Lifetime Dependence Modelling using a Generalized Multivariate Pareto Distribution

Daniel Alai Zinoviy Landsman

Centre of Excellence in Population Ageing Research (CEPAR)

School of Mathematics, Statistics & Actuarial Science University of Kent

> Department of Statistics University of Haifa

> > 18 July 2017

Plan

- Introduction
- Multivariate Generalized Pareto Distribution
 - Parameter Estimation
 - Optimal Quantile Selection
- Bulk Annuity Pricing
- Conclusion

Introduction

- Motivation: Provide the means to assess the impact of dependent lifetimes on annuity valuation and risk management.
 - Basis: systematic mortality improvements induce dependence.
 - 4 Could reframe as cohort, or pool of similar-risks, analysis.
- Investigate a multivariate generalized Pareto distribution because:
 - Interesting family with potential for more flexible dependence.
 - More suitable for older-age dependence due to presence of extremes.
- Resolve estimation in the presence of truncation (in a variety of ways).
 - Moment-based estimation (applied to the minimum observation).
 - Quantile-based estimation (with optimal levels).
- Assess the impact of dependence on the risk of a bulk annuity.
 - → Dependence increases the risk.

Modelling Dependent Lifetimes

Assume m pools of n lives. \rightsquigarrow Suppose the lives within a pool are dependent.

 \rightarrow Let $X_{i,j}$ be the lifetime of individual i in pool j.

We apply the following model for lifetimes:

$$\mathbf{X}_{j} \sim h(\theta, \lambda_{S}), \quad \forall j,$$

where $\lambda_S = \sum_{i=1}^n \lambda_i$.

- This means pools are independent.
- 4 Each pool is one draw from the multivariate distribution.
- \bullet The magnitudes of m and n determine the application.

 \Rightarrow n = 2 \Rightarrow joint-life products.

 \rightarrow Small *m* or *n* might pose difficulties!

Multiply Monotone Generated Distributions

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a multivariate random vector with strictly positive components $X_i > 0$ such that its joint survival function is given by

$$P(X_1 > x_1, \dots, X_n > x_n) = h\left(\sum_{i=1}^n \lambda_i x_i\right), \quad x_i \ge 0,$$

for $\lambda_i > 0, \forall i$, where h is d-times monotone, $d \ge n$. That is, for $k \in \{1, \ldots, d\}$,

$$(-1)^k h^{(k)}(x) \ge 0, \qquad x > 0.$$

Two well-known examples include the Pareto and Weibull distributions.

{Pareto}
$$h(x) = (1+x)^{-\frac{1}{\theta}}, \quad x \ge 0, \quad \theta \in \mathbb{R}^+,$$

{Weibull} $h(x) = \exp(-x^{\frac{1}{\theta}}), \quad x \ge 0, \quad \theta \in [1, \infty).$

 \Rightarrow The Pareto generator resembles the Clayton copula generator $(1 + \theta x)^{-1/\theta}$.

4 The Weibull generator is just the Gumbel copula generator. Cepar Kent

Joint Densities of Subsets of X

The multiply monotone condition on h ensures we have admissible densities for all possible subsets of X!

For example, the densities of X and X_i are given by,

$$f_{\mathbf{X}}(x_1, \dots, x_n) = (-1)^n \lambda_1 \dots \lambda_n h^{(n)} \left(\sum_{i=1}^n \lambda_i x_i \right) \ge 0, \qquad x_i > 0,$$

$$f_i(x_i) = (-1) \lambda_i h^{(1)}(\lambda_i x_i) \ge 0, \qquad x_i > 0.$$

Survival functions are always given by *h*:

$$P(X_i > x_i, X_j > x_j) = h(\lambda_i x_i + \lambda_j x_j), \qquad x_i, x_j \ge 0, i \ne j,$$

$$P(X_i > x_i) = h(\lambda_i x_i), \qquad x_i \ge 0.$$

As such, we require that h(0) = 1 and $\lim_{x \to \infty} h(x) = 0$. 4 There is a clear link to Archimedean survival copulas.

Examples of h

Bivariate Marginal Correlations

As well as exhibiting either light or heavy tails, each *h* produces a different correlation structure between marginals.

4 Not surprisingly, heavy tailed examples permit only positive correlation, whereas light tailed distributions allow for negative correlation.

For the Pareto and Clayton, $Corr(X_i, X_j) = \theta$, for $i \neq j$.

For the remaining examples, the bivariate correlation involves either the incomplete gamma, dilogarithm or trilogarithm function.

$$\Gamma(s,x) = \int_{x}^{\infty} t^{s-1} e^{-t} dt,$$

$$\operatorname{Li}_{2}(z) = \int_{z}^{0} \frac{\ln(1-t)}{t} dt,$$

$$\operatorname{Li}_{3}(z) = -\int_{z}^{0} \frac{\operatorname{Li}_{2}(t)}{t} dt.$$

4 More on correlation later, after we've addressed truncation!

Parameter Estimation

We wish to make use of pool statistics to estimate model parameters.

- Mean and Variance;
- Minimum and Maximum;
- Quantiles!
- ⇒ Within-pool dependence is a clear obstacle, but not the only one!
 - ↓ We anticipate truncated observations.

We require some theoretical results before we can proceed.

Mixed Truncated Moments

Theorem (Mixed Moments)

Consider $\mathbf{X} = (X_1, \dots, X_n)$ with distribution generated by d-times monotone $h, d \ge n$. Let $_{\tau}X_i = \{X_i | \mathbf{X} > \tau\}$. If finite,

$$\mathbb{E}\left[\prod_{i=1}^{n} \tau X_{i}^{k_{i}}\right] = h(\lambda_{S}\tau)^{-1} \sum_{j_{1}=0}^{k_{1}} \cdots \sum_{j_{n}=0}^{k_{n}} h^{\left(-\sum_{l=1}^{n} j_{l}\right)} (\lambda_{S}\tau) \prod_{i=1}^{n} \frac{(-1)^{j_{i}} \tau^{k_{i}-j_{i}}}{(k_{i}-j_{i})!} \frac{k_{i}!}{\lambda_{i}^{j_{i}}},$$

where
$$\lambda_S = \sum_{i=1}^n \lambda_i$$
, $k = \sum_{i=1}^n k_i$, $k \in \{1, 2, ..., d\}$, and $k_i \in \{0\} \cup \mathbb{Z}^+$; furthermore, where $h^{(-k)}(x) = -\int_x^{\infty} h^{(-(k-1))}(y) dy$ and $h^{(0)}(x) = h(x)$.

- 4 Mean, variance and covariance results are especially relevant.
- 4 This result can be used to find the moments of the minimum (and maximum).
- ⇒ Let's take a look at the bivariate correlation plots.
 - 4 They depend on $\tau!$

Correlation Plots for $\tau \in \{0, 1, 2, 5\}$

Comments on Mean-Variance Matching

Mean, variance and covariance results enable us to determine the expectation of the sample (pool) mean and variance.

 \downarrow Averaging these, respectively, across pools yields $\widehat{\theta}$ and $\widehat{\lambda}_s$.

Consider the Pareto distribution with $\lambda_i = \lambda, \forall i$; we have

$$\mathbb{E}[a_1(_{\tau}\mathbf{X}_j)] = \frac{\lambda^{-1} + \tau(\mathbf{n} + \theta^{-1} - 1)}{\theta^{-1} - 1},$$

$$\mathbb{E}[\widetilde{m}_2(_{\tau}\mathbf{X}_j)] = \frac{(\lambda^{-1} + \tau\mathbf{n})^2}{(\theta^{-1} - 1)(\theta^{-1} - 2)},$$

where a_1 and \widetilde{m}_2 denote the unbiased sample (pool) mean and variance.

Note the relationship with pool size n.

- \downarrow Inseparable from the truncation point τ .
- \downarrow No indication that large *n* will produce more accurate estimation.
- 4 Perhaps ideal for a portfolio of many joint-life annuities.

Comments on Minimum-Maximum Matching

Sample moments of minima (or maxima) yield estimates $\widehat{\theta}$ and $\widehat{\lambda}$. 4 Focus on minimum, since it looks much more promising.

Consider the Pareto distribution with $\lambda_i = \lambda, \forall i$; we have

$$\mathbb{E}[a_1(_{\tau}\mathbf{X}_{(1)})] = \frac{\lambda^{-1}/\mathbf{n} + \tau\theta^{-1}}{\theta^{-1} - 1},$$

$$\mathbb{E}[\widetilde{m}_2(_{\tau}\mathbf{X}_{(1)})] = \frac{\theta^{-1}(\lambda^{-1}/\mathbf{n} + \tau)^2}{(\theta^{-1} - 1)^2(\theta^{-1} - 2)}.$$

Contrast the relationship with pool size n to the mean-variance matching. \Rightarrow This time distinct from τ and indicative of more accuracy as $n \nearrow$.

Perhaps ideal for a portfolios of employer-based pension schemes.

Quantile Matching

The previous two estimation procedures require sufficiently light tails!

- \downarrow For the Pareto, $0 < \theta < 1/2$.
- 4 Quantile-based estimation procedures do not impose this restriction!

We apply quantile matching to the sample of pool minima!

$$q_{\tau X_{(1)}}(p) = \frac{h^{-1}((1-p)h(\lambda_{\mathbf{S}}\tau))}{\lambda_{\mathbf{S}}}.$$

 \downarrow Our estimation procedure requires three {optimal} levels p_1 , p_2 , and p_3 .

Fisher Information: Establishing the Objective Function

Consider a sample of iid X_1, \ldots, X_n with density $f(x, \vartheta), \vartheta \in \Theta \subset \mathbb{R}$, differentiable with respect to ϑ for almost all $x \in \mathbb{R}$.

The Fisher information about ϑ contained in statistic $T_n(X_1,\ldots,X_n)$ is

$$I_{T_n}(\vartheta) = \int_{\mathbb{R}} \left(\frac{\partial \ln f_{T_n}(x,\vartheta)}{\partial \vartheta} \right)^2 f_{T_n}(x,\vartheta) dx.$$

4 A higher Fisher information is indicative of more precise estimation.

The Fisher information contained in the sample quantiles, $I_{\widehat{q}(p_1),...,\widehat{q}(p_k)}(\vartheta)$, $0 = p_0 < p_1 < \ldots < p_{k+1} = 1$, is asymptotically equal to $nI_k(p_1, \ldots, p_k)$;

$$I_k(p_1,\ldots,p_k) = \sum_{i=0}^k \frac{(\beta_{i+1}-\beta_i)^2}{p_{i+1}-p_i},$$

where $\beta_i = f(q(p_i), \vartheta) \partial q(p_i) / \partial \vartheta$, $\forall i$ and $\beta_0 = \beta_{k+1} = 0$.

 \Rightarrow Find optimal levels $p_1^{\star}, \dots, p_k^{\star}$, such that I_k is maximized! **Cepar** Kent

The Pareto Distribution

The optimal quantile selection procedure depends heavily on h.

4 Let us focus on the Pareto distribution.

We want to estimate θ (with λ_S unknown) using two quantiles ($p_1 < p_2$).

$$I_2(p_1, p_2) = \frac{\beta_1^2}{p_1} + \frac{(\beta_2 - \beta_1)^2}{p_2 - p_1} + \frac{\beta_2^2}{1 - p_2}.$$

For the Pareto distribution, and letting $\check{p}_i = 1 - p_i$, we obtain

$$\beta_i = \theta \cdot \check{p}_i \cdot \ln \check{p}_i.$$

The objective function may be rewritten as follows

$$I_2(p_1, p_2) = \theta^2 \left(\frac{\check{p}_1^2 \ln^2 \check{p}_1}{p_1} + \frac{(\check{p}_2 \ln \check{p}_2 - \check{p}_1 \ln \check{p}_1)^2}{p_2 - p_1} + \check{p}_2 \ln^2 \check{p}_2 \right).$$

4 Maximizing this does not require knowledge of θ and λ_S ! 4 Furthermore, it does not even depend on τ !

Finding p_1^* and p_2^* for the Pareto Distribution

The optimal levels are $p_1^* = 0.6385$ and $p_2^* = 0.9265$.

Finding p_3^{\star}

Armed with $\widehat{\theta}$, we consider the optimal quantile level p_3 used to estimate λ_S .

Following the same method, optimal p_3 is found by maximizing

$$\frac{\check{p}_3\left(1-\check{p}_3^{\theta}\right)^2}{p_3}.$$

 \downarrow This depends on θ , for which we luckily have an estimate!

4 The lighter the tail, the higher the optimal quantile level.

Optimal Quantiles in General

The Pareto distribution is quite unique!

4 The truncation point does not affect the optimal quantile levels.

 $\vdash \theta$ can be estimated optimally without knowledge of λ_S .

In general, the truncation point complicates matters significantly.

 \downarrow But even $\tau=0$ does not imply optimal quantile-levels can always be found.

We can find optimal quantile levels p_1^* and p_2^* if we can write

$$\beta^{(\theta)} = f(\theta, \lambda_S) \times g(p)$$

for some functions f and g.

4 Achievable for the Pareto, Weibull and exponential-Pareto distributions.

$$\beta^{(\theta)} \propto \check{p} \cdot \ln \check{p},$$

for the Pareto and exponential-Pareto,

$$\beta^{(\theta)} \propto \check{p} \cdot \ln \check{p} \cdot \ln(-\ln \check{p}),$$

for the Weibull.

The Bulk Annuity

Consider a pool of lives $_{\tau}\mathbf{X} = (_{\tau}X_1, \dots, _{\tau}X_n)$. A bulk annuity pays £1 to each survivor of the pool at the end of each year.

Let $_{\tau}A$ denote its value at inception $(t = \tau)$ and let $_{\tau}S_t$ denote the number of survivors in the pool at time $t \geq \tau$.

In order to find the mean and variance of $_{\tau}A$, we need to find the distribution of $_{\tau}S_t$ and the joint distribution of $(_{\tau}S_t,_{\tau}S_s)$, s > t.

If the lives are independent, these can readily be found.

↓ What if the lives are dependent?

The Impact of Dependence ($\delta = 0.02, \mu = 60, \tau = 5$)

			Independent Pareto			
n	$\mathbb{E}[_{\boldsymbol{ au}}X_1]$	$\operatorname{Var}(_{\boldsymbol{\tau}}X_1)^{\frac{1}{2}}$	$\mathbb{E}[_{ au}A]$	$\operatorname{Var}(_{\tau}A)^{\frac{1}{2}}$	$\mathbb{E}[_{ au}A]$	$\operatorname{Var}(_{\tau}A)^{\frac{1}{2}}$
2	75.00	17.32	14.38	11.50	14.38	13.11
20	75.00	10.95	154.70	32.79	154.70	52.07

⁴ Truncation affects the marginal distributions! Given *n*, we apply appropriate parameters for a fair comparison.

Conclusion

- Motivation: Provide the means to assess the impact of dependent lifetimes on annuity valuation and risk management.
 - Basis: systematic mortality improvements induce dependence.
 - 4 Could reframe as cohort, or pool of similar-risks, analysis.
- Investigate a multivariate generalized Pareto distribution because:
 - Interesting family with potential for more flexible dependence.
 - More suitable for older-age dependence due to presence of extremes.
- Resolve estimation in the presence of truncation (in a variety of ways).
 - Moment-based estimation (applied to the minimum observation).
 - Quantile-based estimation (with optimal levels).
- Assess the impact of dependence on the risk of a bulk annuity.
 - → Dependence increases the risk.

Thank you!

