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Introduction
@ Motivation: Provide the means to assess the impact of dependent

lifetimes on annuity valuation and risk management

e Basis: systematic mortality improvements induce dependence

L Could reframe as cohort, or pool of similar-risks, analysis

@ Investigate a multivariate generalized Pareto distribution because
o Interesting family with potential for more flexible dependence

e More suitable for older-age dependence due to presence of extremes

@ Resolve estimation in the presence of truncation (in a variety of ways)

e Moment-based estimation (applied to the minimum observation)
e Quantile-based estimation (with optimal levels)

@ Assess the impact of dependence on the risk of a bulk annuity
L Dependence increases the risk
D. H. Alai (CEPAR, Kent)
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— Let X;; be the lifetime of individual i in pool j.
We apply the following model for lifetimes:

Modelling Dependent Lifetimes
Assume m pools of n lives. ~» Suppose the lives within a pool are dependent.

X; ~ h(8,Xs), Vj,
where \g = > 7| A
@ This means pools are independent.
L Each pool is one draw from the multivariate distribution.
@ The magnitudes of m and n determine the application.
L n =2 = joint-life products.

n

>

I

m"

L Small m or n might pose difficulties!
D. H. Alai (CEPAR, Kent)
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Multiply Monotone Generated Distributions

Let X = (X, ...,X,) be a multivariate random vector with strictly positive
components X; > 0 such that its joint survival function is given by

P(X] > X1, .., Xp >Xn) —h(

n
Z )\ixi>a x; > 0,
i=1
for \; > 0, Vi, where h is d-times monotone, d > n. That is, for
ke{l,...,d},

(—D)* P (x) >0,  x>0.
Two well-known examples include the Pareto and Weibull distributions.
{Pareto} h(x) = (l—i-x)_%, x>0,
[Weibull}  h(x) = exp(—x?),

6 cRT,
x>0,

D. H. Alai (CEPAR, Kent)
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6 € [l,00).
L The Pareto generator resembles the Clayton copula generator (1 + 6x)
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Joint Densities of Subsets of X

The multiply monotone condition on /4 ensures we have admissible densities
for all possible subsets of X!

For example, the densities of X and X; are given by,

Sx(ry e x) = (=1)" A - Ah W (Z/\,-x,) >0, x>0,
i=1
fit) = (=D)XAY (Nxi) > 0,

x; > 0.
Survival functions are always given by h:

P(X,' > xi,Xj > Xj) =

h()\,'x,‘ + )\jx]‘), Xiy Xj 2> 0,i #j,
P(X,‘ > X,’) = h()\ix,-), X; > 0.
As such, we require that 2(0) = 1 and lim,_, A(x) =0. A urjersityof
L There is a clear link to Archimedean survival copulas. y@PQ !j Kent
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Examples of A

\
Pareto, 96{4,2,1 2} Clayton, 96{4,2, ,2}4 Gumbel, 6 € {1,2,4,8}.
I ) wv\m‘
\
Frank, € {—4,—1,1,4}.  AMH, 96{—* —}1,%,3}. Expo-Pareto, 0 € {1,2,4,8}.
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Bivariate Marginal Correlations
As well as exhibiting either light or heavy tails, each & produces a different
correlation structure between marginals.

L Not surprisingly, heavy tailed examples permit only positive correlation,
whereas light tailed distributions allow for negative correlation.

For the Pareto and Clayton, Corr(X;, X;) = 0, for i # j.

incomplete gamma, dilogarithm or trilogarithm function.

F(s,x)—/ £ le dr,

: OIn(1 —1¢

le(z)Z/ In(1 -1
Z

dt,
t

Liz(z) = — /0 La()

dr.
t

For the remaining examples, the bivariate correlation involves either the

D. H. Alai (CEPAR, Kent)
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Parameter Estimation

We wish to make use of pool statistics to estimate model parameters.
@ Mean and Variance;

@ Minimum and Maximum;
@ Quantiles!

= Within-pool dependence is a clear obstacle, but not the only one!
L We anticipate truncated observations.

We require some theoretical results before we can proceed.

D. H. Alai (CEPAR, Kent)
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Mixed Truncated Moments

Theorem (Mixed Moments)
Consider X = (X1, . .., X,,) with distribution generated by d-times monotone
h, d > n. Let :X; = {X;|X > 7}. If finite,
n

*|IT-x] =

i=1

e )/z ki Jz k |
AV
h=0  j.=0 i=1 ki —Ji)! /\]i
where A\s =Y i N, k= Zl" ki k € {1 2
furthermore, where h\~ k

— [ n=

— h(her) Z 3 W T )\ST)H((

.,d}, and ki € {0} UZT
)dy and h®) (x) = h(x).
L Mean, variance and covariance results are especially relevant
L, This result can be used to find the moments of the minimum (and maximum)
= Let’s take a look at the bivariate correlation plots
L They depend on 7!

D. H. Alai (CEPAR, Kent)
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Correlation Plots for 7 € {0, 1,2, 5}

o

Pareto

Clayton

o

Gumbel

Frank

Ali-Mikhail-Haq
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Comments on Mean-Variance Matching
Mean, variance and covariance results enable us to determine the expectation
of the sample (pool) mean and variance.

L Averaging these, respectively, across pools yields 9 and XS.
Consider the Pareto distribution with \; = A, Vi; we have
Ela) (+X;)]

Al r(n+607 1)
B 0-1—1
Em (X))] =

)

(A1 + 7n)?
@ -0 —2)

where a; and m; denote the unbiased sample (pool) mean and variance.

Note the relationship with pool size n.

L Inseparable from the truncation point 7.

D. H. Alai (CEPAR, Kent)
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Comments on Minimum-Maximum Matching

Sample moments of minima (or maxima) yield estimates 6 and .
L Focus on minimum, since it looks much more promising.

Consider the Pareto distribution with A; = A, Vi; we have

X411
Ela (X)) = 2T
O~ "N\ n+7)?

Elmy (X =
[m2<7' (1))] (9_1 — 1)2(9_1 _2)
Contrast the relationship with pool size n to the mean-variance matching.

= This time distinct from 7 and indicative of more accuracy as n .

D. H. Alai (CEPAR, Kent)
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Quantile Matching

The previous two estimation procedures require sufficiently light tails!
L For the Pareto, 0 < 6 < 1/2.

L Quantile-based estimation procedures do not impose this restriction!

We apply quantile matching to the sample of pool minima!

=Y (1 = p)h(AsT
) = DT

L Our estimation procedure requires three {optimal} levels p;, p», and p3.

University of
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Fisher Information: Establishing the Objective Function

Consider a sample of iid X1, . . ., X,, with density f(x,?), ¥ € © C R,
differentiable with respect to ¥ for almost all x € R.
The Fisher information about ¥ contained in statistic T,,(X, ..., X,) is

It,(9) = /R <W>2frn(x,z9)dx.

L A higher Fisher information is indicative of more precise estimation.

The Fisher information contained in the sample quantiles, I, ) . a(») (9),
0=po<pi<...<pry1 = 1,is asymptotically equal to nl(p1, .. .,pr);

k

(Biy1 — Bi)?

Ikpla"'apk - -
( ) ; Pi+1 — Pi

where 3; = f(q(pi), 0)0q(p:) /00, Vi and o = Brt1 = 0.

= Find optimal levels p7, . . ., pj, such that Iy is maximized! CCRQ

University of
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The Pareto Distribution

The optimal quantile selection procedure depends heavily on 4.
L Let us focus on the Pareto distribution.

We want to estimate 6 (with Ag unknown) using two quantiles ( p; < p7 ).
2 A2 2
ﬁ 1 + (52 51) + 62

L(p1,p2) = — .
(p1,p2) )41 P2 — D1 1 —p2

For the Pareto distribution, and letting p; = 1 — p;, we obtain
fi=0-pi-Inp;

The objective function may be rewritten as follows

p? In® by Inpy — pyInjpy)?
L(pi,p2) = 67 (p] LA (p2Inp> = pi Inp1) +p2In?py | .
P1 P2 — D1

University of

L Maximizing this does not require knowledge of 6 and Ag! QGPQF Kent
L Furthermore, it does not even depend on 7! .
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Finding p7 and p3 for the Pareto Distribution

Py =025, P2 = 0.50. Py =0.75.
P2 = 0.90. 2 = 0.95. P2 = 0.99.
~ University of
The optimal levels are p7 = 0.6385 and p3 = 0.9265. "’GPQF kent
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Armed with 8, we consider the optimal quantile level p3 used to estimate \g.

Following the same method, optimal p3 is found by maximizing

P (1-p9)°
P3 '

L This depends on 6, for which we luckily have an estimate!

(@) o=1. (b)o=1 ©)o=1. (d)o=2.

University of

 Kent

«O> «F»>» «E» <« = LAl

D. H. Alai (CEPAR, Kent) Lifetime Dependence Modelling 18 July 2017 18/23



Optimal Quantiles in General
The Pareto distribution is quite unique!

L The truncation point does not affect the optimal quantile levels.
L 6 can be estimated optimally without knowledge of \g.

In general, the truncation point complicates matters significantly.

L But even 7 = 0 does not imply optimal quantile-levels can always be found
We can find optimal quantile levels p} and p3 if we can write

for some functions f and g.

B9 =£(6,xs) x g(p)

L, Achievable for the Pareto, Weibull and exponential-Pareto distributions.
15} ©) p-Inp, for the Pareto and exponential-Pareto,
BY o p-Inp- In(—1Inp), for the Weibull.
D. H. Alai (CEPAR, Kent)
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The Bulk Annuity

Consider a pool of lives X = (+X1, ..., +X,). A bulk annuity pays £1 to
each survivor of the pool at the end of each year.

Let A denote its value at inception (¢ = 7) and let S; denote the number of
survivors in the pool at time # > .

In order to find the mean and variance of A, we need to find the distribution
of +S; and the joint distribution of (-S;, ;S;), s > .

If the lives are independent, these can readily be found.
L What if the lives are dependent?
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The Impact of Dependence (6 = 0.02, p = 60, 7 = 5)

Marginal Moments

Independent Pareto

Multivariate Pareto

n | E[;Xi] Var(-X))? | E[;A] Var(;A)z | E[,A] Var(;A)?
2 75.00 17.32 14.38 11.50 14.38 13.11
20 | 75.00 10.95 154.70 32.79 154.70 52.07

L Truncation affects the marginal distributions!

Given n, we apply appropriate parameters for a fair comparison.
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Conclusion

@ Motivation: Provide the means to assess the impact of dependent
lifetimes on annuity valuation and risk management

e Basis: systematic mortality improvements induce dependence

L Could reframe as cohort, or pool of similar-risks, analysis

@ Investigate a multivariate generalized Pareto distribution because

o Interesting family with potential for more flexible dependence

e More suitable for older-age dependence due to presence of extremes

@ Resolve estimation in the presence of truncation (in a variety of ways)

e Moment-based estimation (applied to the minimum observation)
e Quantile-based estimation (with optimal levels)

@ Assess the impact of dependence on the risk of a bulk annuity
L Dependence increases the risk
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Thank you!

Lifetime De;

Unwerslty of
cepar ié

« 0O»
ndence Modellin,

v
it




	Introduction
	Multivariate Generalized Pareto Distribution
	Parameter Estimation
	Optimal Quantile Selection

	Bulk Annuity Pricing
	Conclusion

