})^{-\gamma_{c}} = \beta \phi_{j}^{i} E_{t} \Big[(1 + (1 - \tau_{r}) r_{t+1}) (c_{j+1,t+1}^{i})^{-\gamma_{c}} \Big],$$

$$0 = \beta \phi_{j}^{i} E_{t} \Big[(1 - \tau_{r}) (\bar{r}_{t} - r_{t+1}) (c_{j+1,t+1}^{i})^{-\gamma_{c}} \Big],$$

$$(3.11)$$

$$\frac{\psi^{i}(H_{j}-h_{j,t}^{i})^{-\gamma_{h}}+\lambda_{j,t}^{2}}{(c_{i,t}^{i})^{-\gamma_{c}}}=\frac{1-\tau_{s}-\tau_{s}^{G}-\tau_{h}}{1+\tau_{c}} \quad w_{t}\varepsilon_{j}^{i}, \qquad (3.13)$$

$$\lambda_{i,t}^2 \left(H_i^c - h_{i,t}^i \right) = 0 \tag{3.14}$$

$$\begin{aligned} {}^{\text{For} j = J} \quad & \left(\, c_{\, \mathrm{J}, \mathrm{t}}^{\, \mathrm{i}} \, \right)^{- \, \gamma_b} = \beta \varGamma E_{\, t} \Big[\big(\, 1 + \big(\, 1 - \tau_r \big) r_{\, \mathrm{t} + 1} \big) \big(\, X_{\, \mathrm{J} + 1, \mathrm{t} + 1}^{\, \mathrm{i}} \big)^{- \, \gamma_b} \Big], \\ & 0 = \beta \varGamma E_{\, t} \Big[\big(\, 1 - \tau_r \big) \big(\, \overline{r}_{\, t} - r_{\, \mathrm{t} + 1} \big) \big(\, X_{\, \mathrm{J} + 1, \mathrm{t} + 1}^{\, \mathrm{i}} \big)^{- \, \gamma_b} \Big] , \end{aligned}$$

Firm Decision

Firm maximizes profits, resulting in:

$$r_{t} = \alpha z_{t} K_{t}^{\alpha - 1} H_{t}^{1 - \alpha} - \delta$$
, (3.15)

$$w_{t} = (1 - \alpha) z_{t} K_{t}^{\alpha} H_{t}^{-\alpha}. \tag{3.16}$$

where $\delta \in [0,1]$.

Recursive Competitive Equilibrium

- Value functions $V_i^i(s_t;z_t)$,
- Household policy functions for consumption, $c_{j,t}^{i}(s_t; z_t)$, labour supply, $h_{j,t}^{i}(s_t; z_t)$, total saving, $\theta_{j,t}^{i}(s_t; z_t)$, and share of saving invested in risk-free bonds, $\eta_{j,t}^{i}(s_t; z_t)$,
- Inputs for the representative firm $K_t(s_t; z_t)$ and $H_t(s_t; z_t)$,
- Government policy, $p_t(s_t; z_t)$ and $B_t^G(s_t; z_t)$,
- Rates of return $\bar{r_t}(s_t; z_t)$ and $r_t(s_t; z_t)$, and wage $w_t(s_t; z_t)$,

Such that in each period the:

- household problems are solved,
- the competitive firm maximizes profits,
- all markets clear.

Parameterization

Base model, with J = 20, i = 1, $\chi = 1$, $\varepsilon = 1$, HC = 0, $\Gamma = 0$, and sets several parameters fixed and exogenous to the model:

Parameter	Value	Description
Н	4	Time available to household (one period represents 4 yrs)
β	0.8515	Discount factor (0.95 annual)
α	0.3	Capital's share of production
$ ho_z$	0.4401	Autocorrelation coefficient for TFP
$\sigma_{\rm z}$	0.0305	Std. Deviation of error for TFP process
$ ho_{ m q}$	0.4401	Autocorrelation coefficient for IST
$\sigma_{ m q}$	0.1221	Std. Deviation of error for IST process
δ	0.192	Depreciation Rate
n	0.0489	Population Growth rate
$\gamma_{\rm c}$	2.0	Relative risk aversion – consumption
$\gamma_{ m b}$	2.0	Relative risk aversion - bequest
γ_1	3.0	Inverse of intertemporal elasticity of substitution of non-market time
Ψ	21.833	Utility weight of non-market time relative to consumption
τ_c,τ_r,τ_p	0.123, 0.167, 0.167	Tax rates on consumption, investment income, pension,
$ au_{ ext{h}} + au_{ ext{s}} + au_{ ext{s}}^{ ext{G}}$	0.167	Tax on labour income
ratio _s	1.0	Proportion of labour tax to social security
ι_{p}	0.08	Labour constraint for SR

Lifecyle Consumption, Labour, & Asset Profiles

Figure 1 – Lifecycle consumption, labour and asset profiles

Observed Age-Specific Portfolio Allocation

Figure 2 –Portfolio allocation by age: risky vs net low-risk financial assets

Portfolio Allocation – 2 pillar pension model

Figure 3 – Age-specific portfolio allocation in 2 pillar model

Portfolio Allocation – 3 pillar pension model – baseline

Figure 4 – Age-specific portfolio allocation in 3 pillar model

3-pillar Model Results under Alt. Demog. Structures

Variable	Base-3pillar	+10%	+20%	-10%	-20%
$E_t(r_{t+1})$	0.2855	0.2788	0.2735	0.2919	0.2965
$\overline{\mathcal{F}_t}$	0.2851	0.2784	0.2730	0.2915	0.2961
Prv risky assets/GDP	0.5223	0.5233	0.5362	0.5214	0.5206
$\mathbf{c}_{20,t}$	0.3327	0.3771	0.4183	0.2984	0.2512

• Model predicts modest differences.

Portfolio Allocation - Alternative Replacement Ratio

Figure 5–Age-specific portfolio allocation, high replacement ratio, $\kappa = 0.4$

Portfolio Allocation – 3 pillar + health costs + bequest

Figure 6 – Age-specific portfolio allocation, 3 pillar +bequest +health cost

Page 26 of 33

Portfolio Allocation under alternative models

Figure 7 – Age-specific portfolio allocation, alternative models

Sensitivity Analysis

Figure 8 – Age-specific portfolio allocation, alternative parameter values

Discussion and Next Steps

- Asset prices are moderately lower with older population:
 Higher survival probability for age 65+ (max20% at j=J)
 → approximately 4% lower returns on capital and on bonds
- Higher replacement ratio → lower asset accumulation

Next steps:

- Improve portfolio allocation match
 - → consumption saturation
 - → intra-cohort heterogeneity
- Explore further intra-cohort heterogeneity models

Appendix

Heterogeneity – high and low survival rate

(b) 3-Pillar pension with intra-cohort heterogeneity, low survival

Figure 9– Age-specific portfolio allocation with intra-cohort heterogeneity

Heterogeneity – high and low survival rate (cont)

Figure 10 – Consumption, labour & asset profiles under heterogeneity

Portfolio allocation under Alt. Demog. Structures

(c) Baseline + 20% maximal higher survival probability

(b) Baseline - 10% maximal higher survival probability

(d) Baseline - 20% maximal lower survival probability

Figure 11 – Age-specific portfolio allocation, alternative demographics