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Abstract

Using only spatially replicated counts from unmarked individuals, N-mixture
models provide an attractive framework to obtain estimates of population size
by accounting for imperfect detection. The robustness of N-mixture models
has been examined in detail in a classical inference framework. However, to
our knowledge, only a small number of such studies have been carried out on
N-mixture models in a Bayesian setting. In this paper, we consider fitting
N-mixture models within a Bayesian framework. To aid implementation, we
apply a new proper objective prior distribution to N-mixture models. Using
simulated data, we compare this new proper objective prior to approxima-
tions of the popular objective prior, Jeffreys prior, and find that these prior
distributions perform similarly in terms of model inference. Importantly, we
find that when the detection probability is small, using priors that are con-
centrated at zero, even with large variance, expected population size can be
considerably underestimated. Large estimates of expected population size
were also found, evident by the bimodal density of posterior medians obtained
for simulated data. Additionally, we consider an extensive class of N-mixture
models and investigate model selection using the Wantanable-Akaike Informa-
tion Criterion (WAIC) in a wide range of scenarios to examine the sensitivity
of WAIC to likelihood specification. We find that WAIC computed from
the conditional likelihood produces misleading results favoring more compli-
cated models than the true model. Contrary, WAIC computed using the
marginal likelihood correctly selects the true model with a high probability.
Hence, model selection of N-mixture models should be obtained from WAIC
using the marginal likelihood, not the conditional likelihood. We demonstrate
the usefulness/importance of employing these methods in two real datasets.
Hence, this work can be considered a template for how to specify and select
N-mixture models in a Bayesian context. We briefly investigate parameter
identifiability of N-mixture models using Data cloning.

1 Introduction

A fundamental objective of many wildlife population monitoring programs and eco-
logical studies is to estimate the size of a population. This is essential for the
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development and communication of management practices and guidelines. How-
ever, monitoring wildlife populations is challenging and costly, as the probability of
detecting individuals in the monitored population is typically less than one. Survey
sampling, which involves counting unmarked individuals in a given area over a spec-
ified period of time is relatively lower in cost and effort in comparison with other
sampling methods, such as capture-recapture sampling and removal sampling.

Using count data from survey sampling, N-mixture models (Royle, 2004b) are a
class of hierarchical models that accounts for imperfect detection, allowing estima-
tion of population size in a cost-effective way. N-mixture models have been used for
a number of purposes, including evaluation of conservation actions (Romano et al.,
2017), understanding population size and population dynamics (Studds et al., 2017),
population prediction to conservation scenarios (Ladin et al., 2016) and to forecast
shifts in species distributions (Hunter et al., 2017).

The performance of N-mixture models in a classical setting has been investigated
in detail. Dennis et al. (2015) showed that infinite estimates of population size can
arise when the probability of detection and the number of times the population is
sampled are small. Barker et al. (2018) demonstrated the inability of count data
to discriminate between different hierarchical models, even when these models yield
substantially different estimates of population size. Knape et al. (2018) highlighted
that estimated population size can be severely i) underestimated if the fitted model
does not account for over-dispersion in the population process, when that is present
or ii) overestimated if the fitted model does not account for over-dispersion in the
detection process, when that is present. However, to our knowledge, only a small
number of studies have investigated N-mixture models in a Bayesian framework (see
for example Toribio et al., 2012; Link et al., 2018, who studied the robustness of
the N-mixture model in a Bayesian setting). Thus, we consider fitting an extensive
class of N-mixture models in a Bayesian framework, specifically focusing on prior
specification and model selection, which are key aspects of Bayesian modelling.

An important question in Bayesian model building is how does one choose a prior
distribution p(θ) for parameter θ? One can either be subjective: choosing priors that
reflect some subjective opinion about θ (before data are collected) or objective: find-
ing prior distributions that formally express ignorance about θ. Subjective priors
have the appeal of using prior information to increase estimation precision without
compromising accuracy (Morris et al., 2015), resulting in larger effective sample sizes
and saved resources. However, care needs to be taken about how prior information
is incorporated into the prior distribution, especially where there is limited prior
information as, in the case of sparse data, which is often true in ecological applica-
tions, the prior can have a strong effect on the posterior distribution. Additionally,
it can be difficult to quantify prior effects in practice.

Contrarily, objective and vague priors are two classes of priors that allow Bayesian
inference when information about θ is not available. These priors aim to avoid bias in
parameter estimation by placing less emphasis on prior beliefs and more emphasis on
the data. Based on mathematical properties, objective priors are designed to reflect
minimal information, and have certain mathematical properties, discussed in this
chapter. On the other hand, vague priors are deliberately chosen to convey no prior
knowledge about the parameter being estimated, such as a flat prior or one with a
very long tail, but without necessarily exhibiting the same mathematical properties
as an objective prior. As a result, an objective prior may be more appropriate to
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express prior ignorance. Uniform distributions or normal distributions with large
variances are common examples of vague priors. The Jeffreys prior (Jeffreys, 1946)
is a popular objective prior designed to be invariant under reparameterization.

Notably, the majority of objective priors are improper (Leisen et al., 2018). A
proper prior is a well-defined probability distribution as it integrates to 1 over the
support of the parameter, whereas an improper prior has an infinite integral over
the support of the parameter. In general, improper priors are not a problem as long
as the resulting posterior is a proper probability distribution, from which one can
derive moments such as the posterior mean. However, as of present, general results
that allow one to assess if a given improper prior results in a proper posterior are yet
to be developed (Leisen et al., 2018). Hence, caution is needed when using improper
objective priors as spurious inference can be obtained. In addition, improper prior
distributions cannot be applied in mixture models and model selection via Bayes
factors (Leisen et al., 2018). Thus, this limits the use of many objective priors.

Banner et al. (2020) highlighted the use of priors in ecology and found vague pri-
ors are more often used in ecology than subjective priors. Both vague and objective
priors have been used in N-mixture models: Royle (2015) demonstrated N-mixture
models in a Bayesian framework by using priors that are approximations to Jeffreys
prior, Link et al. (2018) used improper objective priors to study the robustness of
N-mixture models, Toribio et al. (2012) used vague priors on the log and logit scale,
which in turn resembled the Jeffreys prior on the original scale, to study the robust-
ness of a Bayesian approach to fitting N-mixture models for pseudo-replicated count
data. McCaffery et al. (2016) also used vague priors on the log and logit scale to
analyze Lek count data.

In this paper, using a recently developed proper objective prior (Walker and
Villa, 2021) and vague priors that are approximations to the Jeffreys prior, we test
these priors and investigate the effect of prior choice in N-mixture models via an
extensive simulation study.

N-mixture models can be relatively easily built in a Bayesian setting, but different
models can result in substantially different estimates of population size (Ketwaroo,
2019). Therefore, it is imperative to have measures that allow one to compare
models. Predictive accuracy measures can be used to compare models. Predictive
accuracy measures simply compute how well a model estimated from available data
generalises to out-of-sample data. However, the availability of out-of-sample data is
often limited. One common way to overcome this deficiency is to use the sample data
twice; once to fit the statistical model and again to test its predictive power. The
issue here is that this can lead to over-fitting. Hence, predictive accuracy measures
that use the data twice need to account for over-fitting. One such predictive accuracy
measure is the Wantanable-Akaike information criterion (WAIC, Watanabe, 2010).
WAIC is often used in popular software such as NIMBLE (de Valpine et al., 2017)
and STAN (Carpenter et al., 2017). Importantly, Ariyo et al. (2020) recently showed
via an extensive simulation study that the marginal likelihood (averaging over latent
variables) is superior to the conditional likelihood (given latent variables) when using
WAIC to select the true longitudinal model. In addition, Millar (2018) showed using
over-dispersed count data that WAIC computed using the conditional likelihood is
an unreliable tool for model selection and recommended using WAIC computed
using the marginal likelihood. Thus, in this paper, we investigate whether WAIC
can be used to select among the different N-mixture models considered and whether
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WAIC for N-mixture models is sensitive to the likelihood specification in a wide
range of scenarios.

We fit N-mixture models considered using Markov Chain Monte Carlo (MCMC)
methods provided by the R package NIMBLE (de Valpine et al., 2017) version 0.10.0.

Finally, we consider two real data sets, yellow-bellied toads (Ketwaroo, 2019)
and swiss great tits (Royle, 2015), and we investigate the usefulness/importance of
employing these methods in each case.

The paper is organised as follows: Section 2 provides a detailed description of
the different N-mixture models considered, prior specification, and model selection.
Simulation results are presented in Section 3 and the results for the two case studies
are presented in Section 4. Section 5 concludes the paper and provides ideas for
potential future directions.

The work in this chapter is a continuation of the same author’s MSc project,
but an extension of it in a number of ways. Specifically, the N-mixture models
considered were introduced in the MSc thesis, and the analysis of the yellow-bellied
toads data set was first presented in the MSc thesis. However, the introduction of the
new proper objective prior within the context of N-mixture models, the comparison
between this prior and approximations to Jefferys prior using simulation and real
data, as well as the model selection discussion and results using conditional and
marginal WAIC correspond to new work presented in this chapter.

2 Materials and Methods

2.1 N-mixture models

Assuming population closure, N-mixture models estimate population size and ac-
count for imperfect detection using only replicated counts at multiple sites. N-
mixture models are composed of two key processes: a population size process de-
scribing the spatial variation in the number of individuals among sites and a detec-
tion process describing the detection of individuals at each site (Ketwaroo, 2019).
Count data (hereafter Cij) are obtained at i = 1, . . . ,M sites with j = 1, . . . , J
sampling occasions at each site.

For the population size process, it is assumed that the local population size
at site i (hereafter Ni) is an independent random variable with a chosen discrete
probability function g. That is,

Ni ∼ g(N;λi, γ)

where λi represents the expected population size at site i and γ represents an optional
parameter for over-dispersion in the population size process. In order to avoid over-
parametrization, λi may be common to all sites, or it may be expressed as a function
of site-specific covariates. In this paper, we consider the options introduced and
considered in Ketwaroo (2019) for both the population size process and the detection
process. Specifically, the Poisson and Negative binomial distributions for g as well
as the lesser-known Discrete Weibull distribution (Nakagawa and Osaki, 1975).

The Discrete Weibull (DW) distribution developed by Nakagawa and Osaki
(1975) is the discrete form of the continuous Weibull distribution that is popu-
lar in survival analysis and failure time studies (Peluso et al., 2019). In this paper,
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we focus on the type 1 DW distribution, the most commonly used type in the lit-
erature. Let Y be a random variable that follows a (type 1) DW distribution, the
cumulative distribution is defined as:

F (y; q, b) =

{
1− q(y+1)b for y = 0, 1, 2, 3, . . . ,

0 otherwise

and the probability mass function is defined as:

f(y; q, b) =

{
qy

b − q(y+1)b for y = 0, 1, 2, 3, . . . ,

0 otherwise

where 0 < q < 1 and b > 0.
Importantly, Kalktawi (2017) highlighted the flexibility of the DW distribution

to model count data; relative to the Poisson distribution, the DW distribution can
be used to model over-, under-, and equi-dispersed data. Regarding the parameters
(q, b) of the DW distribution, Peluso et al. (2019) show that if:

1. 0 < b ≤ 1 there is over-dispersion, regardless of the value of q,

2. b ≥ 3 there is under-dispersion, regardless of the value of q and

3. 1 < b < 3, depending on the value of q there is under-dispersion or over-
dispersion.

For the detection process, it is assumed

Cij ∼ h(Ni, pij, ρ) (1)

where h is a discrete probability distribution, pij represents the probability of de-
tecting an individual at site i and sampling occasion j and ρ represents an optional
parameter for over-dispersion in the detection process. We consider the Binomial
and the Beta-Binomial (BB) distributions for h. The Binomial distribution is most
commonly used to describe the detection process, assuming independence of detec-
tion. Using a Binomial detection process, pij can be assumed to be constant across
all sites and sampling occasions, or in a logistic regression framework, it can be
expressed as a function of site and sampling occasion specific covariates.

Martin et al. (2011) showed that the BB distribution can serve as a detection
process for modelling the correlating behaviour of individuals, thus relaxing the
assumption of independent detection of individuals by the Binomial distribution.
The BB detection process accomplishes this by modelling

pij ∼ Beta(α, β)

for α, β > 0. Therefore, the BB detection process can also be used to model hetero-
geneity in detection probabilities (Martin et al., 2011; Ketwaroo, 2019). In addition,
ρ represents the degree to which individual behaviours or site attributes correlate
with each other, which could affect detection (Martin et al., 2011), and is defined as

ρ =
1

α + β + 1

5



Notably, the BB distribution does not allow the distinction between correlations in
individual behaviour and attributes of the site that could affect detection.

Assuming Ni are independent random variables with discrete probability function
g(λi, γ), and Cij are conditionally dependent on Ni with discrete probability function
h(Ni, pij, ρ), the marginal likelihood can be written as:

L(pij, λi, ρ, γ; Cij) =
M∏
i=1

{
∞∑

Ni=maxjCij

( J∏
j=1

h(Cij; Ni, pij, ρ)

)
g(Ni;λi, γ)

}
. (2)

This marginal likelihood takes into account all values for population size at each site
and in theory sums to infinity. In reality, however, an upper bound can be chosen
when fitting N-mixture models using the marginal likelihood. In a Bayesian setting,
Ni can be treated as a latent variable that can be sampled via MCMC methods,
hence avoiding the need for the infinite sum or truncation. The full conditional
likelihood for N-mixture models can then be written as:

L(pij, ρ; Ni,Cij) =
M∏
i=1

( J∏
j=1

h(Cij; Ni, pij, ρ)

)
. (3)

where there is no longer the need to marginalise over Ni, as in equation (2), and
now g from equation (2) serves as the prior distribution for Ni in this conditional
model. Bayesian inference using the marginal likelihood has the appeal of being sim-
ilar to the maximum likelihood approach and in some cases, faster than sampling
latent variables using the conditional likelihood (Ponisio et al., 2020). However, for
N-mixture models, Ponisio et al. (2020) showed that in a Bayesian setting marginal-
ization is generally less efficient than sampling Ni. This is possibly due to the
computational cost of summing over the range of possible values of Ni when the
chosen upper bound is large.

Table 1: N-mixture models developed/implemented in Ketwaroo (2019) considered
in this paper.

N-mixture model Model for population size process Model for detection process
P-B Poisson (λ) Binomial(Ni, p)

DW-B Discrete Weibull (q, b) Binomial (Ni, p)
NB-B Negative Binomial (r, s) Binomial (Ni, p)
P-BB Poisson (λ) Beta - Binomial (Ni, pij, ρ)

DW-BB Discrete Weibull (q, b) Beta - Binomial (Ni, pij, ρ)

Table 1 displays the list of N-mixture models investigated in this paper. We assume
λi to be constant for all sites for all models and for models with a Binomal detection
process, we assume pij to be constant across sites and sampling occasions. The P-B
model is one of the most popular N-mixture models and it assumes equi-dispersion
in the population size and detection processes. The NB-B model is also popular as
it accounts for over-dispersion in the population size process relative to the Pois-
son distribution. The DW-B model offers more flexibility by accounting for over-,
under-, and equi-dispersion in the population size process relative to the Poisson
distribution. The P-BB model accounts for over-dispersion in the detection process,
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and the DW-BB model has the advantage of accounting for over-dispersion in the
detection process as well as under -, equi-, or under-dispersion in the population size
process relative to the Poisson distribution.

2.2 Objective Prior distributions

Jeffreys’ Prior (Jeffreys, 1946) - An obvious candidate for an objective prior is to
use a flat prior p(θ) ∝ c, c > 0 such that

∫
p(θ)dθ = ∞. This flat prior is an

improper prior and not transformation invariant. Instead, Jeffreys (1946) derived
prior distributions that are transformation invariant. The Jeffreys’ prior is the most
popular objective prior and can be defined as:

p(θ) ∝
√

|I(θ)|

where I(θ) = −E

[
∂2logp(x|θ)

∂θ∂θT
|θ
]
is the Fisher information where p(x|θ) denotes the

likelihood. For a Poisson distribution with mean λ, the Fisher information I(λ) = 1
λ
,

and so the Jeffreys prior is the improper prior, p(λ) ∝ 1
λ2 . This prior can be approx-

imated by a Gamma(ϵ, ϵ) where ϵ ≈ 0 such as Gamma(0.5, 0.00001) (Spiegelhalter
et al., 2003). The Jeffreys’ prior yields sensible posterior distributions in scenarios
where there is only one parameter of interest. However, it produces posteriors with
poor performance when the parameter space has two or more dimensions (Leisen
et al., 2018).

Walker and Villa (2021) recently developed a novel proper objective (OB) prior for
continuous parameters by considering the connection between information, diver-
gence and scoring rules. Let Θ = (0,∞) be the parameter space of interest such
that θ ∈ Θ. For some constant a > 0, the OB prior can be defined as

p(θ) =
a

(a+ θ)2
.

Setting a = 1 results in a heavy-tailed distribution as shown in Fig. 1. This distribu-
tion shape allows it to behave similarly to standard improper objective priors such
as Jeffreys’ priors and reference priors (Berger et al., 2009), where a reference prior
is an objective prior designed to maximize some measure of distance between the
posterior and prior to allow the data to have maximum effect on the posterior. Mea-
sures such as the Kullback-Leibler divergence (Kullback and Leibler, 1951) or the
Hellinger distance (Beran, 1977) can be used to construct reference priors. Reference
priors and Jeffreys’ priors are only equivalent for one-dimensional parameters.

Walker and Villa (2021) showed that this novel objective prior performed almost
equivalently to the Jeffreys prior on simulated data. Unlike improper objective prior
distributions, this novel objective prior distribution is proper, guaranteeing a proper
posterior distribution.
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Figure 1: The OB prior p(θ) = 1/(1 + θ)2 for a parameter defined in (0,∞).

2.3 Model Selection via WAIC

WAIC, also called the “widely available information” criterion, is a fully Bayesian
predictive accuracy measure estimator based on the log posterior predictive dis-
tribution. To mathematically define WAIC, let θ represent all model parameters,
y1, . . . , yn denote the sample data, f be the true model, ỹ be the future data that
could be observed, and ppost(ỹ) =

∫
p(ỹi|θ)p(θ|y)dθ be the posterior predictive dis-

tribution where ỹi denotes future data point i. Since the future ỹi is unknown, the
expected log predicted density(elpd) can be used as a measure of predictive accuracy
(Gelman et al., 2014):

elpd = Ef (logppost(ỹi)) =

∫
logppost(ỹi)f(ỹi)dỹi

For the n new data points, elpd is computed for each data point to establish the
predictive accuracy measure of that data set:

Expected log pointwise predicted density (elppd) =
n∑

i=1

Ef (logppost(ỹi))

However, the log posterior predictive density is unknown as the likelihood p(ỹi|θ)
cannot be computed. For this reason, the prediction accuracy of a fitted model can
be summarised using the log pointwise predictive density(lppd):

lppd = log
n∏

i=1

ppost(yi) =
n∑

i=1

log

∫
p(yi|θ)p(θ|y)dθ

In practice, draws from the posterior distribution can be used to evaluate lppd. Let
θs, for s = 1, . . . , S be the draws from the posterior distribution, then the computed
lppd (̂lppd) can be defined as:

̂lppd =
n∑

i=1

log

(
1

S

S∑
s=1

p(yi|θs)
)
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Accordingly, WAIC estimates the expected log pointwise predictive density elppd as

the log pointwise predictive distribution lppd with a bias adjustment êlppdWAIC =̂lppd − pWAIC. Two estimates of the bias adjustment have been proposed in the
literature (Gelman et al., 2014). In this paper, we use the following bias adjustment:

pWAIC =
n∑

i=1

varpost(logp(yi|θ)), (4)

which can be computed by:

computed pWAIC =
n∑

i=1

V S
s=1(logp(yi|θi))

where V S
s=1 represents the sample variance. Thus, pWAIC can be easily computed by

summing the posterior variance of the log predictive density over all data points yi.
See Gelman et al. (2014) for more information on the other bias adjustment.
Hence, WAIC can be generally expressed as

WAIC = −2(lppd− pWAIC). (5)

Specifically, conditional WAIC (cWAIC) and marginal WAIC (mWAIC) can be ex-
pressed as

cWAIC = −2(lppdc − pcWAIC) (6)

mWAIC = −2(lppdm − pmWAIC) (7)

where lppdc, pcWAIC are computed using the conditional likelihood (equation (3)) and
lppdm, pmWAIC are computed using the marginal likelihood (equation (2)). Both
cWAIC and mWAIC can be computed by using MCMC samples from the fitted
conditional model, and this is the approach employed in this work.

Notably, WAIC (equation (5)) is on the deviance sale, making it comparable
with other measures of deviance such as the Akaike information criterion (AIC),
and the Deviance information criterion (DIC). The model with the lowest WAIC
is considered the best model considering all models. In addition, as opposed to
conditioning on a single point as is done in AIC and DIC, WAIC has the advantage
of averaging over the entire posterior distribution, making it more appropriate for
Bayesian models and particularly useful for complex models with many parameters.
The notable weakness of WAIC is that its calculation depends on the independence
assumption of data given the parameters, making it unclear how to compute for
structured data settings such as time series, spatial, and network data.

As WAIC is an information criterion, we assess the strength of evidence for each
model using delta WAIC and Alkaline weights. Assuming there are M candidate
models, delta WAIC for the mth candidate model (∆m) can be computed as ∆m =
WAICm − WAIC∗ where WAIC∗ is the minimum WAIC among the M candidate
models.

Alkaline weights, denoted by ωm, can be computed as:

ωm =
exp(−0.5∆m)∑M
i=1 exp(−0.5∆i)

.

That is, ωm, is the ratio of a candidate model’s delta WAIC relative to the sum of
the delta WAICs for all candidate models.
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3 Simulation study

We consider two extensive simulation cases: 1) to investigate model performance
when using the OB prior and priors that are approximations to the Jeffreys’ prior
for λ in the P-B N-mixture model, and 2) to investigate whether WAIC is a reliable
tool for model selection of N-mixture models and whether its performance depends
on which likelihood calculation, conditional or marginal, is employed.

In both cases, we fit models using MCMC methods provided by R package NIM-
BLE (de Valpine et al., 2017) version 0.10.0 and use the full conditional N-mixture
model (Equation (2)) as it was found to be more computationally efficient than the
marginalized N-mixture model (Equation (3))(Ponisio et al., 2020). cWAIC and
mWAIC are computed using MCMC samples from the fitted conditional model. To
evaluate inference quality, we use the posterior median for each parameter since the
conditional posterior distributions for λ and p were found to be skewed, and use λ̂
and p̂ to denote the median of the posterior medians over the simulation set. We
also calculate 95% posterior credible interval coverage (Covθ), residual mean square
error (RSMEθ), and median relative bias (Bθ).

3.1 Case 1 - Comparison of prior distributions

For λ, we use the OB prior, and the following approximations to the Jeffreys priors:
Gamma(0.001, 0.001) and Gamma(0.5, 0.00001), and for p we use a Uniform(0, 1)
prior. We set M = 20, J = 5, and perform 100 simulation runs for each scenario:
λ = (5, 100, 500) and p = (0.1, 0.25, 0.6). For λ = (5, 100), p = (0.1, 0.25), we run
515000 MCMC iterations with burn-in of 15000 and thinning of 10 for 1 chain.
For λ = (5, 100), p = 0.6, we run 115000 MCMC iterations with burn-in of 15000
and thinning of 10 for 1 chain. We run 815000 MCMC iterations with burn-in of
105000 and thinning of 20 for 1 chain for λ = 500, p = (0.1, 0.25, 0.6). Different
MCMC settings were chosen so that the effective sample size was similar between
the different simulation scenarios.

Table 2: Simulation results using the OB prior.

λ p λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

5 0.1 3.215 92 0.399 −0.357 0.149 92 0.798 0.494
5 0.25 4.503 94 0.273 −0.099 0.284 97 0.284 0.135
5 0.6 4.934 96 0.154 −0.013 0.594 96 0.087 −0.009

100 0.1 57.000 89 0.441 −0.423 0.175 89 1.004 0.747
100 0.25 86.739 92 0.284 −0.133 0.291 91 0.369 0.167
100 0.6 100.326 96 0.115 0.003 0.605 97 0.096 0.008
500 0.1 315.925 90 0.415 −0.368 0.160 91 0.859 0.601
500 0.25 466.172 94 0.326 −0.067 0.268 93 0.322 0.073
500 0.6 498.572 97 0.108 −0.002 0.601 96 0.098 0.002
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Table 3: Simulation results using the Gamma(0.001, 0.001) prior.

λ p λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

5 0.1 3.862 95 0.468 −0.227 0.124 96 0.706 0.237
5 0.25 4.857 95 0.407 −0.028 0.268 97 0.297 0.072
5 0.6 5.001 96 0.169 0.000 0.591 96 0.092 −0.016

100 0.1 69.914 99 0.407 −0.300 0.138 98 0.778 0.380
100 0.25 92.502 92 0.358 −0.075 0.276 91 0.349 0.103
100 0.6 101.664 96 0.122 0.016 0.598 96 0.101 −0.003
500 0.1 348.831 96 0.367 −0.302 0.143 95 0.727 0.426
500 0.25 472.884 94 0.293 −0.054 0.263 94 0.297 0.052
500 0.6 501.903 96 0.109 0.004 0.598 95 0.099 −0.003

Table 4: Simulation results using the Gamma(0.5, 0.00001) prior.

λ p λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

5 0.1 5.187 95 1.055 0.037 0.092 98 0.669 −0.084
5 0.25 5.175 96 0.689 0.035 0.249 95 0.334 −0.003
5 0.6 5.045 96 0.181 0.009 0.589 96 0.095 −0.017

100 0.1 89.843 99 0.702 −0.101 0.115 99 0.639 0.145
100 0.25 102.855 94 0.549 0.028 0.249 95 0.365 −0.002
100 0.6 102.726 96 0.152 0.027 0.592 96 0.111 −0.013
500 0.1 503.416 97 1.151 0.007 0.099 97 0.558 −0.007
500 0.25 567.462 92 0.972 0.135 0.221 90 0.366 −0.113
500 0.6 507.927 95 0.124 0.016 0.591 95 0.107 −0.015

From Tables 2, 3, and 4 it can be seen that the OB prior and Gamma priors
perform similarly in terms of inference at high and low levels of detection probability.
Notably, when p is small and priors for λ are concentrated at zero, as is the case
for all prior distributions considered here, λ̂ can be severely underestimated, as can
also be seen in Fig. 2, which displays the density plots of the posterior medians of λ
from the 100 runs for the OB prior. In addition, looking at Fig. 2, we can see that
large estimates of λ are also obtained when p is low, evident in the tails/ bi-modal
density of the distribution of posterior medians. This corroborates the results found
by Dennis et al. (2015) in a classical setting, who found that the maximum likelihood
estimates of population size can tend to infinity when detection probability is small.
Additionally, looking at Fig.2, it can also be seen that there are cases when λ is
estimated well. Hence, the results demonstrate that the distribution of posterior
medians obtained for λ has two or maybe even three modes, for the first time
demonstrating the substantial risk of underestimating λ when detection probability
is small.
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Figure 2: Density plots of the posterior medians of λ obtained using the OB prior.

3.2 Case 2 - Model Selection via WAIC

We consider four simulation scenarios:

• Scenario 1: Over-dispersion in the population size process; the true model is
the Discrete Weibull Binomial (DW-B) N-mixture model.

• Scenario 2: Over-dispersion in the detection process; the true model is the
Poisson Beta-Binomial (P-BB) N-mixture model.

• Scenario 3: Equi-dispersion in the population size process; the true model is
the Poisson Binomial (P-B) N-mixture model.

• Scenario 4: Under-dispersion in the population size process; the true model is
the DW-B N-mixture model.

In each scenario, 100 data sets were simulated from the true model and the class
of N-mixture models considered in this paper are fitted to each data set. Setting
M = 50, J = 5, data generating model parameters for each case are shown in Table
5. For cases 1, 3 and 4 data were simulated using p = (0.25, 0.6) to investigate model
selection when p is high and low. Similarly, for case 2, α = (3, 1) and β = (2, 3) were
chosen such that the mean detection probability is 0.25, 0.6 respectively. For scenar-
ios 1 and 4, data were generated with an expected population size of 4.325 and 9.564
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respectively. Parameters in the parameter space (0,∞) were assigned the OB prior,
and parameters in the parameter space (0, 1) were assigned a Uniform(0, 1) prior.
MCMC settings for each scenario are given in the Supplementary material. In each
scenario, we compute the cWAIC and mWAIC for each N-mixture model, report the
proportion of times each model was selected %WAIC, median ∆ WAIC and median
WAIC weights (ωWAIC) for both cWAIC and mWAIC. We use expected population
size (λ) and p to compare inference quality between models. For simplicity, we let
p represent the mean detection probability for BB models.

Table 5: Data generating model parameters for each model.

Scenario Model Parameters
1 DW-B q = 0.75, b = 0.95
2 P-BB λ = 5
3 P-B λ = 5
4 DW-B q = 0.9999, b = 4

3.2.1 Scenario 1- Over-dispersion in the population size process

As can be seen from Tables 6 and 7, when there was over-dispersion in the popula-
tion size process, cWAIC strongly favoured the more complicated model, the P-BB
model, which gave poor inference, instead of the true model. On the other hand,
mWAIC selected the correct model with higher probability and better inference.
The ability of mWAIC to select the true model was reduced with low p, but it
selected a similar model that accommodates overdispersion in the population size
process and produced good inference. Model inference results (Table 7) also agree
with the findings of Knape et al. (2018), that is, models that do not accommo-
date overdispersion in the population size process, when overdispersion is present,
underestimate expected population size.

Table 6: Scenario 1 model selection results when the true model is the DW-B N-
mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 0 25.133 203.843 0 0
DW-B 0 87 31.056 0 0 0.549
NB-B 0 8 30.497 0.419 0 0.419
P-BB 98 0 0 203.388 1 0

DW-BB 2 5 162.001 135.517 0 0
0.25 P-B 0 0 35.974 26.222 0 0

DW-B 0 29 41.345 0.205 0 0.421
NB-B 0 64 40.645 0 0 0.453
P-BB 100 1 0 16.553 0.999 0

DW-BB 0 6 16.938 2.909 0 0.102
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Table 7: Scenario 1 model inference results when the true model is the DW-B N-
mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 3.005 7 0.334 −0.305 0.668 36 0.126 0.114
DW-B 4.450 93 0.144 0.029 0.600 95 0.071 0.0003
NB-B 3.377 68 0.276 −0.220 0.603 95 0.070 0.006
P-BB 2.907 5 0.355 −0.328 0.683 18 0.145 0.138

DW-BB 4.963 62 0.217 0.147 0.633 84 0.075 0.055
0.25 P-B 2.005 1 0.537 −0.537 0.416 8 0.679 0.663

DW-B 4.356 90 0.312 0.007 0.254 96 0.278 0.016
NB-B 3.159 81 0.353 −0.269 0.267 95 0.275 0.067
P-BB 1.828 0 0.579 −0.577 0.440 2 0.777 0.762

DW-BB 3.335 76 0.256 −0.228 0.358 66 0.490 0.433

3.2.2 Scenario 2 - Over-dispersion in the detection process

Looking at Tables 8 and 9, it can be seen that the cWAIC again strongly favoured
the more complicated model, ie the DW-BB model, whilst mWAIC selected the
correct model at least 3 times more. In addition, models that did not accommodate
over-dispersion in the detection process over-estimated expected population size,
agreeing with Knape et al. (2018).

Table 8: Scenario 2 model selection results when the true model is the PB-B N-
mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 1 134.983 18.899 0 0
DW-B 0 0 132.142 12.376 0 0.002
NB-B 0 3 135.862 11.597 0 0.002
P-BB 26 83 2.742 0 0.202 0.643

DW-BB 74 13 0 1.600 0.798 0.291
0.25 P-B 0 0 154.726 38.776 0 0

DW-B 0 0 141.092 25.334 0 0
NB-B 0 0 139.177 20.955 0 0
P-BB 23 61 8.565 0 0.014 0.644

DW-BB 77 39 0 1.185 0.986 0.357
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Table 9: Scenario 2 model inference results when the true model is the P-BB N-
mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 7.644 6 0.655 0.528 0.388 1 0.367 −0.353
DW-B 9.603 0 1.044 0.921 0.337 0 0.436 −0.437
NB-B 8.687 2 0.930 0.737 0.342 0 0.440 −0.429
P-BB 4.953 96 0.086 −0.009 0.591 96 0.053 -0.015

DW-BB 5.852 25 0.208 0.170 0.593 96 0.051 −0.012
0.25 P-B 11.280 1 1.798 1.608 0.111 7 0.568 −0.556

DW-B 26.937 0 5.226 4.387 0.046 0 0.812 −0.814
NB-B 38.048 0 7.619 6.609 0.031 0 0.864 −0.874
P-BB 4.774 96 0.283 −0.045 0.263 96 0.228 0.051

DW-BB 5.563 86 0.220 0.113 0.273 96 0.206 0.093

3.2.3 Scenario 3: Equi-dispersion in the population size process

Tables 10 and 11 show cWAIC strongly favouring the more complicated model, the
DW-BB model which, compared to the true model, gave poorer inference while
mWAIC selected the true model more often, in favour of models that fit the data
best.

Table 10: Scenario 3 model selection results when the true model is the P-B N-
mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 63 28.854 0 0 0.360
DW-B 0 14 25.960 1.514 0 0.179
NB-B 0 17 29.521 0.360 0 0.320
P-BB 12 4 2.715 3.722 0.205 0.060

DW-BB 88 2 0 4.559 0.795 0.041
0.25 P-B 0 70 35.211 0 0 0.463

DW-B 0 9 31.197 2.201 0 0.171
NB-B 0 6 39.293 2.513 0 0.144
P-BB 2 5 13.148 4.392 0.001 0.059

DW-BB 98 10 0 4.034 0.998 0.006
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Table 11: Scenario 3 model inference results when the true model is the P-B N-
mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 5.036 94 0.095 0.007 0.593 93 0.062 −0.012
DW-B 5.944 33 0.212 0.188 0.599 93 0.059 0.000
NB-B 5.050 94 0.097 0.010 0.590 92 0.064 −0.016
P-BB 4.635 90 0.098 −0.073 0.640 82 0.082 0.067

DW-BB 5.525 61 0.133 0.104 0.647 72 0.090 0.080
0.25 P-B 4.786 96 0.197 −0.043 0.259 94 0.214 0.036

DW-B 5.317 94 0.195 0.063 0.282 92 0.260 0.128
NB-B 6.056 96 0.476 0.211 0.209 94 0.295 −0.165
P-BB 4.774 96 0.283 −0.045 0.262 96 0.228 0.051

DW-BB 4.145 74 0.189 −0.171 0.273 96 0.206 0.093

3.2.4 Scenario 4: Under-dispersion in the population size process

As shown in Tables 12 and 13, cWAIC once again favoured the more complicated
model instead of the true whereas mWAIC had a stronger preference for the true
model and a preference for models with good inference.

Table 12: Scenario 4 model selection results when the true model is the DW-B N-
mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 79 36.733 0 0 0.581
DW-B 0 16 33.225 2.103 0 0.216
NB-B 0 0 38.395 4.846 0 0.054
P-BB 6 2 8.202 4.560 0.016 0.062

DW-BB 94 3 0 5.111 0.984 0.045
0.25 P-B 0 84 42.759 0 0 0.618

DW-B 0 5 41.055 3.900 0 0.083
NB-B 0 5 45.617 2.958 0 0.155
P-BB 0 1 25.645 8.039 0 0.011

DW-BB 100 5 0 5.174 1 0.047
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Table 13: Scenario 4 model inference results when the true model is the DW-B
N-mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 8.807 77 0.112 −0.079 0.584 96 0.064 −0.025
DW-B 9.409 94 0.068 −0.016 0.600 96 0.058 0.001
NB-B 8.979 86 0.102 −0.061 0.578 92 0.073 −0.034
P-BB 7.795 31 0.185 −0.185 0.657 77 0.103 0.095

DW-BB 8.450 51 0.118 −0.116 0.673 57 0.125 0.122
0.25 P-B 9.084 94 0.271 −0.050 0.238 93 0.238 −0.047

DW-B 5.562 54 0.415 −0.418 0.305 86 0.311 0.219
NB-B 12.116 91 0.635 0.266 0.179 85 0.356 −0.285
P-BB 6.149 62 0.363 −0.357 0.349 75 0.477 0.397

DW-BB 5.747 7 0.401 −0.399 0.445 7 0.814 0.781

From this extensive simulation study, it can be seen that mWAIC selected the
correct model with a high probabiliy while cWAIC favoured the more complicated
model that often gave poor inference. Hence, model selection via WAIC for N-
mixture models should be performed using the marginal likelihood as cWAIC can
favour unnecessarily complicated models. Importantly, these scenarios demonstrate
that one can select between different N-mixture models with different model infer-
ences using mWAIC.

4 Case studies

We consider two case studies: yellow-bellied toads and Swiss great tits. We apply all
N-mixture models defined in Table 1 to both data, assuming the expected population
size to be constant across sites and detection probability for Binomial models to be
constant across sites and sampling occasions.

We fit models using the conditional likelihood (Equation (3)) and using MCMC
samples from the fitted model, we perform model selection using both cWAIC and
mWAIC. We choose the OB prior for continuous parameters with parameter space
(0,∞), whereas parameters with parameter space (0, 1) are assigned a Uniform(0, 1)
prior. Additionally, for the yellow-bellied toad, we investigate the prior sensitivity
of parameters with parameter space (0,∞) by using an approximation to the Jef-
freys prior, Gamma(0.001, 0.001). To assess model fit, we use posterior predictive
goodness of fit: we define τi =

∑J
j=1Ci,j and using MCMC samples, we simulate

counts, and hence τi, from our model and compare these to the observed data. A
model fits the data well if it produces similar τi values to the observed data. MCMC
settings used for both case studies are presented in the Supplementary material.
We assess convergence using Gelman and Rubin’s convergence diagnostic (Gelman
et al., 1992).

4.1 Yellow-bellied Toads

In 2018, from the end of May to the beginning of July, survey sampling of five
populations of the yellow-bellied toad (Bombina variegata) were sampled at 27 sites.
Each site was sampled 4 times during the period of study. Sites were represented
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by ponds or tanks located in a variety of habitats, mainly vineyards, and meadows,
in the Italian Alps.

With convergence achieved for all model parameters, it can be seen from Table
14 that all models considered produce different estimates of expected population size
and detection probability, highlighting the need to select the correct model to avoid
erroneous inference. Notably, both cWAIC and mWAIC were in agreement strongly
favoring the DW-BB model with cWAIC and mWAIC weights of 1.0 and the least
support to the P-B model with cWAIC and mWAIC weights of 0. Additionally, the
OB prior and the Jeffreys prior approximation (Gamma(0.001, 0.001)) give similar
model inference and WAIC values. Posterior predictive goodness of fit indicated all
models except the P-BB fitted the data well. Fig. 3 displays the GOF plot for the
DW-BB model and it can be seen that the true value is captured between the 5th
and 95th quantile for all sites for the DW-BB model. The P-BB model lack of fit is
evident in the large estimates of expected population size.

Table 14: Model results from analysing yellow-bellied toads data. Values within the
brackets represent the 95% posterior credible interval. For BB models, detection
probability represents mean detection probability.

Prior Model cWAIC mWAIC Detection Probability Expected population size p correlation.
OB

P-B 542.328 905.735 0.637(0.585, 0.686) 10.759(9.375, 12.218) -
DW-B 461.211 528.078 0.186(0.051, 0.360) 38.825(16.730, 145.290) -
NB-B 461.535 529.078 0.201(0.054, 0.371) 34.574(15.847, 130.823) -
P-BB 491.621 654.837 0.038(0.010, 0.085) 238.333(83.459, 653.727) 0.049(0.013, 0.109)

DW-BB 338.121 502.857 0.662(0.555, 0.743) 11.111(7.360, 18.410) 0.182(0.085, 0.289)

Gamma(0.001,0.001)
P-B 544.649 907.358 0.635(0.579, 0.688) 10.818(9.401, 12.341) -

DW-B 461.215 528.126 0.193(0.054, 0.365) 37.553(16.39, 137.21) -
NB-B 461.377 529.158 0.197(0.053, 0.366) 45.425(15.977, 132.666) -
P-BB 494.398 6547.392 0.018(0.003, 0.057) 672.845(122.529, 1951.403) 0.023(0.004, 0.073)

DW-BB 344.243 507.252 0.649(0.511, 0.738) 11.328(7.460, 19.100) 0.163(0.061, 0.280)
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Figure 3: GOF plot for the DWBB model. Red diamonds represent the observed
values and boxplots represent the simulated values.

4.2 Swiss great tits

The Swiss great tits data were collected in the Swiss breeding bird survey MHB
from 2013. The Swiss common bird breeding survey MHB is based on a sample
of 267 1-km2. Volunteers survey a quadrant-specific route, composed of 263 sites,
three times during the breeding season.

The Swiss great tits data was analysed by Royle (2015) where they highlighted
the good-fit-bad-prediction dilemma. Using covariates on both expected population
size and detection probability, they analysed this data set using three models: P-
B, ZIP-B and NB-B where they found that the best-fitted model (NB-B) via AIC
produced unrealistic estimates of population size. To come to this conclusion, they
performed residual diagnostic checks. They found that the residual diagnostic checks
for the P-B and ZIP-B models looked much better than those of the NB-B model,
despite the much better fit (GOF test) and predictive ability (measured by AIC)
of the NB-B model. Thus, we investigate this good-fit-bad-prediction dilemma in a
Bayesian framework using methods considered in this paper.

Convergence was achieved for all model parameters. From Table 15, we also
find that the NB-B model was favored by both cWAIC and mWAIC over the P-B
model, and the NB-B also produced large values of expected population size. To
evaluate model fit, we simulate data from the model and compute the 95% coverage
of τ1:M . For the P-B model, 33.34% of the sites captured the observed values while
for the NB-B model, 72.09% of the sites captured the observed values. Contrary to
Royle (2015), we consider BB models, and as can be seen from Table 15, the DW-BB
model was strongly supported as the best model amongst all models by both cWAIC
and mWAIC with weights of 1.0. The DW-BB model produced inference similar to
the P-B model but fitted the data well with 72.09% of the sites capturing the true
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value. This motivates the use of the DW-BB model as the good-fit-bad prediction
dilemma observed by Royle (2015) may be due to the violation of the independence
detection assumption in the Binomial detection process. Hence, our findings in both
case studies suggest that model selection and model fit are in agreement with model
selection favouring the model with the better fit.

Table 15: Model results from analysing Swiss tits data. Values within the brackets
represent the 95% credible interval. For BB models, detection probability represents
mean detection probability.

Model cWAIC mWAIC Detection Probability Expected population size p correlation
P-B 3689.985 6020.880 0.641(0.621, 0.661) 10.142(9.679, 10.616) -

DW-B 2968.517 3600.062 0.063(0.016, 0.132) 123.412(53.72, 460.90) -
NB-B 2954.897 3579.046 0.045(0.011, 0.103) 202.140(61.714, 624.950) -
P-BB 2663.500 4311.279 0.298(0.262, 0.335) 20.131(18.184, 22.558) 0.476(0.425, 0.526)

DW-BB 2606.225 3564.125 0.416(0.249, 0.560) 17.799(12.550, 30.460) 0.054(0.015, 0.116)

5 Discussion

As N-mixture models provide an attractive framework to gain inference on popula-
tion size by using only replicated counts from unmarked individuals, a large number
of studies have been carried out on N-mixture models in a classical setting, result-
ing in the identification of issues such as computational aspects of model fitting,
model selection, sensitivity to overdispersion, etc. However, to our knowledge, few
studies have been conducted in a Bayesian setting to investigate N-mixture models.
N-mixture models have also become easier to fit in a Bayesian framework with the
advent of software such as NIMBLE (de Valpine et al., 2017) and STAN (Carpen-
ter et al., 2017). Hence, in this paper, we considered fitting an extensive class of
N-mixture models in a Bayesian framework to corroborate and extend issues con-
cerning N-mixture models obtained in a classical framework.

Moreover, we have performed extensive simulation studies to investigate the
choice of prior distributions and model selection in N-mixture models. We imple-
mented a novel proper objective prior, the OB prior, and compared its performance
to approximations of the popular Jeffreys priors. We found these priors performed
similarly in terms of inference. Importantly, when p is small, we found that λ can
be considerably underestimated in addition to well-known cases of λ being overes-
timated, a finding we believe to be previously unknown. We further investigated
model selection via WAIC, considering both the conditional and marginal WAIC
criteria, cWAIC and mWAIC, respectively. We found that cWAIC can lead to
misleading results that favour the more complicated model while mWAIC selected
the true model with a high probability. Hence, mWAIC should be used instead of
cWAIC to select between competing N-mixture models.

Finally, we considered these methods in two case studies. We found the OB prior
and a Jeffreys prior approximation produced similar inference results and model
selection results as cWAIC and mWAIC were in agreement for the case study con-
sidered. In addition, contrary to the good-fit-bad-prediction highlighted by Royle
(2004a), we find model selection via WAIC to be in agreement with the model good-
ness of fit when the DW-BB model is considered in the model list. Future work
can be focused on developing Bayesian goodness of fit measures to check model
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assumptions of N-mixture models.
Notably, Vehtari et al. (2017) highlighted checks that can be done to investigate

the stability of WAIC. Ariyo et al. (2022) highlighted WAIC sensitivity to the choice
of prior in Bayesian linear mixed models for longitudinal data. Thus, a possible
avenue for future work can be to investigate the stability of cWAIC and mWAIC
and WAIC sensitivity to the choice of prior in N-mixture models.

Overall, N-mixture models are a powerful tool for estimating population size.
However, like any tool, care must be taken. This work highlights that in a Bayesian
framework, care needs to be taken with the choice of prior distributions and advo-
cates the use of mWAIC to select between models.

The identifiability of N-mixture models in a Bayesian framework is another im-
portant avenue for future work. Non-identifiability is the scenario where models can
be fitted to data without all model parameters being estimable. Identifiability issues
have been found with N-mixture models in a classical setting. Dennis et al. (2015)
showed that when the probability of detection and the number of sampling occasions
are small, infinite estimates of population size can be obtained. Barker et al. (2018)
highlighted that compared to capture-recapture surveys, the loss of individual in-
formation resulting from count surveys is critical and causes problems in estimated
parameters in Binomial N-mixture models. Kéry (2018) responded to some of these
problems of parameter identifiability in a classical framework and called for more
research to be done on the parameter identifiability of N-mixture models.

Thus, we investigated parameter identifiability of the set of N-mixture models
considered in this thesis using data cloning (DC) (Lele et al., 2007). DC is a statis-
tical computing method introduced by Lele et al. (2007). Cloning the data K times,
DC takes advantage of the computational simplicity of the MCMC algorithms that
are used in a Bayesian framework to provide maximum likelihood point estimates
and their standard errors for complex hierarchical models. Importantly, Lele et al.
(2010) proved that for estimable parameters in the model, the scale posterior vari-
ance should be approximately 1/K. If parameters do not follow this trend then
parameters are non-identifiable. This is primarily a method of detecting extrinsic
parameter identifiability, that is, this method is used to detect parameter identifia-
bility for a specific data set.

Consequently, an important component in using DC to investigate parameter
identifiability is the choice of K. Ponciano et al. (2012) showed that if parameters
are weakly estimable, a large number of clones is needed as the parameters mean
and variance may increase at the beginning but as the number of clones increases,
the variance will converge to zero. Parameters that are weakly estimable produce
likelihoods that are relatively flat resulting in parameter estimation with large vari-
ance.

To determine whether DC can be used to assess parameter identifiability in the P-
B N-mixture model we compare DC to the covariance diagnostic proposed by Dennis
et al. (2015). We simulate data with p = 0.1, λ = 5,M = 20, J = 3 and select data
sets such that the P-B model is identifiable for 10 data sets (“identifiable cases”) and
non-identifiable for 10 data sets (“non-identifiable case”) according to the covariance
diagnostic. At the same time, we also investigate the prior effects on the performance
of DC. Three types of priors were investigated: the OB prior, an approximation to
Jeffreys prior (Gamma(0.5,0.00001)), and an informative prior (Gamma(5,1)). For
p, a Uniform(0,1) prior was assigned. We focus on the identifiability of λ and set
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K = 10. For K = 1, we run 505000 MCMC iterations with a burn-in of 40000 and
thinning of 5 for 2 chains. For K ≥ 1, we run 705000 MCMC iterations with a
burn-in of 50000 and thinning of 5 for 2 chains.

For the “identifiable cases”, DC indicated the identifiability of λ in all data sets.
Fig. 4 displays 4 such DC plots indicating parameter identifiability. For the “non-
identifiable cases”, DC indicated the non-identifiability of λ in all data sets. Fig. 5
displays DC plots for 4 data sets indicating non-identifiability. In this case, λ was
severely overestimated giving unrealistic estimates of population size. Additionally,
from these Figs., it can be seen that DC results are similar for the different types of
prior considered for both “identifiable cases” and “non-identifiable cases”, indicating
DC is not sensitive to prior specification in this scenario.
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Figure 4: Data cloning identifiability diagnostic plots for 4 “identifiable cases”.
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Figure 5: Data cloning identifiability diagnostic plots for 4 “ non-identifiable cases”.

We further investigated the identifiability of over-dispersion N-mixture models
using DC. We perform 10 simulation runs for each N-mixture model: DW-B, NB-B,
P-BB and DW-BB for p = 0.1, λ = 20, M = 20, J = 3, K = 20. The OB prior was
assigned to parameters in the parameter space (0,∞), and a Uniform(0, 1) prior was
assigned to parameters in the parameter space (0, 1).

For the NB-B model, 8/10 datasets DC indicated non-identifiability issues for
the size parameter of the NB distribution. These estimates of the size parameter
were unrealistic large estimates but estimates of expected population size and p
were realistic indicating identifiability. For the DW-B model, 10/10 datasets DC in-
dicated parameter identifiability with realistic inference. For the P-BB model, 8/10
datasets DC indicated the identifiability of all parameters. Two datasets indicated
the non-identifiability of λ and β, where these were over-estimated and the mean
detection probability and ρ were underestimated suggesting non-identifiability. For
the DW-BB model, 6/10 datasets DC indicated the identifiability of all parameters.
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In the other 4 datasets, there were identifiability issues for β as it was severely under-
estimated. However, there were no obvious signs of non-identifiability as inference
on mean detection probability and expected population size was not unrealistic.

All in all, these results show that DC can be a valuable tool for investigating
the identifiability of the P-B N-mixture model in a Bayesian setting. However, for
over-dispersion N-mixture models, parameter identifiability via DC was not straight-
forward as in this case DC can indicate that either one or both parameters of the
distribution for N are non-identifiable, but inference on N itself is reliable, suggest-
ing that perhaps there exist several combinations of values or range of values for
these parameters that yield similar inference for N . Dennis et al. (2015) also pro-
posed two diagnostics to identify identifiability issues in the NB-B N-mixture model
but these were found to be unreliable when used singly or in combination. Hence,
future work is needed to investigate parameter identifiability in N-mixture models.
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