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In context

Ageing population :
- increasing life expectancy
- decreasing birth rate
- papy boom

Ratio of pensioners to workers is expected to increase by 46% over the
next two decades in Belgium (from 28% in 2017 to 41% in 2037). 1

Impact of this ratio on the public pension scheme.

1The High Council of Finance, 2016
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PAYG principle

Today workers pay for today pensioners.
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PAYG scheme
Incomes from the contributors :

At πt S t

with
- A : number of contributors
- π : contribution rate
- S : mean salary

Outcomes for the pensioners :

Bt Pt = Bt δt S t

with
- B : number of pensioners
- δ : global replacement rate
- P : mean pension
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Equilibrium equation

The equilibrium equation of the PAYG scheme is

Incomes = Outcomes
At πt S t = Bt δt S t

πt = Dt δt

with the dependence ratio

Dt =
Bt

At
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Automatic balance mechanism

πt = Dt δt

In case of change of the risk factor Dt , how can πt and δt be auto-

matically adjusted to maintain the equilibrium . . .

. . . while maintaining simultaneously financial sustainability and so-

cial adequacy ?
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DB and DC schemes

Defined Benefit (DB)

δ constant

πt = Dt δ

Demographic risk borne
by the contributors

Defined Contribution (DC)

π constant

δt =
π

Dt

Demographic risk borne
by the pensioners
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An intermediate scheme : the Musgrave rule

Replacement rate net of contribution M constant

M =
Pt

St (1− πt)
=

δt
1− πt


δt =

M
1 + M Dt

πt =
M Dt

1 + M Dt

Risk shared by the contributors and the pensioners
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Optimal criteria

Optimal risk sharing providing joint stability of πt and δt around

fixed targets π and δ.
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Optimization and its loss function

min
δs ,πs

E

[∫ T

0

(
(1− ρs)

(
δs

δ
− 1
)2

+ ρs

(πs

π
− 1
)2
)

ds)

]
2

with fix targets δ, π and a given weight process ρs ∈ [0, 1]

The dependence ratio process follows a geometric Brownian motion

dDt

Dt
= µ dt + σ dWt

where Wt is a standard Brownian motion.

2A. Cairns, 2000
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Stochastic optimal control

We use the PAYG equilibrium equation

πt = Dt δt .

- The loss function is

(1− ρt)

(
δt

δ
− 1
)2

+ ρt

(
Dt δt
π
− 1
)2

.

- The state variable is
D .

- The control variable is
δ .
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Optimal solutions

By applying the stochastic optimal control theory (HJB equation),
we obtain

δ?t =
(1− ρt)

1
δ

+ ρt
Dt

π

(1− ρt)
1

δ
2 + ρt

D2
t

π2

π?t = Dt δ
?(t)

The obtained result does not depend on the type of the process Dt .

This result can be directly obtained by optimizing the loss function.
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Optimal solutions
Extreme DB and DC schemes

δ?t =
(1− ρt)

1
δ

+ ρt
Dt

π

(1− ρt)
1

δ
2 + ρt

D2
t

π2

π?t = Dt δ
?(t)

DB : ρt = 0

{
δ?t = δ

π?t = Dt δ
DC : ρt = 1

δ?t =
π

Dt
π?t = π
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Calibration of the targets

The targets π and δ are determined according following constraints

δ?t0 = δ0 (initialization)
π = δD∞ (PAYGO equation).

For a constant ρ, we obtain

π = δ0
(1− ρ) D2

∞ + ρD2
0

(1− ρ) D∞ + ρD0

δ = δ0

(1− ρ) + ρ
D2

0
D2
∞

(1− ρ) + ρ
D0

D∞

.
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Benefits for specific career paths

Individual δi depends on the specific career profile {S i
x}.

The points system is used to determine the pension P i according
to the career of each affiliate.
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Points system
Benefits :

P i
t = Πi vt

Number of points :

Πi =
xr−1∑
x=x0

S i
x

S

constant mean salary over time S

Value of the point :

vt = δt S
1

Πref

= δt S
1

xr − x0
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Points system

Benefits :

P i
t = Πi vt

=
1

xr − x0
δt
∑

S i
x

Individual replacement rate :

δit =
P i

t
S i

xr−1

=
1

xr − x0

1
S i

xr−1

δt
∑

S i
x

17 / 38



Another risk sharing

With the proposed risk sharing and points system, we can not define

a DB system on final salary with the same replacement rate for

everyone independently of the career profile. In order to obtain a DB

system on final salary, we propose a new risk sharing :

γ DB + (1− γ) DC with γ ∈ [0, 1] .
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Another risk sharing
Extreme DB and DC schemes

γ DB + (1− γ) DC with γ ∈ [0, 1]

DB (γ = 1)

{
πt = Dt δ

δit = δt = δ

DC (γ = 0)


πt = π

δt =
π

Dt
δit = 1

xr−x0
1

S i
xr

π
Dt

∑
S i

x
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Another risk sharing

γ DB + (1− γ) DC with γ ∈ [0, 1]

Risk sharing


πt = γ Dt δ + (1− γ)π

δt = γ δ + (1− γ) π
Dt

δit = γ δ + (1− γ) 1
xr−x0

1
S i

xr

π
Dt

∑
S i

x
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Dependence ratio 3

Complete career from x0 = 20 years to xr = 65 years

3Federal Planning Bureau, 2014
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Dependence ratio process

The dependence ratio is a mean reverting process and follows a lo-
gnormal distribution : the Black-Karasinski model

d lnD(t) = α (lnD∞ − lnD(t)) dt + σ dW (t)

where α > 0, σ > 0 and Wt is a standard Brownian motion.

Calibration using least square regression provides the parameters

α = 0.059 , D∞ = 0.47 and σ = 0.0046 .
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Dependence ratio process
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Initial conditions

The initialisation of our model in t0 = 2017 :

- Dependence ratio : D0 = 30%

- Contribution rate : π0 = 15%

- Replacement rate : δ0 = 50%

- Net replacement rate : M = 59%
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Risk sharing under stochastic optimal control

Remember, the loss function to minimize is

(1− ρt)

(
δt

δ
− 1
)2

+ ρt

(
Dt δt
π
− 1
)2

.

We simulate scenarios with

ρ = {0, 0.25, 0.5, 0.75, 1} and the Musgrave rule.
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Risk sharing under stochastic optimal control
Six scenarios

(1− ρt)

(
δt

δ
− 1
)2

+ ρt

(
Dt δt
π
− 1
)2

Simulated scenarios

scheme ρt π δ

DB 0 24% 50%

risk sharing 0.25 22% 47%

Musgrave ρ̃t 22% 46%

risk sharing 0.5 20% 43%

risk sharing 0.75 18% 38%

DC 1 15% 32%
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Risk sharing under stochastic optimal control
Musgrave rule

The weight process is

ρ̃t =

1
δ

(
1− M

δ
+ M Dt

)
1
δ

(
1− M

δ
+ M Dt

)
− Dt

π

(
1− M Dt

π
+ M Dt

) .
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Risk sharing under stochastic optimal control
Contribution rate
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Risk sharing under stochastic optimal control
Replacement rate
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Salaries
4 career profiles
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Another risk sharing

Remember, the second risk sharing model is

γ DB + (1− γ) DC .

We simulate scenarios with

γ = {0, 0.25, 0.5, 0.75, 1} and the Musgrave rule with γ̃t .
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Another risk sharing
Musgrave rule

γ̃t =
M Dt − π0 − π0 M Dt

(1 + M Dt) (δ0 Dt − π0)
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Another risk sharing
Contribution rate
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Another risk sharing
Mean replacement rate
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Another risk sharing
Individual replacement rate
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Another risk sharing
Individual replacement rate

The replacement rate is
- constant,
- the same for everyone.

Two effects :
- the demographic risk,
- the salary risk.
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Conclusions

- Ageing induces an ineluctable and significant increase of the
dependence ratio in the coming decades.

- In the aim to maintain a balanced PAYG system, we propose
two different risk sharing :

mix between the extreme DB and DC schemes.
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Future research

- Optimal risk sharing through the processes ρt and γt .

- Integration of the proposed risk sharing models within the
NDC system (with a variable contribution rate).
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