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Structural Modelling, Exogeneity,
and Causality

Michel Mouchart, Federica Russo and Guillaume Wunsch

4.1 Causal Analysis in the Social Sciences

4.1.1 Goals of Causal Analysis

Whilst it might seem uncontroversial that the health sciences search for causes –
that is, for causes of disease and for effective treatments – the causal perspective is
less obvious in social science research, perhaps because it is apparently harder to
glean general laws in the social sciences than in other sciences, due the probabilistic
character of human behaviour. Thus the search for causes in the social sciences is
often perceived to be a vain enterprise and it is often thought that social studies
merely describe the phenomena.

On the one hand, an explicit causal perspective can already be found in pioneer-
ing works of Adolphe Quetelet (1869) and Emile Durkheim (1897) in demography
and sociology respectively, and the social sciences have taken a significant step in
quantitative causal analysis by following Sewall Wright’s path analysis (1934), first
applied in population genetics. Subsequent developments of path analysis – such
as structural models, covariance structure models or multilevel analysis – have the
merit of making the concept of cause operational by introducing causal relations
into the framework of statistical modelling. However, these developments in causal
modelling leave a number of issues at stake, for instance a deeper understanding of
exogeneity and its causal importance.

On the other hand, an explicit causalist perspective still needs justification. Dif-
ferent social sciences study society and humans from different angles and perspec-
tives. Sociology studies the structure and development of human society, demogra-
phy attends to the vital statistics of populations, economics studies the manage-
ment of goods and services, epidemiology studies the distribution of disease in
human populations and the factors determining that distribution, etc. In spite of
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these differences, social sciences share a common objective: to understand, predict
and intervene on individuals and society. In these three moments of the scientific
demarche, knowledge of causes becomes essential. The importance of causal knowl-
edge is twofold. Firstly, we pursue a cognitive goal in detecting causes and thus in
gaining general knowledge of the causal mechanisms that govern the development
of society. Secondly, such general causal knowledge is meant to guide and inform
social policies, that is we also pursue an action-oriented goal. If the social sciences
merely described phenomena, it would not be possible to design efficient policies
or prescribe treatments that rely on the results of research.

As stated above, the social sciences do not establish laws as physics does.
Whether this is an intrinsic issue of these sciences, or merely a contingent issue due
to the specifity of social problems, is still matter of debate and falls far beyond the
scope of the present paper. In the following, we will rather reverse the perspective
and try to tackle the issue: under what conditions can structural models give us
causal knowledge?

4.1.2 Variation and Regularity in Causal Analysis

The first thing worth mentioning is that we need to abandon the paradigm of reg-
ularity as regular succession of events in time, a heritage of Hume, in favour of a
more flexible framework. Hume believed that causality lies in the constant conjunc-
tion of causes and effects. In his Treatise Hume (1748) says that, in spite of the
impossibility of providing rational foundations for the existence of objects, space,
or causal relations, believing in the existence of causal relations is a “built in” habit
of human nature. In particular, belief in causal relations is granted by experience.
For Hume, simple impressions always precede simple ideas in our mind, and by in-
trospective experience we also know that simple impressions are always associated
with simple ideas. Simple ideas are then combined in order to form complex ideas.
This is possible thanks to imagination, which is a normative principle that allows
us to order complex ideas according to (i) resemblance, (ii) contiguity in space and
time, and (iii) causality. Of the three, causation is the only principle that takes us
beyond the evidence of our memory and senses. It establishes a link or connection
between past and present experiences with events that we predict or explain, so
that all reasoning concerning matters of fact seems to be founded on the relation of
cause and effect. The causal connection is thus part of a principle of association that
operates in our mind. Regular successions of impressions are followed by regular
successions of simple ideas, and then imagination orders and conceptualizes suc-
cessions of simple ideas into complex ideas, thus giving birth to causal relations.
The famed problem is that regular successions so established by experience clearly
lack the logical necessity we would require for causal successions. Hume’s solution
is that if causal relations cannot be established a priori, then they must be grounded
in our experience, in particular, in our psychological habit of witnessing effects that
regularly follow causes in time and space.
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If we want causality to be an empirical and testable matter rather than a psycho-
logical one, we need to replace the Humean paradigm of regularity with a paradigm
of variation. In this framework structural models do not only aim at finding regular
successions of events. Rather, causal models model causal relations by analysing
suitable variations among variables of interest (see Russo 2006, 2008). Differently
put, causal models are governed by a rationale of variation, not of regularity. A
rationale is a principle of some opinion, action, hypothesis, phenomenon, model,
reasoning, or the like. The quest for a rationale of causality is then the search for
the principle that guides causal reasoning and thanks to which we can draw causal
conclusions. This principle lies in the notion of variation.

The rationale of variation manifestly emerges, for instance, in the basic idea of
probabilistic theories of causality and in the interpretation of structural equations.
Probabilistic theories of causality, see Suppes (1970), focus on the difference be-
tween the conditional probability P(E |C ) and the marginal probability P(E). To
compare conditional and marginal probability means to analyse a statistical rele-
vance relation, i.e. probabilistic independence. The underlying idea is that if C is a
cause of E , then C must be statistically relevant for E . Hence, the variation hereby
produced by C in the effect E will be detected because the conditional and the
marginal probability differ. Analogously, quantitative probabilistic theories focus
on the difference between the conditional distribution P(Y ≤ y |X ≤ x ) and the
marginal distribution P(Y ≤ y). Again, to compare conditional distribution with
marginal distribution means to measure the variation produced by the putative cause
X on the putative effect Y .

In structural equation models, the basic idea is that, given a system of equations,
we can test whether variables are interrelated through a set of linear relationships,
by examining the variances and covariances of variables. Sewall Wright, as early
as 1934, has taught us to write the covariance of any pair of observed variables
in terms of path coefficients. The path coefficient quantifies the (direct) causal ef-
fect of X on Y ; given the numerical value of the path coefficient β, the equation
Y = β X + ε claims that a unit increase in X would result in a β unit increase of
Y . In other words, β quantifies the variation of Y associated to a variation of X ,
provided that X doesn’t have null variance. Another way to put it is that structural
equations attempt to quantify the change in X that accompanies a unit change in
Y . It is worth noting that the equality sign in structural equations does not state an
algebraic equivalence. Jointly with the associated graph, the structural equation is
meant to uncover a causal structure. That is, given a structural equation of the simple
form Y = β X + ε1, the reverse equation X = γ Y + ε2 is not causally equivalent.
Pearl (2000, pp. 159–160) makes a similar point.

4.1.3 Background Knowledge in Causal Analysis

Variation, however, is not itself a causal notion and consequently cannot guarantee,
alone, the causal interpretations of probabilistic inequalities. Good epistemology
ought to tell us under what conditions, i.e. what the constraints are, for variations
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to be causal. A complete account of the guarantee of the causal interpretation
should focus on the difference between purely associational models and causal
models, pointing to the features proper to the richer apparatus of causal models
(see Russo 2008; Russo 2006). For a model to be causal, we shall particularly focus
on two types of constraints: background knowledge and structural stability. In a nut-
shell, concomitant variations will be deemed causal if they are structurally stable and
if they are congruent with background knowledge; see also e.g. Engle et al. (1983),
Florens and Mouchart (1985), Hendry and Richard (1983) or Thomas (1996). In this
way regularity, which would be better understood here in terms of invariance of the
model’s structure (variables and relations), becomes a constraint that participates in
the causal interpretation of variations.

On the one hand, background knowledge, both theoretical and empirical, serves
three roles: (i) it provides a relevant causal context for the formulation of hypothe-
ses, (ii) it guides the choice of variables and of the relations to be tested for structural
stability, and (iii) it constitutes the sounding board for results as they have to be
congruent with background knowledge. On the other hand, structural stability is a
constraint we impose on a relation for being causal, in order to rule out accidental
relations. Differently put, the crucial step in Hume’s argument is significantly differ-
ent from the rationale hereby proposed. We claim that we firstly look for variations.
Once concomitant variations are detected, a condition of invariance or structural
stability (among others) is imposed on them. What does structural stability give us?
Not logical necessity, nor mere constant conjunction as Hume advocated. Invari-
ance, which is an empirical feature, recalls Humean regularity but the scope of the
former is wider than that of the latter. Structural stability is a condition required in
order to ensure that the model correctly specifies the data generating process and
that the model does not confuse accidental and/or spurious relations with causal
ones. It is worth noting that, in the search for structurality, background knowledge
and invariance play a complementary role. In particular, unexplained stable relations
may lead to questioning background knowledge and eventually to modifying it.

It might be objected that if structural stability does not give us logical necessity
either, it does not any better than regularity. Undoubtedly necessity is an essential
feature for those who would like the social sciences to discover universal laws, or
for those who question their scientific legitimacy on this ground. However, inde-
pendently of whether it is a built-in impossibility of the social sciences to glean
laws, this would be a too rigid framework, for society and individuals are too mu-
table objects of study to be fettered in immutable and even regular deterministic or
probabilistic laws.

The philosophical gain of adopting this paradigm is twofold. Firstly, we go be-
yond the Humean tradition that somehow denies causation by reducing it to regular-
ity. Secondly, we do not fall into untestable metaphysical positions either, because
structural models stay at the level of knowledge. Let us clarify this last point. Struc-
tural modelling intends to represent an underlying causal structure, mathematically,
by means of equations, and pictorially, by means of directed acyclic graphs. How-
ever, structural models don’t pretend to attain the ontic level, i.e. to open the black
box, so to speak. They stay at the level of field knowledge and theory: if concomitant
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variations between, say, X and Y are structurally stable and are congruent with
available field knowledge, then we have no reasons not to believe that X causes Y .
In this sense structural models mediate epistemic access to causal relations without
claiming that the true causes have been discovered. Differently put, structural mod-
elling allows us to take a sensible causalist stance that guides actions and policies
without overflowing into untestable metaphysical claims.

The practical gain of adopting this paradigm is having a clearer understanding
of the causal import of background knowledge and of testing stability. Those as-
pects, in fact, turn out to be of fundamental importance for the interpretation of
results.

4.1.4 Probabilistic Modelling in Causal Analysis

Structural models belong to the category of probabilistic models. This leads us to
consider also the following issue. Is a probabilistic characterization of causation
a symptom of indeterministic causality or rather of our incomplete and uncertain
knowledge? In physics, quantum mechanics raised quite substantial issues about
the possibility of indeterminism. However, whether or not the world is actually
indeterministic, needs not to be decided once and for all. In fact, from an epistemo-
logical viewpoint, a probabilistic characterization of causal relations in structural
models only commits us to state that our knowledge is incomplete and uncertain.
Our endeavour to gain causal knowledge requires reducing, as far as possible, bias
and confounding by building good structural models, that is models that pick up
structurally stable relations consistent with background knowledge.

So far we have seen that the concept of variation plays a crucial role in the in-
terpretation of structural equations. A simple form of a structural equation such
as Y = β X + ε, can be interpreted as follows: variations in X lead to or are re-
sponsible for variations in Y . In other words, X is statistically relevant for Y , i.e.
P(Y |X ) �= P(Y ). However, statistical relevance, and consequently also variation,
are symmetrical notions. So how do we know that X causes Y and not the other way
around? There are three different but nonetheless related elements that participate in
determining the direction of the causal relations: background knowledge, invariance,
and time. Let us focus on time. In the social sciences we need temporal direction.
This is for several reasons.

Firstly, causal mechanisms – be they physiological, social or socio-
physiological – are embedded in time. Smoking at time t causes cancer at t ′ (t < t ′),
but not the other way around. To give another example, use of contraceptives is
followed by changes in the intensity and tempo of fertility. Secondly, although the
two causal relations marriage dissolution influences migration and migration influ-
ences marriage dissolution both make sense, we need to know whether marriage
dissolution or migration is the temporally prior cause for cognitive and/or policy
reasons. One out of the two claims might be eventually disproved due to problems
of observability or lack of theory. For instance, the causal chain migration influences
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marriage dissolution might be incorrect: although marriage dissolution is observed
after migration, there might exist a temporally prior process – marital problems and
the subsequent decision to divorce – causing migration.

This oversimplified example clearly shows that causal modelling requires a con-
stant interplay between observation, theory and testing. Indeed, this is the core of a
hypothetico-deductive methodology of structural modelling (see Russo 2008; Russo
2006). Causal hypotheses need to be confirmed or disconfirmed (i.e. accepted or
rejected in the statistical jargon) based on empirical testing: the model has to fit
observations, but the causal hypothesis itself has to be formulated, along with the
model building stage, in accordance with available well established theories and
background knowledge. However, we also need structural models to be flexible
enough to revise our theories in the light of new data disconfirming prior theories.

Following the H-D methodology, causal hypotheses are confirmed or discon-
firmed depending on the results of empirical testing. Suppose, for the sake of the ar-
gument, that the causal hypothesis is rejected. Such a negative result can be nonethe-
less useful as it can suggest that improvement is needed in the theory backing the
causal model, or that data may contain some source of bias. In other words, the
rejection of a causal hypothesis can trigger further research. Suppose now, again
for the sake of the argument, that the causal hypothesis is accepted. Such a pos-
itive result is not an immutable one, written on the stone, so to speak. Although
the causal hypothesis is not rejected, this may be subject to revision (and even to
rejection) in the future, due to new discoveries. It is worth stressing that the accep-
tance of the causal model is highly dependent on its structural stability. Unlike the
traditional falsificationist account (see Popper 1959), hypothetico-deductivism in
structural modelling allows and indeed encourages us to use at any stage of research
all available information. Williamson (2005) also makes a similar point in putting
forward a hybrid of inductive and hypothetico-deductive methodologies in which
the hypothesising stage is always informed by previous results, whether positive
or negative. This is indeed the advantage of handling structural models that are
assumed to represent underlying causal structures without pretending to uncover
immutable metaphysical causes. The following sections make more explicit and
formal these ideas about causality and structural modelling.

4.2 Structural Modelling

4.2.1 The Meaning of Structurality

Inspired by the seminal works of Wright, Haavelmo, Blalock, Pearl and others, we
will develop in this section a structural modelling approach to causation. In essence,
a model is deemed structural if it uncovers a structure underlying the data gener-
ating process. As discussed in Section 4.1.3, this approach systematically blends
two ingredients. First, the model must be congruent with background knowledge:
modelling the data generating process must be operated in the light of the current
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information on the relevant field. Second, the model must show stability in a wide
sense: both the structure of the model and the parameters have to be stable or
invariant with respect to a large class of interventions or of modifications of the
environment. Often, but not always, structural models make use of latent variables.
By integrating out the latent variables, the statistical model is thus obtained as the
marginal distribution of the manifest or observable variables. It is crucial to note that
this concept of structural modelling is wider than the framework of structural equa-
tions models, also known as covariance structure models or LISREL type models,
widely used in psychology or in sociology, and of simultaneous equations models,
widely used in econometrics.

A first consequence of this approach is that the notion of causality becomes
relative to the model itself, rather than to the data, as is the case, for instance,
in the Granger-type concept of causality. Also, this means that we do not aim
at making metaphysical claims about causal relations, but rather at saying when
we have enough reasons – specifically, reasons about background knowledge and
about structural stability – to believe that we hit upon a causal relation. A second
consequence of this model-based concept of causality, involving both background
knowledge and stability, is that the model does not simply derive from theory as is
often the case in the econometric tradition.

Therefore structural modelling is much more than a sophisticated statistical tool.
Good structural modelling ought to be accompanied by a broad and sensible account
of what a statistical model is and represents, of what statistical inference is, and of
what rationale guides model building and testing. The last point has been dealt with
in the previous section. The first and the second will be the object of the following
sections. We first recall the formal nature of a statistical model and of the basic
concepts of conditional modelling and of exogeneity, we then define the concept of
causality in such a framework.

4.2.2 The Statistical Model

Formally, a statistical model M is a set of probability distributions, explicitly:

M = {S, Pω: ω ∈ �} (4.1)

where S, called the sample space or observation space, is the set of all possible
values of a given observable variable (or vector of variables) and for each ω ∈
�, Pω is a probability distribution on the sample space, also called the sampling
distribution; thus, ω is a characteristic, also called parameter, of the corresponding
distribution and � describes the set of all possible sampling distributions belonging
to the model. The basic idea is that the data can be analyzed as if they were a
realization of one of those distributions. For example, in a univariate normal model,
the sample space S is the real line and the normal distributions are characterized by
a bivariate parameter, for instance the expectation (μ) and the variance (σ 2); in this
case: ω = (μ, σ 2).
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A statistical model is based on a stochastic representation of the world. Its ran-
domness delineates the frontier or the internal limitation of the statistical explana-
tion, since the random component represents what is not explained by the model.
A statistical model is made of a set of assumptions under which the data are to
be analyzed. Typical assumptions of statistical models are: the observed random
variables follow or not identical distributions; the observations are, or are not, in-
dependent; the basic sampling distributions are, or are not, continuous and may
pertain, or not, to a family characterized by a finite number of parameters (e.g. the
normal distributions).

If assumptions are satisfied, the statistical model correctly describes co-variations
between variables, but no causal interpretation is allowed yet. In other words, it
is not necessary that causal information be conveyed by the parameters, nor is it
generally legitimate to give the regression coefficients a causal interpretation. It is
worth noting that in specifying the assumptions typical of a statistical model, the
problem is not to evaluate whether an assumption is true. A (frequentist) statistician
may however want to test in due course whether a hypothesis is confirmed or not.
If a model-builder could prove that an assumption were (exactly) true, this would
not be an assumption anymore, but a description of the real world. Rather, the main
issue is to evaluate whether an assumption is useful, in the sense of making possible
a process of learning-by-observing on some aspects of interest of the real world.

4.2.3 Statistical Inference and Structural Models

Statistical inference is concerned with the problem of learning-by-observing and is
inductive since it implies drawing conclusions about what has not been observed
from what has been observed. Therefore, statistical inference is always uncertain
and the calculus of probability is the natural, and in a sense logically necessary tool,
(see e.g. de Finetti (1937), Savage (1954)), for expressing the conclusions of statisti-
cal inference. Therefore, the stochastic aspect of statistical models corresponds to a
stochastic representation of the world and is a vehicle for the learning-by-observing.

Here, two aspects ought to be distinguished. On the one hand, learning-by-
observing conveys the idea of learning about some features of interest, namely the
characteristics of a distribution or the values of a future realization. On the other
hand, learning-by-observing is also concerned with the problem of accumulating
information as observations accumulate. These two aspects actually refer to the
usefulness of the model. Structural models are precisely designed for making the
process of statistical inference meaningful and operational.

To better understand the idea behind this last claim, it is worth distinguishing
two families of models. In the first family we find purely statistical models, also
called associational or descriptive models, and exploratory data analysis, also called
data mining. In these approaches, the assumptions are either not made explicit or
restricted to a minimum allowing us to interpret descriptive summaries of data. In-
terest may accordingly focus on the distributional characteristics of one variable at a
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time, such as mean or variance, or on the associational characteristics among several
variables, such as correlation or regression coefficients. It is worth noting that the
absence or the reduced number of assumptions constituting the underlying model
make these associational studies insufficient to infer a causal relation and leaves
open a wide scope for interpreting the meaning of the results.

The second family consists in the so-called structural models. “Structural” con-
veys the idea of a representation of the world that is stable under a large class of
interventions or of modifications of the environment. Structural models are also
called “causal models”. Here, the concept of causality is internal to a model which is
itself stable, in the sense of structurally stable. As a matter of fact, structural models
incorporate not only observable, or manifest, variables but also, in many instances,
unobservable, or latent, variables. The possible introduction of latent variables is
motivated by the help they provide in making the observations understandable; for
instance, the notion of “intelligence quotient” or of “associative imagination” might
help to shape a model which explains how an agent succeeds in answering the ques-
tions of a test in mathematics. Thus a structural model aims at capturing an under-
lying structure; modelling this underlying structure requires taking into account the
contextual knowledge of the field of application. The characteristics, or parameters,
of a structural model are of interest because they correspond to relevant properties of
the observed reality and can be safely used for accumulating statistical information,
precisely because of their structural stability. In this context, a structural model is
opposed to a “purely statistical model”, understood as a model that accounts for
observable associations without linking those associations to stable properties of
the world.

The invariance condition of a structural model is actually a complex issue. Two
aspects have to be considered. A first one is a condition of stability of the causal re-
lation. The idea is that each variable depends upon a set of other variables through a
relationship that remains invariant when those other variables are subject to external
influence. This condition allows us to predict the effects of changes in the environ-
ment or of interventions. A second condition is the stability of the distributions to
ensure that the parameters will not be affected by changes in the environment or
interventions.

4.3 Conditional Models, Exogeneity and Causality

4.3.1 Conditional Models

Originally, the concept of exogeneity appears with regression models. A first, and
naive, approach was to consider an exogenous variable as a non-random variable,
the endogenous variable being the only random one. That this approach was unsat-
isfactory became clear when considering complex models where the same variable
could be exogenous in one equation and endogenous in another one. A first progress
came through a proper recognition of the nature of a conditional model. Here, we
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present a heuristic account of the basic concepts; for a more formal presentation,
see Mouchart and Oulhaj (2000) and Oulhaj and Mouchart (2003).

Let us start with an (unconditional) parameterized statistical model Mω
X given in

the following form:

Mω
X = {pX (x |ω ) : ω ∈ �} (4.2)

where for each ω ∈ �, pX (x |ω ) is a (sampling) probability density on an underly-
ing sample space corresponding to a (well-defined) random variable X and � is the
parameter space, aimed at describing the set of sampling distributions considered to
be of interest. A conditional model is constructed through embedding this concept
into the usual concept of an unconditional statistical model (4.2). For expository
purposes, this paper only considers the case where a random vector X of obser-
vations is decomposed into X ′ = (Y ′, Z ′) (where ′ denotes transposition) and the
model is conditional on Z .

The basic idea of a conditional model is the following: starting from a global
model Mω

X as given in (4.2), each sampling density pX (x |ω ) is first decomposed
through a marginal-conditional product:

pX (x |ω ) = pZ (z |φ ) pY |Z (y |z, θ ) ω = (φ, θ ) (4.3)

where pZ (z |φ ) is the marginal density of Z , parametrized by φ, and pY |Z (y |z, θ )
is the conditional density of (Y |Z ), parametrized by θ . Next, one makes specific as-
sumptions on the conditional component leaving virtually unspecified the marginal
component. Thus a conditional model may be represented as follows:

MZ,θ ;�
Y = {

pX (x |ω ) = pZ (z |φ ) pY |Z (y |z, θ ) ω= (θ,φ) ∈ � = � × �
}

(4.4)
where � parametrizes a typically large family of sampling probabilities on Z only
and for each θ ∈ �, pY |Z (y |z, θ ) represents a conditional density of (Y |Z ). The
essential features of a conditional model are therefore:

1. θ indexes a well specified family of conditional distributions. This family con-
stitutes the kernel of the concept of a conditional model. The concept of condi-
tional model relates, however, to a family of joint distributions pX (x |ω ) obtained
by crossing the family of conditional densities pY |Z (y |z, θ ) with a family of
marginal distributions pZ (z |φ ).

2. φ is a nuisance parameter which is identified by definition (because � is a set of
distributions of Z ). Furthermore θ and φ are variation free. The notation MZ,θ ;�

Y
conveys the idea that θ is the only parameter of actual interest, leaving to φ no
explicit role.

3. The modelling restrictions are concentrated on the conditional component, i.e.
the set P Z ,θ

Y : θ ∈ � embodies the main hypotheses of the model, whereas in
most cases, the set � embodies a minimal amount of restrictions, typically only
the hypotheses necessary to guarantee essential properties for the inference on
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θ , such as identifiability or convergence of estimators. For instance, in a linear
regression model, suitable asymptotic properties of the Ordinary Least Squares
estimators require conditions such as stationarity or ergodicity of the process
generating the explanatory variables. Consequently, in most situations, but not
in all, � represents a “thick” subset of the set of all probability distributions of
Z . The role of � is to stress the random character of Z at the same time as the
vague specification of its data generating process; � may nevertheless play an
important role because its specification may determine desirable properties of the
estimators of θ , the parameter of interest. Oulhaj and Mouchart (2003) provides
more information on conditional models.

Let us give an example. Consider four variables: tabacism (T ), cancer of the
respiratory system (C), asbestos exposure (A) and socio-economic status (SE S).
A global (unconditional) model would consider a family of distributions on the
four variables (T, C, A, SE S) parametrized by, say, ω, as in (4.2). A conditional
modelling approach would run as follows. Suppose we are interested in the impact
of T , A and SE S on C . Attention would therefore focus on a particular component
of the global model, namely the conditional distribution of C given T , A and SE S,
leaving the marginal distribution of T , A and SE S with a minimum amount of
specification. In other words, for each distribution indexed by ω in the global model
(4.2), we have in mind a marginal-conditional decomposition as in (4.3):

pC,T,A,SE S (c, t, a, ses |ω ) = pC |T,A,SE S (c |t, a, ses, θ ) pT,A,SE S (t, a, ses |φ )

ω = (φ, θ ) (4.5)

The basic idea of the conditional model, as in (4.4), is to endow the global model
(4.2) with two properties. Firstly, the parameters characterizing the marginal (φ)
and the conditional (θ ) components are independent. Here, “independence” means
“variation-free” in a sampling theory framework, i.e. ω = (θ, φ) ∈ � = � × �,
or independent in the (prior) probability in a Bayesian framework, i.e. φ⊥⊥θ in
Bayesian terms. Secondly the marginal component is left almost unspecified, i.e.
the set � represents a “very large” set of possible distributions for (T, A, SE S).

4.3.2 Conditional Model and Exogeneity

Suppose we analyze data set X = (Y, Z ). A challenging issue is to decide whether
it is admissible, in the sense of losing no relevant information, to only specify a
conditional model MZ,θ ;�

Y rather than specifying the model Mω
X. This is the issue of

exogeneity.
The motivation for specifying a conditional model rather than a model on the

complete data set X is parsimony: some specifications on the marginal process may
not be avoided for ensuring suitable properties of the inference on the parameters
of the conditional process but by specifying less stringently the marginal process,
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generating Z , one looks for protection against specification error. The cost could
however be substantial if the marginal process generating Z contains relevant infor-
mation, an example of which is given in Section 4.5.1.

Formally, the condition of exogeneity is therefore: the parameter of interest
should only depend on the parameters identified by the conditional model and the
parameters identified by the marginal process should be “independent” of the pa-
rameters identified by the conditional process. It should be stressed that the inde-
pendence among parameters has no bearing on a (sampling) independence among
the corresponding variables.

In order to make the argument more transparent, we slightly modify the notation.
In Section 4.3.1 we constructed a model on the X -space, where X = (Y ′, Z ′)′,
by crossing a family of distributions on Z , indexed by φ, and a family of condi-
tional distributions on (Y |Z ), indexed by θ , and eventually obtained a joint model,
parametrized by ω = (φ, θ ). We now start from a joint model on X , parametrized by
ω, and deduce from the decomposition (4.3) the parameters characterizing the fam-
ily of marginal distributions of Z , denoted by θZ , and the parameters characterizing
the family of conditional distributions of (Y |Z ), denoted by θY |Z . Equation (4.3) is
accordingly rewritten as follows:

pX (x |ω ) = pZ (z |θZ ) pY |Z
(
y
∣∣z, θY |Z

)
(4.6)

where θZ , respectively θY |Z , represents the parameter identified by the marginal,
respectively conditional, process. The condition of independence, namely:

(
θZ ,θY |Z

) ∈ �Z × �Y |Z or θZ⊥⊥θY |Z (4.7)

is a condition of (Bayesian) cut (see Barndorff-Nielsen (1978) in a sampling theory
framework, and Florens et al. (1990) in a Bayesian framework), and is deemed to
allow for a separation between the inference on the parameters of the marginal pro-
cess and the inference on the parameters of the conditional process. More explicitly,
condition (4.7) implies that any inference on θZ , respectively, θY |Z , be based only
on the marginal, respectively conditional, model characterized by the marginal dis-
tributions pZ (z |θZ ), respectively conditional distributions pY |Z (y

∣∣z, θY |Z ).
This condition, along with the condition that the parameter of interest, say λ, de-

pends only on the parameters identified by the conditional process, i.e. λ = f (θY |Z ),
formalizes the concept of “losing no relevant information” when basing the infer-
ence on the conditional model rather than on the complete model, characterized by
the distributions pX (x |ω ). In this setting, the concept of exogeneity appears as a
binary relation between a function of the data, namely Z , and a function of the pa-
rameters, namely λ. Thus, Florens et al. (1990) suggests the expression “Z and λ are
mutually exogenous” (or Z is exogenous for λ), to stress the idea that a variable is
not exogenous by itself but is exogenous in a particular inference problem. Treating
Z as exogenous means therefore that the (marginal) process generating Z is min-
imally specified (and may be heuristically qualified as “left unspecified”) and that
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the inference on the parameter of interest, although based on the joint distribution of
all the variables in X , is nevertheless invariant with respect to any specific choice of
the marginal distribution of Z . Summarizing: exogeneity is the condition that makes
admissible the use of the conditional model as a reduction of the complete model.

The consequences of a failure of exogeneity may be twofold. There may be a
loss of efficiency in the inference if the failure comes from a restriction (equality
or inequality), or a lack of independence in a Bayesian framework, between the
parameters of the marginal model and those of the conditional model. There may
also be an impossibility of finding a suitable, e.g. unbiased or consistent, estimator
if the parameter of interest is not a function of θY |Z only. A typical example, well
known in the field of simultaneous equations in econometrics, is that the parameter
of interest in a structural equation may not be a function of the parameters identified
by the conditional model corresponding to a specific equation.

4.3.3 Exogeneity and Causality

In general, the specification of a parameter of interest is a contextual rather than
a statistical issue. A most usual rationale for specifying the parameter of interest
is based on the notion of a structural model. In this framework, Russo (2006)
approach causality as exogeneity in a structural conditional model. In the very sim-
ple case of two variables Y and Z , this concept may be paraphrased as follows: if
the conditional distribution of Y given Z is structurally stable and reflects a good
scientific knowledge of the field, there is no reason not to believe that Z causes
Y . This approach might be considered empirical because the observations provid-
ing the ground for a causal interpretation are not only the data under immediate
scrutiny but also the whole body of observations underlying the “field knowledge”
and leading accordingly to the present state of scientific knowledge. In this sense,
causal attribution “Z causes Y” is an issue of structural modelling, namely this is
the question whether the conditional model characterized by pY |Z (y

∣∣z, θY |Z ) is
actually structural.

4.4 Confounding, Complex Systems and Completely
Recursive Systems

4.4.1 Confounders and Confounding

In many circumstances, the same effect can be produced by several causes or the
same cause can produce several effects. We may however focus our interest on
a particular cause, say X and a particular effect, say Y . In this case, the causal
relation X → Y can be subject to confounding. In epidemiology and in demog-
raphy, for example, when one examines the impact of a treatment/exposure on a
response/outcome, a confounding variable – or confounder – is often defined as a
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variable associated both with the putative cause and with its effect, see e.g. Jenicek
and Cléroux (1982), Elwood (1988). Sometimes the definition is more precise, such
as in Anderson et al. (1980) or in Leridon and Toulemon (1997). According to these
authors, a variable is a confounder whenever two conditions simultaneously hold:

1. The risk groups differ on this variable;
2. The variable itself influences the outcome.

Some authors gloss condition 1 adding that the variable, as a background factor,
should not be a consequence of the putative cause, see e.g. Schlesselman (1982).

For instance, if we examine the impact of cigarette smoking on the incidence
of cancer of the respiratory system, a variable such as exposure to asbestos dust
confounds the relation between smoking and this type of cancer. Indeed, exposure to
asbestos dust and smoking are associated, i.e. proportionally there are more persons
exposed to asbestos in the smoking group than in the non-smoking group. Condition
1 is therefore satisfied. In addition, inhalation of asbestos dust is a strong cause
of cancer of the pleura; condition 2 is thus also satisfied. Cancer is the outcome
variable in this example, smoking a potential cause, and exposure to asbestos a
confounder. Vice-versa if one were to examine the impact of asbestos exposure on
the incidence of cancer of the respiratory system, smoking this time would be the
confounding factor, as it is associated with asbestos exposure and is a cause of lung
cancer. This simplified example is discussed in Russo (2006) but a real study would
also consider other causal factors and paths, and the synergy between smoking and
asbestos exposure.

Condition 1 needs to be clarified however; on this subject, see also McNamee
(2003). Why are smoking and asbestos exposure associated? In demography and in
epidemiology, one knows that both smoking and asbestos exposure are dependent
upon one’s socio-economic status (SES): those with a lower SES tend more to smoke
and work in unhealthy environments than those with a higher SES. The causal graph
can therefore be drawn as in Fig. 4.1, where A represents exposure to asbestos, T
tabacism, and C cancer incidence. It is worth noting that Fig. 4.1 incorporates two
assumptions, namely: A⊥⊥T |SE S and C⊥⊥SE S |A, T .

This graph shows that tabacism and asbestos exposure are in fact not independent
from one another as they are both related to one’s SES, i.e. they have a common
cause. Note that SES is also a common cause of T and C as it has an impact on
cancer through the intervening or intermediate variable A. However an association
between two variables such as smoking and asbestos exposure could also be due

Fig. 4.1 Socio-economic
status, smoking, asbestos
exposure and cancer of the
respiratory system

SES C

A

T
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Fig. 4.2 The relation
between T and A, A being an
intervening variable between
T and C

T C

A

Fig. 4.3 The relation
between T and A, A being a
common cause of T and C

A C

T

to a causal relation between them. T could be a cause of A or vice-versa. The two
corresponding causal graphs are given in Fig. 4.2 and 4.3 respectively.

This distinction leads to a more precise definition of a confounder: a confounding
variable, or confounder, is a variable which is a common cause of both the putative
cause and its outcome (Bollen 1989; Pearl 2000; Wunsch 2007). In graphical repre-
sentations, a common cause is a common ancestor to both putative cause and effect.
For example, A is a confounder in Fig. 4.3 because in this model it is a common
cause of both T and C . For the same reason, SE S is a confounder in Fig. 4.1, as it is
a common cause of both T and C (the latter via A). In Fig. 4.2, A is not a common
cause of T and C ; therefore A is not a confounder. Notice that confounding is always
relative to a particular cause and a particular effect. The confounder can be either
latent (i.e. unobserved) or observed; the issue of latent confounding is considered
in Section 4.5. This definition avoids taking an intervening (intermediate) variable
between the putative cause and the outcome such as in Fig. 4.2 as a confounder, even
though it is associated with the putative cause (as the latter has a causal influence on
the former) and it has an impact on the outcome.

Judea Pearl (2000) proposes two criteria for controlling confounding bias: the
back-door and the front-door. The back-door criterion tackles the problem of which
variables to control for in cases of possible confounding of a cause (C) and effect
(E) relation. A variable or a set of variables Z should be controlled for, according
to the back-door criterion, if (i) Z is not a descendant of the cause C and (ii) Z
blocks every path between C and E that contains an arrow into C . For example, in
Fig. 4.4 taken from Pearl (2000), the sets (X4, X3) and (X3, X5) meet the back-door
criterion by blocking every path between C and E containing an arrow into C , while
(X3) alone does not. The variable X3 is a collider depending upon the inverted fork
X1 and X2. If we condition on X3, the variables X1 and X2 become dependent

Fig. 4.4 An example of
Pearl’s back-door criterion

X3

C E

X4 X5

X2X1
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(Pearl 2000; Wunsch 2007) and thus controlling for the sole variable X3 does not
block the path (C ,X4,X1,X3,X2,X5,E).

The front-door criterion uses the presence of an intervening variable between
cause and effect to estimate the causal relation. As an example of Pearl’s front-
door criterion, consider the relation between smoking and lung cancer. If the im-
pact of smoking on lung cancer is mediated by the amount of tar in the lungs,
one can estimate on the one hand, the impact of smoking on the amount of tar
and on the other hand, the impact of the amount of tar on lung cancer. If these
relations are not confounded by other variables, one can then combine the two
effects in order to obtain an estimate of the impact of smoking on lung cancer.
If the relations between smoking and tar and between tar and lung cancer are
confounded, it is sometimes possible to assess the two relations in the absence
of confounding if one can control for another variable causing tar accumulation
(such as environmental pollution) which blocks the back-door paths from smoking
to tar and from tar to lung cancer An example is given in Pearl (2000, pp. 67 and
83). An application of the front-door criterion to the more complex problem of the
causal effect of Catholic schooling on learning is given in Morgan and Winship
(2007, p. 183).

4.4.2 Complex Systems and Completely Recursive Systems

In the previous sections, only small systems of a few variables have been dis-
cussed. Let us now consider a decomposition of X into p components: X =
(X1, X2, . . . X p). Once p increases, the analysis sketched above requires more struc-
ture because unrestricted systems become quickly unmanageable. In this section,
we show how to use field knowledge with the purpose of obtaining a recursive de-
composition of complex systems, giving space to further contextually meaningful
restrictions.

Suppose that the components of X have been ordered in such a way that in the
complete marginal-conditional decomposition:

pX (x |ω ) = pX p|X1,X2,...X p−1

(
x p

∣∣x1, x2, . . . x p−1, θp|1,...p−1
)

· pX p−1|X1,X2,...X p−2

(
x p−1

∣∣x1, x2, . . . x p−2, θp−1|1,...p−2
)
. . . pX1 (x1 |θ1 )

(4.8)

each component of the right hand side may be considered as a structural model with
mutually independent parameters, i.e. in a sampling theory framework:

ω = (
θp|1,...p−1 , θp−1|1,...p−2 . . . , θ1

) ∈ �p|1,...p−1 × �p−1|1,...p−2 . . . × �1 (4.9)

Equations (4.8) and (4.9) characterize a completely recursive system. For p = 3,
Equation (4.8) may be represented by Fig. 4.5, for p = 4 by Fig. 4.6. Once the
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Fig. 4.5 First 3 components
of a completely recursive
system

X3

X1 X2

Fig. 4.6 First 4 components
of a completely recursive
system

X4

X2X1

X3

value of p increases, graphical representations become quickly unmanageable un-
less some assumptions, in the form of conditional independences, operate simpli-
fications on the system. This is indeed a main issue in structural modelling: field
knowledge aims not only at ordering the components of X to obtain (4.8), but also
at bringing in more structure than in the complete system (4.8).

More specifically, statistical modelling of complex systems raises several
issues:

1. Given a p-dimensional vector of variables to be modelled, is field knowledge
sufficient for ordering the variables in such a way that one may obtain a com-
pletely recursive system as in (4.8), i.e. in such a way that each component
X j is univariate? It often happens, in particular in econometrics, that it is not
possible to disentangle recursively the process generating a vector of variables,
in other words that some components X j are subvectors of X rather than uni-
variate random variables. For instance, Mouchart and Vandresse (2005) handles
a case where the data are made of vectors, the components of which are price
and attribute of a set a contracts concluded through a bargaining process. The
data and the contextual information do not allow to know whether the prices
have been bargained after or before the attributes have been agreed upon. This is
a case of simultaneity where the model describes a process generating a vector
of (so-called “endogenous”) variables conditionally on a vector of exogenous
variables, in such a way that the equations of the model do not correspond to
a marginal-conditional decomposition. The econometric literature, particularly
between the Sixties and the Eighties, is rich in developing this class of models,
called “simultaneous equation models”.

2. Endowing each distribution of (4.8) with a structural interpretation amounts to
saying that each of these distributions represents a contextually relevant data
generating process. Parsimony recommends focusing the attention on the pro-
cesses of actual interest and is made operational by selecting a subvector (Xr+s,

Xr+s−1, . . . , Xr ) of X such that the joint distribution of (Xr+s, Xr+s−1, . . . ,

Xr |X1, . . . Xr−1 ) gathers all data generating processes of actual interest. In such
a case the subvector (X1, . . . Xr−1) becomes globally exogenous for the system
of interest.



76 M. Mouchart et al.

4.5 Partial Observability and Latent Variables

4.5.1 A Three-Component System

In this paper, the concept of causality is not rooted in latent variables, as in the
literature on counterfactuals (see for instance Morgan and Winship 2007). However,
this section shows that when latent variables are present in a structural model, causal
attribution becomes substantially more complex.

Historically, latent variables have been object of interest since at least the Forties
and early Fifties, see e.g. Reiersøl (1950), Neyman and Scott (1948, 1951). Latent
variables appear in measurement error models and in factor analytic and LISREL
type models, among others. Also those models and simultaneous equation mod-
els have been shown to be mathematically equivalent as they are all based on the
idea that mathematical expectations are required to lie in a linear space (Florens
et al. 1976, 1979). The last years have seen a voluminous amount of publications on
the large role of latent variables in statistical modelling. Thus Chapter 1 of Skrondal
and Rabe-Hesketh (2004) speaks of “the omni-presence of latent variables”, and the
book presents an interesting account of methodological issues and of applications.
Rabe-Hesketh et al. (2004) suggest how to use a latent variable framework as a uni-
fying device for a large class of models including multilevel and structural equation
models.

We begin by considering a three-variate case and next extend the analysis to a
p-dimensional vector. Consider a three-variate completely recursive system, repre-
sented in Fig. 4.7, for data in the form X = (Y, Z , U ):

pX (x |θ ) = pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pZ |U

(
z
∣∣u, θZ |U

)
pU (u |θU ) (4.10)

where each of the three components of the right hand side may be considered as
structural models with mutually independent parameters, i.e. in a sampling theory
framework:

θ = (
θY |Z ,U , θZ |U , θU

) ∈ �Y |Z ,U × �Z |U × �U (4.11)

This diagram suggests that U causes Z and (U, Z ) cause Y . Thus, according to
the definition offered above, U is a confounding variable for the effect of Z on Y .
Also, Equations (4.10) and (4.11) say that U is exogenous for θZ |U and that (U, Z )
are jointly exogenous for θY |Z ,U .

Now suppose that U is not observable. It might be tempting to collapse the
diagram in Fig. 4.7 into that of Fig. 4.8. Formally, Fig. 4.8 may be obtained by
integrating the latent variable U out of (4.10):

Fig. 4.7 3-component
completely recursive system Y

U Z
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Fig. 4.8 2-component system Z Y

pY |Z
(
y
∣∣z, θY |Z

) = ∫ pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pZ |U

(
z
∣∣u, θZ ,U

)
pU (u |θU ) du

∫ ∫ pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pZ |U

(
z
∣∣u, θZ ,U

)
pU (u |θU ) du dy

(4.12)

pZ (z |θZ ) = ∫ pZ |U
(
z
∣∣u, θZ |U

)
pU (u |θU ) du (4.13)

Therefore:

θY |Z = f1
(
θY |Z ,U , θZ ,U , θU

)
θZ = f2

(
θZ |U , θU

)
(4.14)

Two remarks are in order:

1. In general, Z is not exogenous anymore because (4.14) shows that the parameter
θY |Z and θZ are, in general, not independent; indeed some components of θZ |U
and of θU may be common to θY |Z and θZ . Therefore, Fig. 4.8 is an inadequate
simplification of Fig. 4.7 (see however next remark);

2. the non-observability of U typically implies a loss of identification: the functions
f1 and f2 are not one-to-one; thus Z might still be exogenous because potentially
common parameters in θY |Z and θZ might not be identified;

One might also look for further conditions deemed to recover the exogeneity of
Z . A simplifying assumption frequently used is the sampling independence between
Z and U :

Z⊥⊥U |θ (4.15)

This assumption implies that θZ |U is now written as θZ and Fig. 4.7 becomes
Fig. 4.9 suggesting that U and Z both cause Y (without U causing Z ).

Under condition (4.15), when U is not observable Fig. 4.8 is again obtained under
the following integration of U :

pY |Z
(
y
∣∣z, θY |Z

) = ∫ pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pU (u |θU ) du (4.16)

Therefore:

θY |Z = f3
(
θY |Z ,U , θU

)
(4.17)

Fig. 4.9 3-component
completely recursive system
with marginal independence Y

U Z
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is independent of θZ and the exogeneity between Z and θY |Z may be recovered. In
particular, under condition (4.15), U is not a common cause of Z and Y anymore,
but, from (4.17), the meaning of θY |Z comes from a combination of the causal action
of U along with that of Z , represented by θY |Z ,U , and of the distribution of U ,
represented by θU .

An example may be useful to better grasp some difficulties. Suppose, for sim-
plifying the argument, that the joint distribution of X in (4.10) is multivariate nor-
mal; thus the regression functions are linear and the conditional variances are ho-
moscedastic, i.e. they do not depend on the value of the conditioning variables. Let
us compare the following two regression functions:

E
[
Y
∣∣Z , U, θY |Z ,U

] = α0 + Zα1 + Uα2 (4.18)

α1 = [cov (Y, Z |U )] [V (Z |U )]−1

= [
cov (Y, Z ) − cov (Y, U ) [V (U )]−1 cov (U, Z )

]
× [

V (Z ) − cov (Z , U ) [V (U )]−1 cov (U, Z )
]−1

(4.19)

E
[
Y
∣∣Z , θY |Z

] = β0 + Zβ1 β1 = [cov (Y, Z )] [V (Z )]−1 (4.20)

Therefore, if the effect on Y of the cause Z is measured by the regression coef-
ficient, the correct measure would be α1 rather than β1, once the conditional model
generating (Y |Z , U ) is structural. Note that, in this particular case, α1 = β1 when
Z⊥⊥U , but this is a particular feature of the normal distribution for which Z⊥⊥U
implies that cov (Y, Z |U ) = cov (Y, Z ), and cov (Y, U |Z ) = cov (Y, U ), which is in
general not true. Moreover, α1 = β1 is also true when α2 = 0, i.e. when Y⊥⊥U |Z ,
which is contextually different from Z⊥⊥U .

This example makes two issues explicit:

(i) measuring the effect of a cause should be operated relatively to a completely
specified structural model; failing to properly recognize this issue may lead to
fallacious conclusions because in general: α1 �= β1

(ii) prima facie ancillary specifications, such as a normality assumption, may be
more restrictive than first thought; indeed, under a normality assumption, the
hypotheses Z⊥⊥U and Y⊥⊥U |Z each imply that α1 = β1, although they are
contextually different once the normality assumption is not retained. This hap-
pens because, in the normal case, independence is equivalent to uncorrelated-
ness, and because the regression functions are linear.

4.5.2 The General Case

A difficult issue in structural modelling is bound to the fact that many theories in
the social sciences involve latent or nonobservable variables. These are introduced in
order to help structuring a theoretical framework; think, for instance, of the concept
of “anomy” in sociology or of “permanent income” in economy. In such a case, the
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initial model includes both latent and manifest or observable variables, from which
a statistical model is obtained by integrating out all the latent variables. A typical
benefit of such an approach is to obtain a statistical model with more structure, i.e.
more restrictions, than a “saturated” statistical model constructed independently of
a structural approach. A well-known case is provided by the LISREL type model, or
covariance structure model. However this structural approach has also a cost, some-
times difficult to handle. Indeed, the analysis performed around the simplest case
of one unobservable variable along with two observable variables, given through
Equations (4.12) and (4.13), suggests that the analysis of exogeneity at the level
of the statistical model bearing on the manifest variables only soon becomes in-
tractable, jeopardizing most exogeneity properties and making the interpretation of
the identifiable parameters difficult.

4.6 Discussion and Conclusion

Philosophers have wandered for long time in search of the ultimate concept of
causality, i.e. in search of what causality in fact is. Hume (1748), unable to find what
gives logical necessity to causal relations, came to the conclusion that causality is
nothing more than a regular succession of events deemed to be causal only thanks
to our psychological habit to experience such regular sequences. In his System of
Logic, John Stuart Mill, as early as 1843, put forward an experimentalist notion of
cause. Causes are physical, i.e. one physical fact is said to be the cause of another.
In the System of Logic the experimental approach is seen as the privileged way for
ascertaining what phenomena are related to each other as causes and effects. We
have, says Mill, to follow the Baconian rule of varying the circumstances, and for
this purpose we may have recourse to observation and experiment. Mill believed
that his four methods – Method of Agreement, Method of Difference, Method of
Residues, and Method of Concomitant Variation – were particularly well suited to
natural science contexts but not at all to social sciences. The inapplicability of the
experimental method to the social sciences ruled them out straight away from the
realm of the sciences and still nowadays leads to a skeptical despair about the very
possibility of establishing causal relations in social contexts.

Causal analysis has indeed proved to be a challenging enterprise in the social
sciences. There are at least two difficulties in establishing causal relations. A first
difficulty is, as just mentioned, that a pure randomized experimentation is rarely
possible. A second one, already discussed in the Introduction, is that society and
individuals are too mutable to generate “laws of social physics” à la Quetelet.
However, is this reason enough to give up causal analysis? Should we then content
ourselves with Humean regular successions?

Interestingly enough, Durkheim (1895, Chapter VI) strongly argued against the
Millian attempt to dismiss social sciences as sciences and therefore against any at-
tempt to dismiss causal analysis. In particular, he maintained that the method of
concomitant variation is fruitfully used in sociology and indeed this is what makes
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sociology scientific. Although an explicit causalist perspective has been adopted
by the forefathers of quantitative causal analysis, in more recent times practising
scientists have, mistakenly, hardly ever taken a clear stance in this respect. As we
have suggested in the opening of this paper, a cognitive goal and an action-oriented
goal justify our effort in making causality an empirical and testable, i.e. scientific,
matter.

We have argued that structural modelling tries to make causality meaningful and
operational and we have seen that this objective can be achieved if two fundamen-
tal ingredients are incorporated. The first one is an epistemological element – viz.
the rationale of variation, and the second is a methodological element – viz. the
concept of structural model. Structural modelling aims at uncovering a structure
underlying the actual data generating process. Clearly there is an infinity of con-
ceivable structural models leading to a same statistical model “explaining” the data
under scrutiny. A main issue for the model builder is selecting one of those struc-
tures, taking into account the knowledge of the field and desirable properties of
invariance/stability. Thus the practical implication of this paper is twofold. Firstly,
causation may be attributed only within a structural model reflecting the state of
knowledge of the domain considered. Secondly, the structural stability of the rela-
tionships and of the parameters of the distributions should be thoroughly checked.
This approach is therefore at variance with purely statistical ones where causation
is supposedly tested from correlations without making explicit a suitable structural
model. Furthermore, causation should not be attributed from a model only based on
purely theoretical considerations. Finally, the search for agreement with background
knowledge and for structural stability leaves a lesser role to the goodness of fit.

However, although the development of a more adequate rationale of causality
and of an accurate concept of structural model give a meaningful framework for
causal analysis, we claimed that specific issues still needed to be addressed, e.g.
exogeneity and confounding. In this causal framework, the concepts of exogeneity
and of confounding have been explicitly defined. On the one hand, exogeneity is a
condition of separability of inference that allows us to concentrate on the conditional
distribution leaving aside the marginal one. On the other hand, we have adopted a
definition of confounders as common ancestors of both cause and effect. However,
we have shown that the impact of confounders complicates substantially the analysis
and the operational interpretation of exogeneity, because a variable may lose its
exogenous status under the impact of a latent confounder. Furthermore, if a latent
variable U is a determinant of an outcome Y but is independent of another cause Z
of this outcome, Z remains exogenous but, at the level of the manifest variables, the
measure of the effect of Z on Y depends upon the original causal effect of Z and
upon the distribution of the latent variable U .

Let us now give some general conclusions. In the framework of structural mod-
elling what is the meaning of the claim X causes Y ? Not metaphysical: by means
of structural modelling we do not pretend to attain the ontic level and to discover
the true and ultimate causes. If causal claims cease to have metaphysical meaning,
then they must have an epistemic one: we have reasons to believe that X causes
Y . Causality thus becomes a matter of knowledge generated by the sensible use
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of structural modelling. A major task of epistemology and methodology is then to
make explicit the conditions under which our causal beliefs are justified and to in-
form us correctly about causal relations in the world. The net advantage of spousing
an epistemic view is to avoid committing to the discovery of the “true” causes or of
the “true” model. Instead, causal beliefs are part of our knowledge of the world, and
thus are naturally subject to change and improvement.
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