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Introduction

Motivation: Provide the means to assess the impact of dependent
lifetimes on annuity valuation and risk management.

Basis: systematic mortality improvements induce dependence.
�

Could reframe as cohort, or pool of similar-risks, analysis.

Investigate a multivariate generalized Pareto distribution because:
Interesting family with potential for more flexible dependence.
More suitable for older-age dependence due to presence of extremes.

Resolve estimation in the presence of truncation (in a variety of ways).
Moment-based estimation (applied to the minimum observation).
Quantile-based estimation (with optimal levels).

Assess the impact of dependence on the risk of a bulk annuity.�
Dependence increases the risk.
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Modelling Dependent Lifetimes

Assume m pools of n lives.  Suppose the lives within a pool are dependent.
→ Let Xi,j be the lifetime of individual i in pool j.
We apply the following model for lifetimes:

Xj ∼ h(θ, λS), ∀j,

where λS =
∑n

i=1 λi.
This means pools are independent.
�

Each pool is one draw from the multivariate distribution.
The magnitudes of m and n determine the application.
�

n = 2⇒ joint-life products.

r -

?

n

m
�

Small m or n might pose difficulties!
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Multiply Monotone Generated Distributions

Let X = (X1, . . . ,Xn) be a multivariate random vector with strictly positive
components Xi > 0 such that its joint survival function is given by

P(X1 > x1, . . . ,Xn > xn) = h
( n∑

i=1

λixi

)
, xi ≥ 0,

for λi > 0,∀i, where h is d-times monotone, d ≥ n. That is, for
k ∈ {1, . . . , d},

(−1)kh(k)(x) ≥ 0, x > 0.

Two well-known examples include the Pareto and Weibull distributions.

{Pareto} h(x) = (1 + x)−
1
θ , x ≥ 0, θ ∈ R+,

{Weibull} h(x) = exp(−x
1
θ ), x ≥ 0, θ ∈ [1,∞).

�
The Pareto generator resembles the Clayton copula generator (1 + θx)−1/θ.
�

The Weibull generator is just the Gumbel copula generator.
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Joint Densities of Subsets of X

The multiply monotone condition on h ensures we have admissible densities
for all possible subsets of X!

For example, the densities of X and Xi are given by,

fX(x1, . . . , xn) = (−1)nλ1 · · ·λnh(n)
( n∑

i=1

λixi

)
≥ 0, xi > 0,

fi(xi) = (−1)λih(1)(λixi) ≥ 0, xi > 0.

Survival functions are always given by h:

P(Xi > xi,Xj > xj) = h(λixi + λjxj), xi, xj ≥ 0, i 6= j,

P(Xi > xi) = h(λixi), xi ≥ 0.

As such, we require that h(0) = 1 and limx→∞ h(x) = 0.�
There is a clear link to Archimedean survival copulas.
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Examples of h

Pareto, θ ∈
{

1
4 ,

1
2 , 1, 2

}
. Clayton, θ ∈

{
1
4 ,

1
2 , 1, 2

}
. Gumbel, θ ∈ {1, 2, 4, 8}.

Frank, θ ∈ {−4,−1, 1, 4}. AMH, θ ∈
{
− 19

20 ,−
1
4 ,

1
4 ,

3
4

}
. Expo-Pareto, θ ∈ {1, 2, 4, 8}.
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Bivariate Marginal Correlations

As well as exhibiting either light or heavy tails, each h produces a different
correlation structure between marginals.�

Not surprisingly, heavy tailed examples permit only positive correlation,
�

whereas light tailed distributions allow for negative correlation.

For the Pareto and Clayton, Corr(Xi,Xj) = θ, for i 6= j.

For the remaining examples, the bivariate correlation involves either the
incomplete gamma, dilogarithm or trilogarithm function.

Γ(s, x) =

∫ ∞
x

ts−1e−tdt,

Li2(z) =

∫ 0

z

ln(1− t)
t

dt,

Li3(z) = −
∫ 0

z

Li2(t)
t

dt.

�
More on correlation later, after we’ve addressed truncation!
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Parameter Estimation

We wish to make use of pool statistics to estimate model parameters.

Mean and Variance;

Minimum and Maximum;

Quantiles!

⇒Within-pool dependence is a clear obstacle, but not the only one!
�

We anticipate truncated observations.

We require some theoretical results before we can proceed.
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Mixed Truncated Moments

Theorem (Mixed Moments)
Consider X = (X1, . . . ,Xn) with distribution generated by d-times monotone
h, d ≥ n. Let τXi = {Xi|X > τ}. If finite,

E
[ n∏

i=1
τXki

i

]
= h(λSτ)−1

k1∑
j1=0

· · ·
kn∑

jn=0

h(−
∑n

l=1 jl)(λSτ)

n∏
i=1

(−1)jiτ ki−ji

(ki − ji)!
ki!

λji
i

,

where λS =
∑n

i=1 λi, k =
∑n

i=1 ki, k ∈ {1, 2, . . . , d}, and ki ∈ {0} ∪ Z+;
furthermore, where h(−k)(x) = −

∫∞
x h(−(k−1))(y)dy and h(0)(x) = h(x).

�
Mean, variance and covariance results are especially relevant.
�

This result can be used to find the moments of the minimum (and maximum).

⇒ Let’s take a look at the bivariate correlation plots.�
They depend on τ !
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Correlation Plots for τ ∈ {0, 1, 2, 5}

Pareto Clayton Gumbel

Frank Ali-Mikhail-Haq Exponential-Pareto
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Comments on Mean-Variance Matching

Mean, variance and covariance results enable us to determine the expectation
of the sample (pool) mean and variance.

�
Averaging these, respectively, across pools yields θ̂ and λ̂S.

Consider the Pareto distribution with λi = λ,∀i; we have

E[a1(τXj)] =
λ−1 + τ(n + θ−1 − 1)

θ−1 − 1
,

E[m̃2(τXj)] =
(λ−1 + τn)2

(θ−1 − 1)(θ−1 − 2)
,

where a1 and m̃2 denote the unbiased sample (pool) mean and variance.

Note the relationship with pool size n.�
Inseparable from the truncation point τ .�
No indication that large n will produce more accurate estimation.�
Perhaps ideal for a portfolio of many joint-life annuities.
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Comments on Minimum-Maximum Matching

Sample moments of minima (or maxima) yield estimates θ̂ and λ̂.
�

Focus on minimum, since it looks much more promising.

Consider the Pareto distribution with λi = λ,∀i; we have

E[a1(τX(1))] =
λ−1/n + τθ−1

θ−1 − 1
,

E[m̃2(τX(1))] =
θ−1(λ−1/n + τ)2

(θ−1 − 1)2(θ−1 − 2)
.

Contrast the relationship with pool size n to the mean-variance matching.
⇒ This time distinct from τ and indicative of more accuracy as n↗.

Perhaps ideal for a portfolios of employer-based pension schemes.
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Quantile Matching

The previous two estimation procedures require sufficiently light tails!�
For the Pareto, 0 < θ < 1/2.
�

Quantile-based estimation procedures do not impose this restriction!

We apply quantile matching to the sample of pool minima!

qτX(1)(p) =
h−1((1− p)h(λSτ))

λS
.

�
Our estimation procedure requires three {optimal} levels p1, p2, and p3.
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Fisher Information: Establishing the Objective Function

Consider a sample of iid X1, . . . ,Xn with density f (x, ϑ), ϑ ∈ Θ ⊂ R,
differentiable with respect to ϑ for almost all x ∈ R.
The Fisher information about ϑ contained in statistic Tn(X1, . . . ,Xn) is

ITn(ϑ) =

∫
R

(
∂ ln fTn(x, ϑ)

∂ϑ

)2

fTn(x, ϑ)dx.

�
A higher Fisher information is indicative of more precise estimation.

The Fisher information contained in the sample quantiles, Iq̂(p1),...,̂q(pk)(ϑ),
0 = p0 < p1 < . . . < pk+1 = 1, is asymptotically equal to nIk(p1, . . . , pk);

Ik(p1, . . . , pk) =

k∑
i=0

(βi+1 − βi)
2

pi+1 − pi
,

where βi = f (q(pi), ϑ)∂q(pi)/∂ϑ, ∀i and β0 = βk+1 = 0.
⇒ Find optimal levels p?1, . . . , p

?
k , such that Ik is maximized!
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The Pareto Distribution

The optimal quantile selection procedure depends heavily on h.�
Let us focus on the Pareto distribution.

We want to estimate θ (with λS unknown) using two quantiles ( p1 < p2 ).

I2(p1, p2) =
β2

1
p1

+
(β2 − β1)2

p2 − p1
+

β2
2

1− p2
.

For the Pareto distribution, and letting p̌i = 1− pi, we obtain

βi = θ · p̌i · ln p̌i.

The objective function may be rewritten as follows

I2(p1, p2) = θ2

(
p̌2

1 ln2 p̌1

p1
+

(p̌2 ln p̌2 − p̌1 ln p̌1)2

p2 − p1
+ p̌2 ln2 p̌2

)
.

�
Maximizing this does not require knowledge of θ and λS!�
Furthermore, it does not even depend on τ !
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Finding p?1 and p?2 for the Pareto Distribution

p2 = 0.25. p2 = 0.50. p2 = 0.75.

p2 = 0.90. p2 = 0.95. p2 = 0.99.

The optimal levels are p?1 = 0.6385 and p?2 = 0.9265.
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Finding p?3

Armed with θ̂, we consider the optimal quantile level p3 used to estimate λS.

Following the same method, optimal p3 is found by maximizing

p̌3
(
1− p̌θ3

)2

p3
.

�
This depends on θ, for which we luckily have an estimate!

(a) θ = 1
4 . (b) θ = 1

2 . (c) θ = 1. (d) θ = 2.

�
The lighter the tail, the higher the optimal quantile level.
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Optimal Quantiles in General

The Pareto distribution is quite unique!�
The truncation point does not affect the optimal quantile levels.
�
θ can be estimated optimally without knowledge of λS.

In general, the truncation point complicates matters significantly.
�

But even τ = 0 does not imply optimal quantile-levels can always be found.

We can find optimal quantile levels p?1 and p?2 if we can write

β(θ) = f (θ, λS)× g(p)

for some functions f and g.
�

Achievable for the Pareto, Weibull and exponential-Pareto distributions.

β(θ) ∝ p̌ · ln p̌, for the Pareto and exponential-Pareto,

β(θ) ∝ p̌ · ln p̌ · ln(− ln p̌), for the Weibull.
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The Bulk Annuity

Consider a pool of lives τX = (τX1, . . . , τXn). A bulk annuity pays £1 to
each survivor of the pool at the end of each year.

Let τA denote its value at inception (t = τ ) and let τSt denote the number of
survivors in the pool at time t ≥ τ .

In order to find the mean and variance of τA, we need to find the distribution
of τSt and the joint distribution of (τSt, τSs), s > t.

If the lives are independent, these can readily be found.�
What if the lives are dependent?
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The Impact of Dependence (δ = 0.02, µ = 60, τ = 5)

Marginal Moments Independent Pareto Multivariate Pareto

n E[τX1] Var(τX1)
1
2 E[τA] Var(τA)

1
2 E[τA] Var(τA)

1
2

2 75.00 17.32 14.38 11.50 14.38 13.11

20 75.00 10.95 154.70 32.79 154.70 52.07

�
Truncation affects the marginal distributions!�
Given n, we apply appropriate parameters for a fair comparison.
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Conclusion

Motivation: Provide the means to assess the impact of dependent
lifetimes on annuity valuation and risk management.

Basis: systematic mortality improvements induce dependence.
�

Could reframe as cohort, or pool of similar-risks, analysis.

Investigate a multivariate generalized Pareto distribution because:
Interesting family with potential for more flexible dependence.
More suitable for older-age dependence due to presence of extremes.

Resolve estimation in the presence of truncation (in a variety of ways).
Moment-based estimation (applied to the minimum observation).
Quantile-based estimation (with optimal levels).

Assess the impact of dependence on the risk of a bulk annuity.�
Dependence increases the risk.
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Thank you!
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