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Roost counts, where individuals of a species are counted whilst arriving
or departing from their roost site, are an important monitoring tool for several
species around the world. However, the raw count data are an underestimate
of the size of the monitored population at any one time because of individuals
temporarily not using the roost (temporary emigration, TE) and because the
probability of detection of individuals, even when using the roost, is typically
much lower than one (observation error). In this paper, we develop a novel
modelling framework for estimating population size, from roost count data,
while accounting for both TE and observation error. Our framework builds on
the popular class of N-mixture models but extends them in a number of ways.
Specifically, we introduce two model classes for TE, a parametric, which re-
lies on temporal models, and a non-parametric, which relies on Dirichlet pro-
cess mixture models. Both model classes give rise to interesting ecological
interpretations of the TE pattern while being parsimonious in terms of the
number of parameters required to model the pattern. When accounting for
observation error, we use mixed-effects models and implement an efficient
Bayesian variable selection algorithm for identifying important predictors for
the probability of detection. We demonstrate our new modelling framework
using an extensive simulation study, which highlights the importance of us-
ing mixed-effects models for the probability of detection and illustrates the
performance of the model when estimating population size and underlying
TE patterns. We also assess the ability of the corresponding variable selec-
tion algorithm to identify important predictors under different scenarios for
observation error and its corresponding model. When fitted to two motivating
data sets of parrots, our results provide new insights into how each species
uses the roost throughout the year, on changes in population size between
and within years, and on important predictors for observation error.

1. Introduction. The loss of Earth’s biological diversity negatively impacts ecosystem
services that are vital for human health and prosperity (Cardinale et al., 2012). This global
issue is recognised by International agreements and policy frameworks including the Conven-
tion on Biological Diversity (CBD) and the United Nations Sustainable Development Goals
(SDGs), which call upon all United Nations Member States to take urgent action to restore
and protect habitats and to halt further biodiversity loss (sdgs.un.org).

With an increasing number of species suffering population declines (Thomas, 2013; Al-
mond, Grooten and Peterson, 2020), it is paramount to develop innovative monitoring meth-
ods in order to characterise population dynamics, understand how environmental changes
affect populations, identify species that require protection, and develop or appraise man-
agement practices, policies and guidelines (Jetz et al., 2019). However, some highly mobile
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species such as parrots (Dénes, Tella and Beissinger, 2018) and bats (Kunz, 1982) can be
challenging to monitor because they are not individually identifiable and they often feed and
nest in low densities among inaccessible habitats such as forest canopies (Dénes, Tella and
Beissinger, 2018). Consequently, one of the only opportunities to survey such species at scale
is at communal roosts where large numbers of individuals may regularly come together and
interact socially for reasons including predator avoidance, cooperative breeding, informa-
tion exchange, informing foraging strategy and meeting thermoregulatory demands (Kunz,
1982; Beauchamp, 1999; Salinas-Melgoza, Salinas-Melgoza and Wright, 2013; Seixas and
Mourao, 2018). During these surveys, individuals are observed and counted as they arrive or
depart from their roost, which is a more cost-effective method than others, such as capture-
mark-recapture, which can be impractical for such species (Kunz, 1982).

In practice, the specific methodology includes multiple simultaneous counts obtained by
one or more observers positioned at one or more vantage points. In addition, due to the
challenging nature of performing roost counts and the costs and challenges of identifying
and accessing a roost, only a single roost is often monitored for a given species, with counts
typically collected under different environmental conditions (Cougill and Marsden, 2004;
Berg and Angel, 2006; Matuzak and Brightsmith, 2007). These roost survey counts cannot
serve as an index of population size due to individuals exhibiting TE, and hence becoming
temporarily unavailable for detection, and due to observation error, with the probability of
detecting individuals that are available for detection typically being much lower than one.
Therefore, statistical modelling needs to be employed for inferring population size and TE
patterns from roost count data. This is the aim of this paper, as we describe below.

Count data for closed populations that do not exhibit TE are often analyzed using stan-
dard N-mixture models (Royle, 2004), which can estimate population size using spatially-
replicated counts over time by accounting for observation error. The time for space substi-
tution N-mixture model (Kéry and Royle, 2015) uses temporally replicated counts without
spatial replication, giving temporal estimates of population size and enabling estimation of
a single population trend, but also does not account for TE. However, Chandler, Royle and
King (2011) showed that failure to account for TE can result in positively biased estimates of
population size.

Roost survey sampling usually takes place under Pollock’s robust design (Pollock, 1982),
with several short secondary periods, eg days, across various primary periods, eg months. The
population size is then assumed constant across secondary periods within the same primary
period (closed population) but can change between primary periods (open population) due
to births, deaths, immigration, or permanent emigration. In this case, Chandler, Royle and
King (2011) extended the standard N-mixture models to account for TE. This model has two
processes: an ecological process for the latent number of individuals present and available for
detection, and an observation process, for the available individuals detected. The proportions
of individuals in the population in any given primary period that are available for detection
on each secondary period are either assumed constant for the duration of the study period
(Chandler, Royle and King, 2011) or are modelled independently of each other, requiring
one parameter to be estimated for each primary period (Kéry and Royle, 2020). However, the
first option may be too restrictive and the latter is parameter-greedy, and does not allow for
an intuitive ecological interpretation of the results. Finally, existing models do not provide
information on TE cyclical patterns, where certain primary periods of each year correspond
to certain levels of TE. Identifying and inferring these cyclical patterns can give new insights
into the behaviors of the species, such as breeding patterns and seasonal availability of foods.

Naturally, detection probability, and hence observation error (with the two terms used
interchangeably in this paper), is expected to vary between sampling occasions as a response
to changes in environmental and weather conditions or effort. This variation can be captured
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within a logistic regression model accounting for the effect of covariates, such as time of
sampling and weather conditions at the time of surveying (see for example Kéry and Royle,
2020; Neubauer et al., 2022). All of the existing modelling approaches can account for the
effect of covariates (referred to as variables or predictors in the literature and in this paper)
on detection probability through fixed effects models for a given variable set. However, it
is unlikely that these fixed effects will capture all of the variation in detection, as other,
unobserved or unobservable effects, such as the behaviour of the surveyed species, can have
a substantial impact on observation error. As we demonstrate with our simulation study, using
fixed-effects models can lead to substantial bias in the estimation of population size when the
model for observation error is misspecified, that is when important variables for observation
error are omitted, which is likely to be the case in reality. Additionally, the potential set
of variables to be considered as predictors for observation error can be large, and hence
corresponding tools are required to identify the subset of important variables in the model.

Motivated by two roost count survey data sets of parrots, in this paper we develop a novel
modeling framework that can be used to estimate time-varying population size at a site, while
accounting for TE and observation error. We extend the TE N-mixture model developed by
Chandler, Royle and King (2011) by proposing two model classes: a parametric approach,
which employs different temporal models that account for temporal auto-correlation of dif-
ferent order, and a non-parametric approach based on the Dirichlet process (DP) prior (Fergu-
son, 1973) that allows us to cluster the primary periods according to roost use by the surveyed
individuals, and leads to interesting ecological insights about the behavior of the population.

To account for variation in observation error, in addition to that captured by a fixed-effects
model, we introduce a mixed-effects logistic regression model on the detection probability.
Additionally, we implement a recent efficient Bayesian variable selection (BVS) algorithm,
the Bayesian Group Lasso Spike and Slab (BGLSS) (Xu and Ghosh, 2015; Liquet et al.,
2017), to perform variable selection for the probability of detection in this mixed-effects
model framework.

We implement our novel modelling framework in a Bayesian setting using Markov Chain
Monte Carlo (MCMC) methods via R package NIMBLE (de Valpine et al., 2017) version
0.13.0.

We present an extensive simulation study that assesses the performance of the proposed
models in estimating population size and TE patterns under different scenarios, such as when
the model for observation error is misspecified. For the first time in N-mixture models and
related literature, we highlight the risks of using misspecified fixed-effects models for ob-
servation error and demonstrate how the risks are mitigated by instead using mixed-effects
models, as we propose in this paper. We also demonstrate the performance of our proposed
variable selection approach in identifying important predictors for observation error in our
novel mixed-effects modelling framework under these scenarios.

Finally, we apply our new modelling framework to two case studies, considering roost
count data on Ecuadorian Amazon parrots Amazona lilacina and on Orange-winged Amazon
parrots Amazona amazonica. We use cross-validation to select the most appropriate model for
the TE pattern in each case and obtain interesting ecological results on temporal population
sizes, TE trends, and cyclical patterns and identify important predictors affecting observation
error.

The paper is organized as follows. In Section 2 we define our new modelling framework,
including background on the methods on which it builds. Simulation results are presented
in Section 3 and the results for the two case studies are presented in Section 4. Section 5
concludes the paper and provides ideas for potential future directions.
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2. Models. Sampling follows Pollock’s robust design (Pollock, 1982) with T open pri-
mary periods (e.g. months) and J closed secondary periods (e.g. days within a month). Often,
studies can have Y additional top-level primary periods, e.g. Y years, with T primary peri-
ods, eg. months, and J secondary periods, eg. days within them. The data are summarised
in counts Cj,t,y of individuals detected on secondary occasion j, primary period t, within
top-level primary period y.

We assume there is an overall super-population of M individuals that can visit the roost
at least once during the survey period. These M individuals can contribute to the Y super-
population sizes (κy, y = 1, . . . , Y ), indicating the number of individuals that can visit the
roost at least once in each top-level primary period and denote the probability that an individ-
ual from the super-population has used the roost at least once in top-level primary period y by
δy . Conditional on κy , we denote the number of individuals using the roost in primary period
t within top-level primary period y by Nt,y ∼ Bin(κy, θt,y) (temporal population size), with
θt,y referred to as the availability parameters (meaning that these individuals are available
for detection in that primary period). Finally, individuals that use the roost in primary period
t within top-level primary period y are detected on secondary occasion j with probability
pj,t,y . The hierarchical representation of the model is given in equation (1), while a graphical
representation of the model is given in Fig 1.

M ∼ Poisson(λ)

κy ∼ Binomial(M,δy)

Nt,y ∼ Binomial(κy, θt,y)

Cj,t,y ∼ Binomial(Nt,y, pj,t,y)(1)

The κy variables allow us to study the availability pattern within each top-level primary pe-
riod, conditional on the corresponding population size, and hence identify changes in avail-
ability patterns across top-level primary periods, without these changes being confounded
to changes in population size. When there are no top-level primary periods, this model can
be simplified by dropping the κy level, i.e. setting κy =M ∀y, and the y subscript in all
subsequent levels.

The main novelty of our proposed framework lies in the way in which we model detec-
tion probability, as described in Section 2.1, and the availability parameters, as described in
Section 2.2.

M κy Nt,y Cj,t,y
δy θt,y pj,t,y

Fig 1: Graphical model representation

2.1. Detection probability. The model of equation (1) is a function of the detection prob-
ability on secondary occasion j, primary period t, top-level primary period y, pj,t,y . This
probability cannot be freely varying, as that introduces more parameters that we can estimate
into the model. Instead, it can be assumed as constant for all j, t, y or, more realistically, as a
function of variables (covariates), which can vary between secondary and/or primary periods,
within a logistic regression framework, as for example in Kéry and Royle (2020). However,
it is likely that, in practice, such models are misspecified, and that the variables considered
are only a subset of the variables that affect detection probability in the field. In such cases,
as we demonstrate in our simulation study in Section 3, the estimation of population size can
be substantially biased, and for that reason we propose the use of a mixed effects model:
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(2) logit(pj,t,y) = η = µ+

G∑
g=1

Xj,t,y,gβg + ϵj,t,y

where g = 1, . . . ,G are continuous/categorical variables, such that variable g requires Cg

coefficients to model its effect, so that if g is a continuous variable, Cg = 1, and if g is a
categorical variable, Cg is its number of levels (excluding baseline). Finally, βg is the (Cg ×
1) vector corresponding to the logistic regression coefficients for variable g, Xj,t,y,g is the
vector of length Cg containing variable g on occasion t, y, j, and ϵj,t,y ∼ Normal(0, σ2ϵ ) are
corresponding random effects.

The inclusion of the random effect terms allows for any variability in detection probability
that is not captured by the variables considered by the fixed effects to be absorbed by the ran-
dom effect variance, which, as we demonstrate using simulation, leads to reliable inference
on population size, even when the detection probability model is misspecified. However, an
overparameterised fixed effects model can lead to increased uncertainty around variable ef-
fects and population size, and therefore, we suggest the use of a Bayesian variable selection
algorithm, and specifically of the Bayesian Group Lasso Spike-and-Slab (BGLSS) algorithm
(Xu and Ghosh, 2015), for identifying important predictor variables for p. The BGLSS places
a prior on each group of coefficients, where a group can consist of coefficients introduced to
model the effect of a categorical variable and can number a single coefficient in the case of
continuous variables. This prior is given in equation (3) below, and more details are provided
in the Supplementary material.

βg|τ2g ∼ (1− γg)δ0(βg) + γgN(0, τ2g ICg
)

τ2g ∼ Gamma
(
Cg + 1

2
,
ψ2

2

)
γg ∼ Bernoulli(ϕg)

ψ ∼ Gamma(a, b)(3)

where γg is a binary variable that indicates whether variable g is included (1) in the model
or not (0), δ0(βg) denotes a point mass at 0 ∈RCg , ICg

is the identity matrix (Cg ×Cg), ψ is
the shrinkage parameter, and ϕg is the prior inclusion probability, which can be fixed to 0.5
or can be assigned a uniform or Beta prior distribution.

The BGLSS accommodates group-level variable selection by using a spike and slab prior
(Mitchell and Beauchamp, 1988), with coefficients exactly zero for excluded variables, and
the Bayesian group lasso (BGL) (Casella et al., 2010) for included variables, enforcing the
L1 penalization (Tibshirani, 1996), giving more parsimonious models. This Bayesian formu-
lation can reduce the computational cost by proposing a prior on ψ rather than testing several
values and choosing the best value by cross-validation. In addition, the BGLS produces re-
liable standard errors of coefficients without any extra cost in comparison to the frequentist
group lasso (Yuan and Lin, 2006).

2.2. Availability parameters. We propose two model classes for modelling the availabil-
ity parameters, a nonparametric approach and a parametric approach, both of which are de-
scribed below. We define θℓ = θt,y , with ℓ= t+ T (y− 1) for ℓ= 1, . . . T · Y to model corre-
lation in the availability parameters for the whole time series, across primary periods. When
there are no top-level primary periods, Y = 1 and θℓ = θt for ℓ= 1, . . . , T . Table 1 provides
the terminology used hereafter for each model considered for the availability parameters.
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TABLE 1
Models proposed for availability parameters.

Notation Model
DP Dirichlet process (DP) mixture model

RW1 Random walk of order 1
RW2 Random walk of order 2
Cor Across level correlation model
AR1 Auto-regressive model of order 1

2.2.1. Nonparametric approach. We model availability non-parametrically via a Beta
Dirichlet process (DP) mixture model (Kottas, 2006). This formulation expresses the dis-
tribution of availability parameters as a mixture model, and provides a flexible and robust
specification of the corresponding density, by describing it as a mixture model with an un-
known number of components, with primary periods clustered according to their correspond-
ing availability parameters, eg low, medium, and high. This is ecologically relevant as it en-
ables the study of TE trends and hence roost use patterns throughout the season(s).

The Beta DP mixture model can be represented using the Chinese restaurant process (CRP)
algorithm, which relies on the inferred cluster allocation variables, zℓ, ℓ= 1, . . . , T ·Y , indi-
cating the cluster to which primary period ℓ has been allocated. The CRP is used to represent
the sequential way in which cases, ie periods in our case, are allocated to clusters, with the
number of clusters being infinite a-priory, but finite in practice and inferred as part of the
process. The corresponding model for the availability parameters is given in equation (4).

θℓ|γ̃, ψ̃, zℓ ∼ Beta(γ̃zℓ , ψ̃zℓ), ℓ= 1, . . . , (T · Y )

zℓ ∼ CRP(α), α∼ Gamma(ζ, τ)

γ̃k ∼ Gamma(µ,ν), ψ̃k ∼ Gamma(ϑ,ω), k = 1, . . . ,K.

(4)

where ζ, τ,µ, ν,ϑ,ω ∈ R and K ≤ (T · Y ). More details are provided in the Supplementary
material.

2.2.2. Parametric approach. Alternatively, availability can be modelled parametrically
using temporal models, specifically random walk models and auto-regressive models. These
temporal models share information across primary periods by accounting for temporal auto-
correlation, which is meaningful ecologically as, as also mentioned above, the availability
pattern is expected to be smooth and allows for borrowing strength in cases where the data
are sparse.

1. Random walk models, which enable estimation of non-linear temporal trends retaining
the smoothing-varying feature that is present in observed time series data. As highlighted
in Fahrmeir and Lang (2001), random walk models can be rewritten in an undirected
symmetric form, as a one-dimensional version of the spatial intrinsic conditional autore-
gressive (ICAR) model (Besag, 1974). Generally, random walk models can be defined as
a set of conditional probability distributions under the ICAR models as

(5) θℓ|θ−ℓ, σ
2,WRW ∼N

[∑T ·Y
n=1wℓnθn
wℓ+

,
σ2

wℓ+

]
, ℓ= 1, . . . , T · Y.

where WRW represents the temporal weights matrix with entry ωℓn in the ℓth row and the
nth column, wℓ+ is the sum of the elements in the ℓth row, σ2 is the ICAR variance and
σ2/ωℓ+ is the conditional variance.
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Consequently, random walk models possess the same set of properties as the ICAR
model. That is, positive auto-correlation is assumed via a chosen W that imposes a
neighbourhood structure on time points in the study period and determines the amount
of information borrowed from other time points. This shared information across tempo-
ral neighbours results in temporally smooth time trends, with estimation of θℓ borrowing
information from past time points eg. (ℓ− 1, ℓ− 2) but also from future time points eg.
(ℓ+ 1, ℓ+ 2), provided that these time points are within the study period. In addition, as
the conditional variance increases, θℓ can deviate more from its neighbours, producing a
temporal pattern that is less smooth but more flexible. This model representation allows
us to infer the variance of the ICAR model (σ2) and θℓ ∀ℓ.

• Random walk of order 1 (RW1) can be defined as an ICAR model with binary weights,
WRW1, such that the entry ωℓ,n = 1 if points ℓ,n are neighbours and 0 otherwise. In the
RW1 model, each ℓ has 2 neighbours ℓ− 1, ℓ+ 1, except the first and the last, which
only have one neighbour, adjacent to the right and left respectively. The binary temporal
weights matrix, WRW1, assumes that equal strength of information is borrowed from
adjacent neighbours.

• Random walk of order 2 (RW2). Similarly, the RW2 model can be defined as an ICAR
model but with a general weights matrix (WRW2). The elements in WRW2 are de-
rived from the conditional distributions of each θℓ conditioned on all other parameters
in θ and the variance σ2 (conditional distributions listed in the Supplementary mate-
rial). The elements are the coefficients in the numerator of the conditional mean for
θℓ. As can be seen in equation (5), the conditional variance depends on the number of
neighbours, hence, the RW2 model generally produces smoother temporal trends than
the RW1 model as it borrows information from more time points. In addition, using a
general weights matrix instead of a binary weights matrix specifies the strength of the
information borrowed, with more information borrowed from close neighbours.

• Across level correlation (Cor) model. We extend the RW1 model to allow a time point
to borrow information from other specific time points, in addition to ℓ− 1, ℓ+ 1 time
points given time points are within the study period. For instance, this allows a specific
month in a year to be correlated to months directly before and after that month, but also
the same month across years. This model is defined similarly to the RW1 model with a
binary weights matrix (WCor) such that the entry ωℓ,n = 1 if points ℓ,n are neighbours
and 0 otherwise, where neighbours in this case are the adjacent time points, but also time
points that are c time periods apart, where c= 12 in the case of monthly patterns across
years. Therefore, the first time point are neighbour with (ℓ+ 1, ℓ+ qc) time points, the
last time point with (ℓ− 1, ℓ− qc) neighbours and others with (ℓ− 1, ℓ+1, ℓ± qc) for
q = 1, . . . , ((T · Y )/c)− 1, provided time points are within the study period.

2. Auto-regressive models. An auto-regressive model of order 1 (AR1) on the set of time-
specific parameters can be defined as

θℓ = ρθℓ−1 + ϵℓ, ℓ= 2, . . . , T · Y,(6)

θ1 ∼N(0, σ21(1− ρ2))

where ρ is the temporal correlation coefficient (|ρ| < 1) and ϵℓ ∼ N(0, σ2) are iid noise
effect terms. The RW1 model is a subset of the AR1 model when ρ= 1. As such, the AR1
is a more flexible model as it accommodates both positive and negative temporal auto-
correlation. However, if positive auto-correlation is present, the RW1 model is preferable
as one fewer parameter needs to be estimated.
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2.3. Inference. We fit models in a Bayesian framework using MCMC methods via R
package NIMBLE (de Valpine et al., 2017) version 0.13.0. Specifically, for variables assigned
an ICAR model, we follow NIMBLE’s recommendation and update these variables without
the zero constraints and then centering (Paciorek, 2009). We implement the Beta mixture DP
model by using the collapsed sampler (Neal, 2000) provided in NIMBLE. We use methods
developed by Wade and Ghahramani (2018) to summarise DP cluster results. We employ
median thresholding in variable selection (Barbieri and Berger, 2004), that is, Pr(γg = 1|y)>
0.5, g = 1 . . . ,G to identify significant variables.

3. Simulation study. In this section, we present an extensive simulation study to ex-
plore a number of different cases, listed in Table 2. For each case, we perform 50 simula-
tion runs and we set T = 36, J = 8, assuming no top-level primary periods with λ = 100
and consider high and low detection levels, p ≈ (0.6,0.3), with p as a function of covari-
ates (variables). The coefficients for fixed effects are set as: β = (β1 = 1.25, β2 = 0.2, β3 =
2, β4 = 0, β5 =−0.6, β6 = 0.5, β7 =−1, β8 = 0) with the first five corresponding to contin-
uous variables, x1, . . . , x5, and last three to categorical variables, x6 and x7, with two and
three levels, respectively. Continuous variables were generated from a standard normal dis-
tribution and categorical variables from a multinomial distribution with equal probabilities.
To obtain the desired level of average detection, as stated above, the intercepts, β0, were set
to (0.75,−1.5), for high and low detection probability, respectively. To introduce misspecifi-
cation in the model for detection, variables x1 and x7 were not included in the model in each
of the two cases described in Table 2. When the DP model was used to generate the data,
we specified two clusters of equal size (18) from Beta(10,10) and Beta(10,1) respectively.
When the RW1 model was used to generate data, we set σ = 1.

The following prior distributions were used in all cases: λ ∼ Gamma(0.01,0.01),ψ ∼
Gamma(0.001,0.001), ϕg = 0.5, β1 ∼ Normal(0,2), σ ∼ Uniform(0,15), α∼ Gamma(1,1), γ̃k ∼
Gamma(2,0.1), ψ̃k ∼ Gamma(2,0.1). The MCMC settings in terms of the number of itera-
tions, burn-in, and thinning in each case are reported in the Supplementary material.

TABLE 2
Simulation settings.

Case Description
1 Comparing estimation of population size under different models for the availability parameters

when the correct model for these parameters is fitted to the data and we do not perform variable
selection and
a) the model for detection probability is correctly specified.
b) the model for detection probability is misspecified (fixed vs mixed effects models).

2 Assessing the performance of BGLSS in variable selection under the RW1 model for the availability
parameters when
a) the model for detection probability is correctly specified.
b) the model for detection probability is misspecified (mixed effects model).

We use median relative bias and median 95% credible interval (CI) coverage to summarise
the estimation of population size and of covariate effects. We also use median misclassifica-
tion for summarising the DP mixture clustering and the BGLSS performance. The detailed
results of the simulation study for each case are presented in the Supplementary material and
the key findings are summarised in Table 3 and discussed below.
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TABLE 3
Median relative bias and median 95% CI coverage of population size and covariate coefficients for each

simulation scenario and setting for detection probability, as described in Table 2.
CS: correctly specified; MS: misspecified; FE: fixed effects; ME: mixed effects.

Case Model for θ Model for p Average p Parameters RB Coverage
1. a)

DP CS - FE
0.6

Coefficients 0.008 94
Population size −0.001 100

0.3
Coefficients 0.002 98

Population size −0.002 98

RW1 CS - FE
0.6

Coefficients 0.003 96
Population size −0.001 98

0.3
Coefficients −0.003 96

Population size −0.005 98

1. b)

DP MS - FE
0.6

Coefficients −0.787 2
Population size 8.928 0

0.3
Coefficients −0.590 4

Population size 4.417 0

RW1 MS - FE
0.6

Coefficients −0.745 4
Population size 6.066 2

0.3
Coefficients −0.502 12

Population size 3.347 4

DP MS - ME
0.6

Coefficients 0.036 94
Population size −0.005 98

0.3
Coefficients 0.011 90

Population size −0.019 9

RW1 MS - ME
0.6

Coefficients 0.046 98
Population size −0.004 100

0.3
Coefficients 0.043 96

Population size 0.013 92

2. a)

RW1 CS - FE
0.6

Coefficients 0.001 96
Population size −0.001 98

0.3
Fixed effects −0.006 96

Population size −0.001 98

2. b)

RW1 MS - ME
0.6

Coefficients
Population size −0.005 100

0.3
Coefficients

Population size 0.031 90

3.0.1. Case 1. When the model for detection probability is correctly specified (a), both
the DP and the RW1 models perform well in terms of inference, with low median relative bias
and high coverage for covariate coefficients and population size. The DP mixture model has a
low misclassification rate, on average equal to 0.055 for both levels of detection. In addition,
the standard deviation of the RW1 model (σ) is also estimated well with low relative bias
(0.011,−0.035) and high coverage (0.98,1) at high and low levels of detection respectively.
Consequently, this scenario shows that both models for the availability parameters perform
well in terms of inference when the model for detection probability is correctly specified.

However, when the model for detection probability is misspecified (b) and a fixed effects
detection model is used, estimation of population size is considerably positively biased with
very poor coverage in all cases. Similarly, covariate coefficients are estimated with high bias
and low coverage and the DP mixture model performs poorly, with a misclassification rate
on average equal to (0.111,0.444) for high and low detection probability, respectively. How-
ever, using a mixed effects model for detection probability corrects for the misspecification
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and produces population size and covariate coefficient estimates with negligible bias and
high coverage. The DP mixture model also performs better, with a misclassification rate on
average equal to (0.055,0.111) for high and low detection probability, respectively.

3.0.2. Case 2. Similarly, when the model for detection probability is correctly speci-
fied (a), BGLSS performs well in identifying both significant (strong and weak) and non-
significant effects with mean misclassification rates of 0 across both levels of detection. As
such, population size and covariate coefficients are estimated well in all cases.

When the model for detection probability is misspecified (b) and a mixed effects detection
model is employed, BGLSS has, as expected, lower power to identify weak effects (β2 =
0.2) with average misclassification rate (0.38,0.4) at high and low detection probability,
respectively, but still high power to identify strong effects with average misclassification
rate 0 at both levels of detection. In addition, the power to identify non-significant variables
also declines, with a mean misclassification rate (0.1,0.06) at high and low detection levels
respectively. However, importantly, inference on population size is unaffected in all cases
when mixed effects models for detection probability are employed.

4. Case studies.

4.1. Ecuadorian Amazon parrots. We consider roost count data collected as part of
an ongoing conservation project for the Ecuadorian Amazon parrot (Amazona lilacina) in
Ecuador (Biddle et al., 2020, 2021a,b). Counts were obtained from a single site close to the
El Salado Mangrove Reserve, where parrots roost overnight, for 36 consecutive months be-
tween 2016 and 2019. Each year, surveys took place between November and October, with
surveys taking place on three to five days within each month, and two surveys being per-
formed each day, AM and PM. We assume that the population is closed within each month,
but open between months.

We model the data using the model defined in equation (1), fitting all models listed in
Table 1 and using k-fold cross-validation to select the most appropriate model for the avail-
ability parameters. In each case, we consider a mixed effects model for detection prob-
ability, and perform variable selection via BGLSS, considering the following variables:
median temperature, average relative humidity, visibility, average wind speed, rain/drizzle,
storm/thunder (taken from the Simon Bolivar weather station approximately 14km from
the roost site (https://www.tutiempo.net/clima/01-1999/ws-842030.html), time of sampling
(AM/PM), and weather recorded by the observer at the roost site (clear, cloud, rain, sun-
shine). The prior distributions were set as described in the simulation study.

k-fold cross-validation was performed by splitting the data into monthly subsets (k = 36)
and using root mean square error (RMSE) to evaluate the predictive accuracy of the models
considered when leaving one month out at a time. RW1 was selected as the model with the
lowest RMSE, as seen in Table 4. RW1, RW2, and Cor are the top three models, having
similar RMSE values. Notably, all these models considered produced similar estimates of
population size, BVS results, and model fit. Consequently, we display the results obtained
from the RW1 model in the paper, while the results obtained from the other models are pre-
sented in the Supplementary material, with the exception of the DP model clustering results,
which are shown in Table 5 and discussed as they provide with new insights about the use of
the roost throughout and across years.

TABLE 4
Ecuadorian Amazon parrots case study. Cross-validation results.

Model DP RW1 RW2 Cor AR1
RMSE 66.850 59.925 61.157 62.599 66.436
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Fig 2a shows posterior summaries of the month-specific population sizes,N1, . . . ,N36, ob-
tained from the RW1 model. The pattern suggests two peaks in the year, January/February/March
and then June/July/August. The first peak, which is more consistent across years, could rep-
resent chicks fledging and returning to the roost with the adults, while the second peak, which
varies more between years, could represent social gathering before the breeding season, giv-
ing opportunities for time to create breeding pairs and highlighting the importance of these
communal roosts for the formation of new breeding pairs.

We assessed the fit of models using posterior predictive goodness of fit. For that, we define
monthly rate to be the sum of the counts obtained in a month divided by the number of surveys
in that particular month. Using MCMC samples, we simulated counts, and hence rates, from
our models and compared these to the observed rates. Fig 2b displays that the RW1 model fits
the data well as it produces similar monthly rates to the observed rates, with the true values
falling within the 95% posterior credible interval of simulated values and with no consistent
pattern of bias observed.
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(b) GOF

Fig 2: Ecuadorian Amazon parrots case study. (a) The black dots represent the posterior mean
population size for each month and the thick bands represent the corresponding 95% poste-
rior credible interval. (b) The diamonds are the observed monthly rates and the thick bands
represent the 95% intervals of simulated monthly rates. In both cases, the x-axis represents
the months in each year with months ending in 1, 2, and 3 denoting months in the 1st, 2nd,
and 3rd year, respectively.

The results of the RW1 model are consistent with the clustering output of the DP model
(Table 5), where two clusters of equal size (18) have been identified for each year. These cor-
respond to months with low (L) and months with high (H) availability probabilities, with the
clustering pattern fairly consistent across years and agreeing with the general trend identified
by the RW1 model. Locating and observing individual nests for this species can be difficult,
and hence this clustering pattern of the overall roosting population provides supportive ev-
idence to reports of seasonal breeding behaviour. The first peak corresponds with months
when chicks fledge from nests (January / February / March) and so is likely to represent
population recruitment, whilst the second peak in October occurs just before breeding pairs
start to nest together in the dry forest and could represent an increase in attendance at the
social roost to form or strengthen pair bonds. Due to the fluctuating nature of this particular
roost site, accounting for detection probability allows us to identify robust patterns for eco-
logical interpretation that would not be visible clearly in the raw data, helping conservation
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managers to determine breeding phenology more broadly so that efforts can be more focused
on finding nest cavities and documenting breeding success at the right time of year. In other
amazon parrot species roost attendance is also linked with food availability (i.e. in times of
food scarcity, roost attendance is greater to allow information sharing) so it is also possible
that fluctuating food availability in this seasonal climate may drive high/low distinction.

TABLE 5
Ecuadorian Amazon parrots case study. Cluster allocations from the DP model.

Months
Year Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

1 L L H H H L L H L H L H
2 L L H H H L L L H L H H
3 L L H H L L H H H L L H

Baseline detection probability is fairly low (posterior mean = 0.365 with (0.261,0.460)
95% posterior credible interval). Rain, storm, and time of sampling are identified as important
predictors for observation error with posterior inclusion probabilities (PIP): 0.562,0.613,
and 0.691 respectively, but all with 95% posterior credible intervals covering 0 (Table 6).
Rain, storm, and surveying in PM instead of AM have an estimated positive effect on the
probability of detection. The presence of rain and storm can force parrots to fly lower down
in the sky and land close to the observation point to gain shelter, increasing the probability of
detection. Higher detection probability in PM than in AM is possibly due to the character of
final destination: in the PM parrots are flying to one communal roost while in the AM parrots
fly in multiple directions based on food dispersal and nest location, making it more difficult
to detect them.

TABLE 6
Ecuadorian Amazon parrots case study. Posterior summaries of coefficients for the detection probability model.

Coefficient Mean SD 95% PCI
Intercept −0.553 0.229 (−1.040, −0.159)
Median Temperature 0.006 0.028 (−0.039, 0.091)
Humidity 0.003 0.027 (−0.049, 0.076)
Visibility −0.001 0.026 (−0.067, 0.056)
Wind Speed −0.022 0.056 (−0.211, 0.029)
Rain 0.049 0.105 (−0.034, 0.355)
Storm 0.164 0.308 (−0.034, 1.050)
Time-PM 0.106 0.139 (−0.011, 0.438)
Weather-Cloud −0.011 0.045 (−0.144, 0.028)
Weather-Rain 0.000 0.045 (−0.078, 0.085)
Weather-Sunshine −0.001 0.043 (−0.087, 0.078)

4.2. Orange-winged Amazon parrots. We next consider roost count data from Orange-
winged Amazon parrots (Amazona amazonica) in Brazil. Counts were collected from a single
site at an island near Belém, Pará between September 2004 and September 2005, with 96 sur-
veys conducted (54 in the afternoon and 42 in the morning) across 50 weeks. More details
can be found in De Moura, Vielliard and Da Silva (2010). We assume that the population
is closed within each week, but open between weeks. Therefore, in this case, the primary
periods correspond to weeks, and there are no top-level primary periods. Detection probabil-
ity is modelled as a function of the following categorical covariates: Cloud (cloudy, partially
cloudy, no cloud), wind (strong wind, medium wind, low wind), rain (yes, no) and time of
sampling (AM or PM).
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k-fold cross-validation, performed by leaving one week out at the time (k = 50), again
selected RW1 as the best model as seen in Table 7. We note that the Cor model is not an
option in this case as the data are collected in a single year, so we cannot model correlation
between weeks across different years. All models considered produced similar estimates of
temporal population size, with a similar model fit. We display the results produced from the
RW1 model in the main body of the paper, with the results obtained from the other models
in the Supplementary material.

TABLE 7
Orange-winged Amazon parrots case study. Cross-validation results.

Model DP RW1 RW2 AR1
RMSE 1283.779 1267.940 1345.571 1277.701
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Fig 3: Orange-winged Amazon parrots case study. (a) The black dots represent the posterior
mean population size each week and the thick bands represent the corresponding 95% pos-
terior credible interval. (b) The diamonds are the observed weekly rates and the thick bands
represent the 95% intervals of simulated weekly rates.

Fig 3a shows the posterior summaries of the temporal population size estimates obtained
for each week using the RW1 model. The primary factor influencing the fluctuation in pop-
ulation size at the roosting site is the breeding season (De Moura, Vielliard and Da Silva,
2010). Consequently, the period of low population size (weeks 1-31) is possibly when paired
individuals leave the roost in search of a nest, where they breed, nest, and rear young until
the nestlings can fly. This long period of low population size may be due to the asynchronous
reproduction of Orange-winged Amazons. The period of high population size (weeks 41-48)
corresponds to the return of pairs with young, while the period of medium population size
(weeks 32-40 and 49-50) corresponds to the time when individuals start returning with young
(weeks 32-40) and when individuals start to disperse (weeks 49-50). Finally, like the Ecuado-
rian Amazon parrots, we use posterior goodness of fit to assess model fit, defining weekly
rate to be the sum of counts obtained in a week divided by the number of surveys in that
particular week. Fig 3b suggests that the RW1 model fits the data well as it produced similar
weekly rates to the observed rates for the majority of the weeks.
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Baseline detection probability was estimated as high (posterior mean = 0.862 with
(0.789,0.913) 95% posterior credible interval), possibly because in this case parrots were
counted from a boat by a minimum of three teams of two observers, each team oriented in a
different direction. Predictors cloud, rain and time were the only ones with PIP>0.5, but only
marginally so (0.535,0.511,0.511, respectively), and their coefficients are estimated close to
0. In this case, rain and surveying PM instead of AM decreased the probability of detec-
tion (Table 8), and we discuss this result and compare it to that obtained for the Ecuadorian
Amazon parrots in Section 5.

TABLE 8
Orange-winged Amazon parrots case study. Posterior summaries of coefficients for detection probability.

Coefficient Mean SD 95% PCI
Intercept 1.830 0.279 (1.320, 2.350)
Partially cloudy 0.007 0.049 (−0.061, 0.149)
Cloudy −0.019 0.071 (−0.268, 0.040)
Low wind 0.009 0.048 (−0.034, 0.176)
Strong wind 0.001 0.030 (−0.059, 0.074)
Rain-Yes −0.016 0.078 (−0.288, 0.046)
Time-PM −0.002 0.039 (−0.116, 0.096)

5. Discussion. Roost count surveys are widely used and, for certain populations, are the
only viable monitoring tool, as individuals may nest in elevated cavities in trees or cliffs that
are difficult to find, reach, and capture (Dénes, Tella and Beissinger, 2018). In this paper,
we have developed a new modelling framework for roost count survey data that accounts
for observation error and TE, non-parametrically and parametrically to provide key estimates
of population size, information on TE trends, and predictors of detection via variable selec-
tion. All of these estimates can serve as fundamental tools in adaptive wildlife monitoring,
conservation, and management.

Moreover, we have performed an extensive simulation study to assess the performance
of our novel modelling framework under different scenarios. When the model for detection
probability is correctly specified, reliable estimates of population size and patterns of TE are
obtained using both the nonparametric and parametric approaches introduced in the paper,
even when the probability of detection is low. However, when the model for detection prob-
ability is misspecified, which is likely to be the case in practice, our results demonstrate the
importance of using a mixed effect model for the probability of detection, so that the random
effects part can absorb the lack of fit introduced by omitting important predictors for obser-
vation error. Failure to employ a mixed-effects model, in this case, gives rise to highly biased
estimates of population size.

We applied our modelling framework to two case studies on parrots. We found substan-
tially different sizes of detection probabilities and of variable effects on detection. The obser-
vation methods and roost site characteristics for each parrot species can explain in part these
differences. Detection probability was much higher for the Orange-winged amazons, which
were counted by a team of six people from a boat directly under the flight path between the
mainland and an island roost, vastly reducing the chance of missing individuals. Detection
however was lower for the Ecuadorian Amazon parrots, which were counted by two peo-
ple from an observation tower on the mainland, where birds fly over and amongst buildings
and human development to patches of scattered mangroves interspersed with aquaculture.
Detection probability was higher for the Ecuadorian Amazon parrots when surveyed in the
afternoon, whereas for the Orange-winged amazons, they were marginally more detectable
during morning surveys. This again corresponds to the observation methods and direction of
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travel associated with the AM and PM surveys - with both cases showing higher detection
probability when observers are at closest proximity to the roost i.e. on the observation tower
when birds are departing from the mainland dry forest (Ecuadorian amazon parrots), on the
boat when birds are departing from the mangrove roost (Orange-winged amazons). The ef-
fect of rain also differed, increasing the detection probability for the Ecuadorian Amazon
parrots but decreasing it for the Orange-winged Amazon parrots. This can be attributed to
the differing flight path birds have to make, with a 1km flight over a water body not possible
in the rain (orange-winged Amazon parrots), thus lowering detection probability, whereas a
shorter flight that can be taken lower down and in shorter stages by landing on trees on the
edge of the town close to the observation tower (Ecuadorian Amazon parrots) making birds
more detectable.

Similarly, we identified differences in phenology between the two species, with the roost
use pattern of Ecuadorian Amazon parrots being described by a two-mixture model, whereas
that of Orange-winged Amazon parrots by a three-mixture model, when the DP approach is
used to describe TE. This can be due to different levels of population and habitat fragmen-
tation. There was a large difference in the population size between the two species, with the
Ecuadorian Amazon parrots being just a few hundred birds, whilst the Orange-winged Ama-
zon parrots population consists of over ten thousand birds. The Ecuadorian Amazon parrots
have faced a 60 percent population decline at this roost site in the past two decades, in part
attributed to habitat fragmentation, with the feeding, nesting, and roosting areas now occur-
ring amongst a highly transformed landscape on the edges of a large city, vastly different to
the relatively undisturbed roosting habitat of the Orange-winged Amazon parrots.

We have demonstrated our new modelling framework on parrot data, but bats and other
species are also routinely monitored in the same way. The model can be readily fitted to such
data and can be extended to account for data from multiple sites, when these are available,
and to account for spatial correlation between sites. Spatial models such as the ICAR and the
Besag, York and Mollié (BYM) model (Besag, York and Mollié, 1991) can be considered to
account for spatial correlation.

Variable selection on detection probability via BGLSS performed well when the model
is correctly specified or when misspecified and a mixed effect model is used for detection.
BGLSS had lower power to identify weaker effects when using a mixed effect model for
observation error. Additionally, BGLSS can only identify significant categorical covariates
not significant levels of categorical variables. We also considered Bayesian Sparse Group
selection (BSGS). BSGS developed by Chen et al. (2016) enables variable selection of both
continuous and categorical variables. It has the advantage of identifying both significant cat-
egorical covariate and their relative levels. However, results shown in the Supplementary ma-
terial suggest that BGLSS generally outperforms BSGS. Performance of other BVS methods
such as the variable selection method of Griffin et al. (2020) can also be investigated in this
scenario. Thus, future work can be focused on investigating/improving BVS methods when
using a mixed-effect model.

The Beta DP mixture model in this framework enables our model to perform clustering
of primary periods independently for top-level primary periods, and hence treats the obser-
vations as being from one long time series, with clusters, as a result, independent across top-
level primary periods. An alternative would be to implement a hierarchical Dirichlet process
(HDP) model (Teh et al., 2004), which allows clusters with the same locations but potentially
different weights to be identified across top-level primary periods, providing a natural way to
dependence between top-level primary periods.

Another direction of future work is model selection. The proposed options for modelling
the availability patterns define different, competing models (Table 1), for the TE pattern,
each with its own advantages. We use the well-established approach of cross-validation to
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select between competing models. However, cross-validation can be computationally inten-
sive as it requires fitting the model multiple times. Other model selection methods such as the
Wantanable-Akaike information criterion (WAIC) (Watanabe and Opper, 2010) only require
fitting the model once and can be easily computed using popular software, such as NIMBLE
and STAN (Carpenter et al., 2017). Notably, WAIC computation relies on the independence
assumption of data given the parameters. This assumption is often violated in temporal mod-
els where dependence among the data is a key modelling feature. Hence, future work can be
focused on investigating/developing efficient model selection methods for temporally corre-
lated data.
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