Impact of changing population demographics on pension plans

Aniketh Pittea University of Kent, Canterbury, CT2 7NF, UK

ATRC Conference, July 2017

Acknowledgement: Institute and Faculty of Actuaries, UK, for funding this research

- Introduction
- 2 Economic capital
- Stochastic model
- 4 USS Results
- Updating the stochastic model
- 6 Conclusions

- Introduction
- 2 Economic capital
- Stochastic model
- 4 USS Results
- Updating the stochastic model
- 6 Conclusions

Background

- This research aims at quantifying the impact of a changing population demographics on pension schemes in UK, US and Canada.
- Some questions we need to answer are:
 - Will the retirement of the baby boomers deflate asset prices?
 - ▶ Will a shift in population demographics bring down asset returns?
 - To what extent will increasing longevity of pensioners affect pension schemes?
- In this presentation, we look at:
 - ► The economic capital of an eligible DB scheme;
 - ► The connections between a pension model, a mortality model and an economic model;
 - ▶ Simulations from mortality and economic models.

Background

Solvency 2

- Technical provisions consist of the best estimate of liabilities and a risk margin.
- Economic capital requirement is the 99.5% VaR of "basic own funds" over one year.

Risk assessment of DB schemes

- Set within the Solvency 2 framework.
- Horizon is the time until the last member in the scheme dies and no further benefit is paid.

Economic capital is the excess of assets over liabilities in respect of accrued benefits required to ensure that assets exceed liabilities on all future valuation dates over a specified time horizon with a prescribed high probability.

- Introduction
- 2 Economic capital
- Stochastic model
- 4 USS Results
- Updating the stochastic model
- 6 Conclusions

Eligible Scheme Cashflow

Economic Capital Formulation

Notations:

 X_t : Net cash flow of the scheme;

 L_t : Value of s179 liability of the scheme;

 $I_{s,t}$: Accumulation factor;

 $D_{s,t}$: Discount factor.

Building blocks

$$P_t = L_{t-1}I_{(t-1,t)} - X_t - L_t$$
: Profit vector, with $P_0 = -X_0 - L_0$.

 $R_t = \sum_{s=0}^{t} P_s I_{s,t}$: Accumulated retained profits until time t,

 $V_t = \sum_{s=t+1}^{T} P_s D_{t,s}$: Present value of future profits at time t.

Economic capital

 $C_t = \max[-\min_{s=t}^T V_s D_{t,s}, 0].$

Economic capital requirement: $\rho(C_t) = VaR(C_t, p = 0.995)$.

- Introduction
- 2 Economic capital
- 3 Stochastic model
- 4 USS Results
- Updating the stochastic model
- 6 Conclusions

Stochastic model: Mortality

The mortality model used is developed in three steps:

- Step 1: Set PMA92Base and PFA92Base as the baseline mortality tables for males and females respectively.
- Step 2: Project these base mortality tables from year 2006 to year 2012 using the mortality projection table published by the Institute and Faculty of Actuaries.
- Step 3: Finally, model the future stochastic mortality improvements starting from 2012 by modelling stochastic uncertainty around the central mortality projection (Sweeting (2008)).

Stochastic model: Economic

The individual economic random variables, Z_{it} s, are modelled as:

$$Z_{it} = \mu_i + Y_{it}$$
, where $Y_{it} = \beta_i Y_{i(t-1)} + \varepsilon_{it}$ and $\varepsilon_{it} \sim N(0, \sigma_i^2)$.

The error terms

- are assumed to be independently distributed across time *t*;
- which are directly connected to each other are dependent;
- which are indirectly connected are still dependent, but more weakly so.

- Introduction
- 2 Economic capital
- Stochastic model
- 4 USS Results
- Updating the stochastic model
- 6 Conclusions

Economic Capital: University Superannuation Scheme (USS)

- Introduction
- 2 Economic capital
- Stochastic model
- 4 USS Results
- Updating the stochastic model
- 6 Conclusions

Overview

- For our project, we need:
 - ▶ A mortality model which allows for the cohort effect of the baby boomers;
 - ► A flexible economic model which can be adjusted for demographic effects.

Mortality: Formulation

Table: Age-Period-Cohort models

Model	Name	Formula
M1	Lee and Carter	$\log m(t,x) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)}$
M3	Currie	$\log m(t,x) = \beta_x^{(1)} + \kappa_t^{(2)} + \gamma_{t-x}^{(3)}$
M5	CBD	$logit q(t, x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \overline{x})$
M6	CBD(1)	logit $q(t, x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x}) + \gamma_{t-x}^{(3)}$
M7	CBD(2)	logit $q(t,x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x}) + \kappa_t^{(3)}((x - \bar{x})^2 - \hat{\sigma}_x^2) + \gamma_{t-x}^{(4)}$
M8	CBD(3)	logit $q(t,x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x}) + \gamma_{t-x}^{(3)}(x_c - x)$

Mortality: Parameter estimates

Figure: Parameter estimates of model M3 for UK, US and Canada fitted using males mortality data ages 60-89 and years 1968-2011

Mortality: Simulated rates

Figure: Simulated mortality rates under model M5 for UK, US and Canada for males age 65, 75 and 85

Economic: New structure

- UK Graphical Model based on p-values.
- Model is decomposable which is desirable.

Economic: Simulations

Economic: Simulations

Economic: Simulations

- Introduction
- 2 Economic capital
- Stochastic model
- 4 USS Results
- Updating the stochastic model
- 6 Conclusions

Conclusions

Future work

- Quantify the uncertainty on asset returns caused by future movements in population demography.
- Incorporate the results in the pension model to see the impact on capital.
- Extend the results for the whole UK, US and Canadian pension systems.

References

- Drton, M. & Perlman, M.D.2008A SINful approach to Gaussian graphical model selectionJournal of Statistical Planning and Inference1381179–1200
- CAIRNS, A.J.G., BLAKE, D., DOWD, K., COUGHLAN, G.D., EPSTEIN, D., ONG, A. & BALEVICH, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. *North American Actuarial Journal*, 13, 1–35.
- PORTEOUS, B.T., TAPADAR, P. & YANG W. (2012). Economic capital for defined benefit pension schemes: An application to the UK Universities Superannuation Scheme. *Journal of Pension Economics and Finance*, 11(4), 471–499.

