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Abstract

Word embedding models typically learn two
types of vectors: target word vectors and con-
text word vectors. These vectors are normally
learned such that they are predictive of some
word co-occurrence statistic, but they are oth-
erwise unconstrained. However, the words
from a given language can be organized in
various natural groupings, such as syntactic
word classes (e.g. nouns, adjectives, verbs)
and semantic themes (e.g. sports, politics, sen-
timent). Our hypothesis in this paper is that
embedding models can be improved by explic-
itly imposing a cluster structure on the set of
context word vectors. To this end, our model
relies on the assumption that context word vec-
tors are drawn from a mixture of von Mises-
Fisher (vMF) distributions, where the parame-
ters of this mixture distribution are jointly op-
timized with the word vectors. We show that
this results in word vectors which are qualita-
tively different from those obtained with exist-
ing word embedding models. We furthermore
show that our embedding model can also be
used to learn high-quality document represen-
tations.

1 Introduction

Word embedding models are aimed at learning
vector representations of word meaning (Mikolov
et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2017). These representations are primarily
learned from co-occurrence statistics, where two
words are represented by similar vectors if they
tend to occur in similar linguistic contexts. Most
models, such as Skip-gram (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) learn two dif-
ferent vector representations w and w̃ for each
word w, which we will refer to as the target word
vector and the context word vector respectively.
Apart from the constraint that wi · w̃j should re-
flect how often words wi and wj co-occur, these

vectors are typically unconstrained.
As was shown in (Mu et al., 2018), after per-

forming a particular linear transformation, the an-
gular distribution of the word vectors that are ob-
tained by standard models is essentially uniform.
This isotropy property is convenient for study-
ing word embeddings from a theoretical point of
view (Arora et al., 2016), but it sits at odds with
fact that words can be organised in various nat-
ural groupings. For instance, we might perhaps
expect that words from the same part-of-speech
class should be clustered together in the word em-
bedding. Similarly, we might expect that organ-
ising word vectors in clusters that represent se-
mantic themes would also be beneficial. In fact, a
number of approaches have already been proposed
that use external knowledge for imposing such a
cluster structure, capturing the intuition that words
which belong to the same category should be rep-
resented by similar vectors (Xu et al., 2014; Guo
et al., 2015; Hu et al., 2015; Li et al., 2016c) or
be located in a low-dimensional subspace (Jameel
and Schockaert, 2016). Such models tend to out-
perform standard word embedding models, but it
is unclear whether this is only because they can
take advantage of external knowledge, or whether
imposing a cluster structure on the word vectors is
itself also inherently useful.

In this paper, we propose a word embedding
model which explicitly aims to learn context vec-
tors that are organised in clusters. Note that un-
like the aforementioned works, our method does
not rely on any external knowledge. We simply
impose the requirement that context word vectors
should be clustered, without prescribing how these
clusters should be defined. To this end, we extend
the GloVe model by imposing a prior on the con-
text word vectors. This prior takes the form of a
mixture of von Mises-Fisher (vMF) distributions,
which is a natural choice for modelling clusters in



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

directional data (Banerjee et al., 2005).
We show that this results in word vectors that

are qualitatively different from those obtained us-
ing existing models, significantly outperforming
them in syntax-oriented evaluations. Moreover,
we show that the same model can be used for
learning document embeddings, simply by view-
ing the words that appear in a given document as
context words. We show that the vMF distribu-
tions in that case correspond to semantically co-
herent topics, and that the resulting document vec-
tors outperform those obtained with existing topic
modelling strategies.

2 Related work

A large number of works have proposed tech-
niques for improving word embeddings based on
external lexical knowledge. Many of these ap-
proaches are focused on external knowledge about
word similarity (Yu and Dredze, 2014; Faruqui
et al., 2015; Mrksic et al., 2016), although some
approaches for incorporating categorical knowl-
edge have been studied as well, as already men-
tioned in the introduction. What is different about
our approach is that we do not rely on any external
knowledge. We essentially impose the constraint
that some category structure has to exist, without
specifying what these categories look like.

The view that the words which occur in a given
document collection have a natural cluster struc-
ture is central to topic models such as Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) and
its non-parametric counterpart called Hierarchical
Dirichlet Processes (HDP) (Teh et al., 2005) where
the HDP model automatically discovers the num-
ber of latent topics based on the data characteris-
tic. In recent years, several approaches that com-
bine the intuitions underlying topic models with
word embeddings have been proposed. For exam-
ple, in (Das et al., 2015) it was proposed to replace
the usual representation of topics as multinomial
distributions over words by Gaussian distributions
over a pre-trained word embedding, while (Bat-
manghelich et al., 2016) and (Li et al., 2016b) used
von Mises-Fisher distributions for this purpose.
Note that documents are still modelled as multi-
nomial distributions of topics in these models. In
(He et al., 2017) the opposite approach is taken:
documents and topics are represented as vectors,
with the aim of modelling topic correlations in an
efficient way, while each topic is represented as a

multinomial distribution over words. In this pa-
per, we take a different approach for learning doc-
ument vectors, by not considering any document-
specific topic distribution. This allows us to repre-
sent document vectors and (context) word vectors
in the same space and, as we will see, leads to im-
proved empirical results.

Apart from using pre-trained word embeddings
for improving topic representations, a number of
approaches have also been proposed that use topic
models for learning word vectors. For example,
(Liu et al., 2015b) first uses the standard LDA
model to learn a latent topic assignment for each
word occurrence. These assignments are then used
to learn vector representations of words and top-
ics. Some extensions of this model have been pro-
posed which jointly learn the topic-specific word
vectors and the latent topic assignment (Li et al.,
2016a; Shi et al., 2017). The main motivation for
these works is to learn topic-specific word repre-
sentations. They are thus similar in spirit to multi-
prototype word embeddings, which aim to learn
sense-specific word vectors (Neelakantan et al.,
2014). Our method is clearly different from these
works, as our focus is on learning standard word
vectors (as well as document vectors).

Regarding word embeddings more generally,
the attention has recently shifted towards contex-
tualized word embeddings based on neural lan-
guage models (Peters et al., 2018). Such contex-
tualized word embeddings serve a broadly simi-
lar purpose as the aforementioned topic-specific
word vectors, but with far better empirical perfor-
mance. Despite their recent popularity, however,
it is worth emphasizing that state-of-the-art meth-
ods such as ELMO (Peters et al., 2018) rely on
a concatenation of the output vectors of a neural
language model with standard word vectors. For
this reason, the problem of learning standard word
vectors remains an important research topic.

3 Model Description

The GloVe model (Pennington et al., 2014) learns
for each word w a target word vector w and a con-
text word vector w̃ by minimizing the following
objective:∑

i,j
xij 6=0

f(xij)(wi · w̃j + bi + b̃j − log xij)
2

where xij is the number of times wi and wj co-
occur in the given corpus, bi and b̃j are bias terms
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and f(xij) is a weighting function aimed at reduc-
ing the impact of sparse co-occurrence counts. It
is easy to see that this objective is equivalent to
maximizing the following likelihood function

P (D|Ω) ∝
∏
i,j

xij 6=0

N (log xij ;µij , σ
2)f(xij)

where σ2 > 0 can be chosen arbitrarily, and

µij = wi · w̃j + bi + b̃j

Here, D denotes the given corpus and Ω refers to
the set of parameters learned by the word embed-
ding model, i.e. the word vectors wi and w̃j and
the bias terms.

The advantage of this probabilistic formulation
is that it allows us to introduce priors on the pa-
rameters of the model. This strategy was recently
used in the WeMAP model (Jameel et al., 2019) to
replace the constant variance σ2 by a variance σ2j
that depends on the context word. In this paper,
however, we will use priors on the parameters of
the word embedding model itself. Specifically, we
will impose a prior on the context word vectors w̃,
i.e. we will maximize:∏

i,j
xij 6=0

N (log xij ;µij , σ
2)f(xij) ·

∏
i

P (w̃i)

Essentially, we want the prior P (w̃i) to model
the assumption that context word vectors are clus-
tered. To this end, we use a mixture of von-Mises
Fisher distributions. To describe this distribution,
we begin with a von Mises-Fisher (vMF) distri-
bution (Mardia and Jupp, 2009; Hornik and Grün,
2014), which is a distribution over unit vectors in
Rd that depends on a parameter θ ∈ Rd, where
d will denote the dimensionality of the word vec-
tors. The vMF density for x ∈ Sd (with Sd the
d-dimensional unit hypersphere) is given by:

vmf(x|θ) =
eθ

ᵀx

0F1(; d/2; ||θ||2
4 )

where the denominator is given by

0F1(; p; q) =

∞∑
n=0

Γ(p)

Γ(p+ n)

qn

n!

which is commonly known as the confluent hyper-
geometric function. Note, however, that we will

not need to evaluate this denominator, as it simply
acts as a scaling factor. The normalized vector θ

‖θ‖ ,
for θ 6= 0, is the mean direction of the distribution,
while ‖θ‖ is known as the concentration parame-
ter. To estimate the parameter θ from a given set of
samples, we can use maximum likelihood (Hornik
and Grün, 2014).

A finite mixture of vMFs, which we denote as
movMF, is a distribution on the unit hypersphere
of the following form (x ∈ Sd):

h(x|Θ) =
K∑
k=1

ψk vmf(x|θk)

where K is the number of mixture components,
ψk ≥ 0 for each k,

∑
k ψk = 1, and Θ =

(θ1, ..., θK). The parameters of this movMF dis-
tribution can be computed using the Expectation-
Maximization (EM) algorithm (Banerjee et al.,
2005; Hornik and Grün, 2014).

Note that movMF is a distribution on unit vec-
tors, whereas context word vectors should not be
normalized. We therefore define the prior on con-
text word vectors as follows:

P (w̃) ∝ h
( w̃

‖w̃‖
|Θ
)

Furthermore, we use L2 regularization to constrain
the norm ‖w̃‖. We will refer our model as CvMF.

In the experiments, following (Jameel et al.,
2019), we will also consider a variant of our model
in which we use a context-word specific variance
σ2j . In that case, we maximize the following:∏
i,j

xij 6=0

N (log xij ;µij , σ
2
j ) ·
∏
i

P (w̃i) ·
∏
i

P (σ2j )

where P (σ2j ) is modelled as an inverse-gamma
distribution (NIG). Note that in this variant we do
not use the weighting function f(xij), as this was
found to be unnecessary when using a context-
word specific variance σ2j in (Jameel et al., 2019).
We will refer this variant as CvMF(NIG).

Document embedding. The model described
above can also be used to learn document embed-
dings. To this end, the target word vectors are sim-
ply replaced by document vectors and the counts
xij then reflect how often word j occurs in doc-
ument i. Below we will experimentally compare
this strategy with existing methods for learning
document representations, focusing especially on
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Models Gsem GSyn MSR IM DM ES LS
GloVe 78.85 62.81 53.04 55.21 14.82 10.56 0.881

SG 71.58 60.50 51.71 55.45 13.48 08.78 0.671
CBOW 64.81 47.39 45.33 50.58 10.11 07.02 0.764

WeMAP 83.52 63.08 55.08 56.03 14.95 10.62 0.903
CvMF 63.22 67.41 63.21 65.94 17.46 9.380 1.100

CvMF(NIG) 64.14 67.55 63.55 65.95 17.49 9.410 1.210

Table 1: Word analogy results on different datasets.

approaches that are inspired by probabilistic topic
models. Indeed, we can intuitively think of the
vMF mixture components in our model as rep-
resenting topics. While there have already been
topic models that use vMF distributions in this
way (Batmanghelich et al., 2016; Li et al., 2016b),
our approach is different because we do not con-
sider a document-level topic distribution, and be-
cause we do not rely on pre-trained word embed-
dings.

4 Experiments

In this section we assess the potential of our model
both for learning word embeddings (Section 4.1)
and for learning document embeddings (Section
4.2). Our implementation will be made available
upon acceptance.

4.1 Word Embedding Results

In this section, we describe the word embedding
results, where we directly compare our model with
the following baselines: GloVe (Pennington et al.,
2014), Skipgram (Mikolov et al., 2013) (denoted
as SG), Continuous Bag of Words (Mikolov et al.,
2013) (denoted as CBOW), and the recently pro-
posed WeMAP model (Jameel et al., 2019). We
have used the Wikipedia dataset which was shared
by Jameel et al. (2019), using the same vocab-
ulary and preprocessing strategy. We report re-
sults for 300-dimensional word vectors and we use
K = 3000 mixture components for our model.
As evaluation tasks, we use standard word anal-
ogy and similarity benchmarks.

Analogy. Table 1 shows word analogy results
for three datasets. First, we show results for the
Google analogy dataset which is available from
the GloVe project1 and covers a mix of semantic
and syntactic relations. These results are shown
separately in Table 1 as Gsem and Gsyn respec-
tively. Second, we consider the Microsoft syntac-

1https://github.com/stanfordnlp/GloVe

50 300 1,000 3,000
0.58
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Figure 1: Accuracy vs number of vMF mixtures on the
Google word analogy dataset for our model.

tic word analogy dataset2, which only covers syn-
tactic relations and is referred to as MSR. Finally,
we show results for the BATS analogy dataset3,
which covers four categories of relations: inflec-
tional morphology (IM), derivational morphology
(DM), encyclopedic semantics (ES) and lexico-
graphic semantics (LS). The results in Table 1
clearly show that our model behaves substantially
differently from the baselines: for the syntac-
tic/morphological relationships (Gsyn, MSR, IM,
DM), our model outperforms the baselines in a
very substantial way. On the other hand, for the
remaining, semantically-oriented categories, the
performance is less strong, with particularly weak
results for Gsem. For ES and IS, it needs to be em-
phasized that the results are weak for all models,
which is partially due to a relatively high num-
ber of out-of-vocabulary words. In Figure 1 we
show the impact of the number of mixture compo-
nents K on the performance for Gsem and Gsyn
(for the NIG variant). This shows that the under-
performance on Gsem is not due to the choice of
K. Among others, we can also see that a relatively
high number of mixture components is needed to
achieve the best results.

Word similarity. The word similarity results
are shown in Table 2, where we have considered
the same datasets as Jameel et al. (2019). In
the table, we refer to EN-RW-Stanford as Stanf,
EN-SIMLEX-999 as LEX, SimVerb3500 as Verb,
EN-MTurk771 as Tr771, EN-MTurk287 as Tr287,
EN-MENTR3K as TR3k, the RareWords dataset
as RW, and the recently introduced Card-660 rare
words dataset (Pilehvar et al., 2018) denoted as

2https://aclweb.org/aclwiki/Analogy (State of the art)
3http://vecto.space/projects/BATS/
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Models MC30 TR3k Tr287 Tr771 RG65 Stanf LEX Verb143 WS353 YP130 Verb RW RW-660
GloVe 0.739 0.746 0.648 0.651 0.752 0.473 0.347 0.308 0.675 0.582 0.184 0.422 0.000

SG 0.741 0.742 0.651 0.653 0.757 0.470 0.356 0.289 0.662 0.565 0.195 0.470 0.000
CBOW 0.727 0.615 0.637 0.555 0.639 0.419 0.279 0.307 0.618 0.227 0.168 0.419 0.000

WeMAP 0.769 0.752 0.657 0.659 0.779 0.472 0.361 0.303 0.684 0.593 0.196 0.480 0.000
CvMF 0.707 0.703 0.642 0.652 0.746 0.419 0.353 0.250 0.601 0.465 0.226 0.519 0.000

CvMF(NIG) 0.708 0.703 0.642 0.652 0.747 0.419 0.354 0.250 0.604 0.467 0.226 0.519 0.000

Table 2: Word similarity results on some benchmark datasets.

RW-660. In most of these datasets, our model does
not outperform the baselines, which is to be ex-
pected given the conclusion from the analogy task
that our model seems specialized towards captur-
ing morphological and syntactic features. Interest-
ingly, however, in the RW dataset, which focuses
on rare words, our model performs clearly better
than the baselines. Intuitively, we may indeed ex-
pect that the use of a prior on the context words
acts as a form of smoothing, which can improve
the representation of rare words.

Qualitative analysis. To better understand how
our model differs from standard word embed-
dings, Table 3 shows the ten nearest neighbors
(Al-Rfou et al., 2013) for a number of words ac-
cording to our CvMF(NIG) model and according
to the GloVe model. What can clearly be seen
is that our model favors words that are of the
same kind. For instance, the top 5 neighbours
of fastest are all speed-related adjectives. As an-
other example, the top 7 neighbors of red are col-
ors. To further explore the impact of our model
on rare words, Table 4 shows the nearest neigh-
bors for some low-frequency terms. These exam-
ples clearly suggest that our model captures the
meaning of these words in a better way than the
GloVe model. For example, the top neighbors of
casio are highly relevant terms such as notebook
and compute, whereas the neighbors obtained with
the GloVe model seem largely unrelated. For com-
parison, Table 5 shows the nearest neighbors of
some high-frequency terms. In these case we can
see that the GloVe model obtains the best results,
as e.g. moreover is found as a neighbor of neural
for our model, and indeed is found as a neighbor
of clouds. This supports the results from the sim-
ilarity benchmarks that our model performs better
than standard methods at modelling rare words but
worse at modelling frequent words. Finally, Table
6 shows the effect that our model can have on am-
biguous words, where due to the use of the prior,
a different dominant sense is found.

4.2 Document Embedding Results

To evaluate the document embeddings, we focus
on two downstream applications: categorization
and document retrieval. As an intrinsic evalua-
tion, we also evaluate the semantic coherence of
the topics identified by our model.

Document Categorization. We have evaluated
our document embeddings on four standard doc-
ument classification benchmarks: 1) 20 News-
groups (20NG)4, 2) OHSUMED-23 (OHS)5, 3)
TechTC-300 (TechTC)6, and 4) Reuters-21578
(Reu)7. As baselines, we consider the follow-
ing approaches: 1) TF-IDF weighted bag-of-
words representation, 2) LDA8, 3) HDP9, 4) the
von Mises-Fisher clustering model (movMF)10, 5)
Gaussian LDA (GLDA)11 and 6) Spherical HDP
(sHDP)1213, 7) GloVe14 (Pennington et al., 2014),
8) WeMAP (Jameel et al., 2019), 9) Skipgram
(SG) and Continuous Bag-of-Words15 (Mikolov
et al., 2013) models. In the case of the word em-
bedding models, we create document vectors in
the same way as we do for our model, by simply
replacing the role of target word vectors with doc-
ument word vectors.

In all the datasets, we removed punctuation and
non-ASCII characters. We then segmented the
sentences using Perl. In all models, parameters

4http://qwone.com/ jason/20Newsgroups/
5https://www.mat.unical.it/OlexSuite/Datasets/

SampleDataSets-download.htm
6http://techtc.cs.technion.ac.il/techtc300/techtc300.html
7https://archive.ics.uci.edu/ml/datasets/reuters-

21578+text+categorization+collection
8https://radimrehurek.com/gensim/models/ldamodel.html
9https://github.com/blei-lab/hdp

10https://cran.r-project.org/web/packages/movMF/index.html
11https://github.com/rajarshd/Gaussian LDA
12https://github.com/Ardavans/sHDP
13We do not compare with the method proposed in (Li

et al., 2016b) because its implementation is not available.
Moreover the sHDP method, which was published around
the same time, is very similar in spirit, but the latter uses a
nonparametric HDP topic model.

14https://github.com/stanfordnlp/GloVe
15https://github.com/facebookresearch/fastText
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fastest india red attackers cession summer
Our GloVe Our GloVe Our GloVe Our GloVe Our GloVe Our GloVe

slowest fifth pakistan indian blue blue assailants assailants ceding ceding winter winter
quickest second lanka mumbai yellow white attacker besiegers annexation ceded autumn olympics
slower sixth nepal pakistan white yellow townspeople pursuers annexing reaffirmation spring autumn
faster slowest indian pradesh black which insurgents fortunately cede abrogation year spring
fast ever bangladesh subcontinent green called policemen looters expropriation stipulating fall in

surpassing quickest asia karnataka pink bright retaliation attacker continuance californios months beginning
next third delhi bengal gray pink rioters accomplices ceded renegotiation in next

surpassed respectively sri bangalore well green terrorists captors incorporation expropriation also months
best tenth thailand asia the purple perpetrators strongpoints ironically zapatistas time during
slow first china delhi with black whereupon whereupon dismantling annexation beginning year

Table 3: Nearest neighbors for selected words.

incisions unveil promissory batgirl casio
Our GloVe Our GloVe Our GloVe Our GloVe Our GloVe

incision incision unveiling unveils issuance estoppel catwoman huntress notebook <unk>
indentations embellishment utilise devise curiously scribbled nightwing zatanna compute nightlifepartner

punctures preferably introduce unveiling wherein untraceable supergirl clayface practicality vgnvcm
scalpel notches invent <unk> handwritten evidencing batman superwoman utilizing counterstrike
creases oftentimes expose finalise ostensibly gifting nemesis gcpd add graphing

abrasions utilising publicize solidify purpotedly discordant abandon supergirl furthermore mkii
lacerations lastly anticipating rediscover omnious renegotiation protege riddler utilising kajimitsuo
extractions silhouettes unravelling embellish phony repossession unbeknownst woman utilizing reconditioned
liposuction discreetly uncover reexamine proposing waiving reappears fight likewise bivort
apertures purposefully inaugrate memorializing ironically abrogation cyborg first anticipating spellbinder

Table 4: Nearest neighbors for low-frequency words.

neural clouds
Our GloVe Our GloVe

neuronal neuronal cloud cumulonimbus
brain cortical shadows cloud

cortical correlates mist obscured
perceptual neurons darkness mist

physiological plasticity heavens shadows
signaling neuroplasticity echoes aerosols

furthermore computation indeed sky
moreover circuitry furthermore fog
cellular spiking fog swirling
circuitry mechanisms lastly halos

Table 5: Nearest neighbors for high-frequency words.

amazon apple
Our GloVe Our GloVe

amazonian itunes cherry iigs
forest kindle apples iphone
brazil emusic peach macintosh
rain nightlifepartner pear itunes

green astore red ipad
trees cdbaby sweet ipod

wildlife guianas healthy ios
preserve likewise doctor microsoft

water aforementioned fruit garbageband
rains ebay edible phone

Table 6: Nearest neighbors for ambiguous words.

were tuned based on a development dataset. To
this end, we randomly split our dataset into 60%
training, 20% development and 20% testing. We
report the results in terms of F1 score on the test
set, using the Perf tool16. The trained document

16http://osmot.cs.cornell.edu/kddcup/software.html

Models 20NG OHS TechTC Reu
TF-IDF 0.852 0.632 0.306 0.319

LDA 0.859 0.629 0.305 0.323
HDP 0.862 0.627 0.304 0.339

movMF 0.809 0.610 0.302 0.336
GLDA 0.862 0.629 0.305 0.352
sHDP 0.863 0.631 0.304 0.353
GloVe 0.852 0.629 0.301 0.315

WeMAP 0.855 0.630 0.306 0.345
SG 0.853 0.631 0.304 0.341

CBOW 0.823 0.629 0.297 0.339
CvMF 0.871 0.633 0.305 0.362

CvMF(NIG) 0.871 0.633 0.305 0.363

Table 7: Document classification results (F1).

vectors were used as input to a linear SVM classi-
fier whose trade-off parameterC was tuned from a
pool of {10, 50, 100}, which is a common setting
in document classification tasks. Note that our ex-
perimental setup is inherently different from those
setups where a word embedding model is evalu-
ated on the text classification task using deep neu-
ral networks (Jameel et al., 2019), as our focus is
on methods that learn document vectors in an un-
supervised way. We have therefore adopted a set-
ting where document vectors are used as the input
to an SVM classifier.

In our model, we have set the number of word
embeddings iterations to 50. The parameters of
the vMF mixture model were re-computed after
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every 5 word embedding iterations. We tuned the
dimensionality of the embedding from the pool
{100, 150, 200} and the number of vMF mixture
components from the pool {200, 500, 800}.

We used the default document topic priors and
word topic priors in the LDA and the HDP topic
models. For the LDA model, we tuned the number
of topics from the pool {50, 80, 100} and the num-
ber of iterations of the sampler was set to 1000.
We also verified in initial experiments that having
a larger number of topics than 100 did not allow
for better performance on the development data.
The number of vMF mixtures of the comparative
method, movMF, was tuned from the pool {200,
500, 800}. For GLDA, as in the original paper,
we have used word vectors that were pre-trained
using Skipgram on the English Wikipedia. We
have tuned the word vectors size and number of
topics from a pool of {100, 150, 200} and {50,
80, 100} respectively. The number of iterations
of the sampler was again set to 1000. We have
used same pre-trained word embeddings for sHDP,
where again the number of dimensions was auto-
matically tuned.

Table 7 summarizes our document classification
results. It can be seen that our model outperforms
all baselines, except for the TechTC dataset, where
the results are very close. Among the baselines,
sHDP achieves the best performance. Interest-
ingly, this model also uses von Mishes-Fisher mix-
tures, but relies on a pre-trained word embedding.

Document Retrieval. Next we describe our doc-
ument retrieval experiments. Specifically, we con-
sider this problem as a learning-to-rank (LTR) task
and use standard information retrieval (IR) tools to
present our evaluation results.

We have used the following standard IR bench-
mark datasets: 1) WT2G17 along with stan-
dard relevance assessments and topics (401 -
450), 2) TREC HARD (denoted as HARD)18,
3) AQUAINT-2 (AQUT)19 where we considered
only the document-level relevance assessments,
and 4) LETOR OHSUMED (OHS)20, which con-
sists of 45 features along with query-document
pairs with relevance judgments in five folds. We
have obtained the raw documents and queries21

17http://ir.dcs.gla.ac.uk/test collections/access to data.html
18https://trec.nist.gov/data/hard.html
19https://catalog.ldc.upenn.edu/LDC2008T25
20https://www.microsoft.com/en-

us/download/details.aspx?id=52482
21http://ir.dcs.gla.ac.uk/resources/test collections/

Models WT2G HARD AQUT OHS
TF-IDF 0.288 0.335 0.419 0.432

LDA 0.291 0.346 0.447 0.461
HDP 0.301 0.333 0.436 0.455

movMF 0.255 0.311 0.421 0.432
GLDA 0.301 0.351 0.447 0.462
sHDP 0.301 0.334 0.437 0.452
GloVe 0.301 0.333 0.436 0.459

WeMAP 0.302 0.362 0.447 0.465
SG 0.301 0.345 0.447 0.461

CBOW 0.299 0.323 0.441 0.459
CvMF 0.305 0.361 0.449 0.469

CvMF(NIG) 0.306 0.363 0.450 0.471

Table 8: Document retrieval learning experiments
(NDCG@10).

of this dataset, from which we can learn the doc-
ument representations. As baselines, we have
considered the following methods: 1) TF-IDF, 2)
LDA (Blei et al., 2003), 3) HDP (Teh et al., 2005),
4) movMF (Banerjee et al., 2005), 5) sHDP (Bat-
manghelich et al., 2016), 6) GloVe (Pennington
et al., 2014), 7) WeMAP (Jameel et al., 2019), 8)
Skip-gram, and 9) CBOW word embedding mod-
els (Mikolov et al., 2013).

We have adopted the same preprocessing strat-
egy as for the categorization task, with the excep-
tion of OHSUMED, for which suitable LTR fea-
tures are already given. For all other datasets we
used the Terrier LTR framework22 to generate the
six standard LTR document features as described
in (Jameel et al., 2015). The document vectors
were then concatenated with these six features23.
To perform the actual retrieval experiment, we
used RankLib24 with a listwise RankNet (Burges
et al., 2005) model25. Our results are reported in
terms of NDCG@10, which is a common evalua-
tion metric for this setting.

Our training strategy is mostly the same as
for the document categorization experiments, al-
though for some parameters, such as the number
of topics and vMF mixture components, we used
larger values, which is a reflection of the fact that
the collections used in this experiment are sub-
stantially larger and tend to be more diverse (Wei
and Croft, 2006). In particular, the word vector

22http://terrier.org/docs/v4.0/learning.html
23Note that in OHS the document vectors were concate-

nated with 45 LTR features.
24https://sourceforge.net/p/lemur/wiki/RankLib/
25Note that in principle any LTR model for IR could be

used.
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Models 20NG OHS TechTC Reu
TF-IDF 0.323 0.288 0.391 0.209

LDA 0.453 0.355 0.455 0.221
HDP 0.444 0.321 0.451 0.221

movMF 0.331 0.223 0.422 0.212
GLDA 0.466 0.356 0.455 0.234
sHDP 0.453 0.356 0.455 0.236
GloVe 0.455 0.352 0.453 0.221

WeMAP 0.456 0.354 0.454 0.223
SG 0.453 0.355 0.453 0.221

CBOW 0.432 0.344 0.421 0.220
CvMF 0.492 0.356 0.455 0.239

CvMF(NIG) 0.492 0.356 0.455 0.236

Table 9: Word coherence results in c v computed using
Gensim.

lengths were chosen from a pool of {150, 200,
300} and the vMF mixtures from a pool of {300,
1000, 3000}. In the LDA model, we selected the
number of topics from a pool of {100, 150, 200}.
For GLDA we have used the same pool for the
number of topics. All our results are reported for
five-fold cross validation, where the parameters of
the LTR model were automatically tuned, which
is a common LTR experimental setting (Liu et al.,
2015a).

The results are presented in Table 8, showing
that our model is able to consistently outperform
all methods. Among the baselines, our NIG vari-
ant achieves the best performance in this case,
which is remarkable as this is also a word embed-
ding model.
Word Coherence. In traditional topic models
such as LDA, the topics are typically labelled by
the k words that have the probability in the topic.
These words tend to reflect semantically coherent
themes, which is an important reason for the popu-
larity of topic models. Accordingly, measuring the
coherence of the top-k words that are identified by
a given topic model, for each topic, is a common
evaluation measure (Shi et al., 2017). Using the
configurations that performed best on the tuning
data in the document categorization task above,
we used Gensim26 (Řehůřek and Sojka, 2010) to
compute the coherence of the top-20 words us-
ing the c v metric (Röder et al., 2015). For our
model, GDLA and sHDP, the mixture components
that were learned were consided as topics for this
experiment. For GloVe, WeMAP, SG, TF-IDF,
and CBOW, we used the von Mises-Fisher (vMF)

26radimrehurek.com/gensim/models/coherencemodel.html

soft clustering model (Banerjee et al., 2005) to
determine the cluster memberships of the context
words. For the TF-IDF results, we instead used
hard vMF clustering (Hornik and Grün, 2014), as
the movMF results are based on TF-IDF features
as well. We tuned the number of clusters using
the tuning data. The top-20 words after applying
the clustering model were then output based on the
distance from the cluster centroid.

The results are shown in Table 9, showing that
the word clusters defined by our mixture compo-
nents are more semantically coherent than the top-
ics obtained by the other methods.

5 Conclusions

In this paper, we analyzed the effect of adding a
prior to the GloVe word embedding model, encod-
ing the intuition that words can be organized in
various natural groupings. Somewhat surprisingly,
perhaps, this leads to a word embedding model
which behaves substantially differently from ex-
isting methods. Most notably, our model sub-
stantially outperforms standard word embedding
models in analogy tasks that focus on syntac-
tic/morphological relations, although this comes
at the cost of lower performance in semantically
oriented tasks such as measuring word similarity.
We also found that the model performs better than
standard word embedding models when it comes
to modelling rare words.

Word embedding models can also be used
to learn document embeddings, by replacing
word-word co-occurrences by document-word co-
occurrences. This allowed us to compare our
model with existing approaches that use von
Mises-Fisher distributions for document mod-
elling. In contrast to our method, these mod-
els are based on topic models (e.g. they typically
model documents as a multinomial distribution
over topics). Surprisingly, we found that the doc-
ument representations learned by our model out-
perform these topic modelling-based approaches,
even those that rely on pre-trained word embed-
dings and thus have an added advantage, consid-
ering that our model in this setting is only learned
from the (often relatively small) given document
collection. This finding puts into question the
value of document-level topic distributions, which
are used by many document embedding methods
(being inspired by topic models such as LDA).
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