EVIDENTIAL PROBABILITY AND
OBJECTIVE BAYESIAN EPISTEMOLOGY

Gregory Wheeler and Jon Williamson

1 INTRODUCTION

Evidential probability (EP), developed by Henry Kyburg, offers an account of the
impact of statistical evidence on single-case probability. According to this theory,
observed frequencies of repeatable outcomes determine a probability interval that
can be associated with a proposition. After giving a comprehensive introduction
to EP in §2, in §3 we describe a recent variant of this approach, second-order
evidential probability (20EP). This variant, introduced in [Haenni et al., 2010],
interprets a probability interval of EP as bounds on the sharp probability of the
corresponding proposition. In turn, this sharp probability can itself be interpreted
as the degree to which one ought to believe the proposition in question.

At this stage we introduce objective Bayesian epistemology (OBE), a theory
of how evidence helps determine appropriate degrees of belief (§4). OBE might
be thought of as a rival to the evidential probability approaches. However, we
show in §5 that they can be viewed as complimentary: one can use the rules of
EP to narrow down the degree to which one should believe a proposition to an
interval, and then use the rules of OBE to help determine an appropriate degree
of belief from within this interval. Hence bridges can be built between evidential
probability and objective Bayesian epistemology.

2 EVIDENTIAL PROBABILITY

2.1  Motivation

Rudolf Carnap [Carnap, 1962] drew a distinction between probability;, which
concerned rational degrees of belief, and probabilitys, which concerned statistical
regularities. Although he claimed that both notions of probability were crucial to
scientific inference, Carnap practically ignored probabilitys in the development of
his systems of inductive logic. Evidential probability (EP) [Kyburg, 1961; Kyburg
and Teng, 2001], by contrast, is a theory that gives primacy to probabilitys, and
Kyburg’s philosophical program was an uncompromising approach to see how far
he could go with relative frequencies. Whereas Bayesianism springs from the view
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that probability; is all the probability needed for scientific inference, EP arose
from the view that probabilitys is all that we really have.

The theory of evidential probability is motivated by two basic ideas: probabil-
ity assessments should be based upon relative frequencies, to the extent that we
know them, and the assignment of probability to specific individuals should be
determined by everything that is known about that individual. Evidential proba-
bility is conditional probability in the sense that the probability of a sentence x is
evaluated given a set of sentences I's. But the evidential probability of x given I's,
written Prob(x,I's), is a meta-linguistic operation similar in kind to the relation
of provability within deductive systems.

The semantics governing the operator Prob(-,-) is markedly dissimilar to ax-
iomatic theories of probability that take conditional probability as primitive, such
as the system developed by Lester Dubbins [Dubbins, 1975; Arl6-Costa and Parikh,
2005], and it also resists reduction to linear [de Finetti, 1974] as well as lower previ-
sions [Walley, 1991]. One difference between EP and the first two theories is that
EP is interval-valued rather than point-valued, because the relative frequencies
that underpin assignment of evidential probability are typically incomplete and
approximate. But more generally, EP assignments may violate coherence. For
example, suppose that x and ¢ are sentences in the object language of evidential
probability. The evidential probability of x A ¢ given I's might fail to be less than
or equal to the evidential probability that x given I's.! A point to stress from the
start is that evidential probability is a logic of statistical probability statements,
and there is nothing in the activity of observing and recording statistical regular-
ities that guarantees that a set of statistical probability statements will comport
to the axioms of probability. So, EP is neither a species of Carnapian logical
probability nor a kind of Bayesian probabilistic logic.2:® EP is instead a logic for
approximate reasoning, thus it is more similar in kind to the theory of rough sets
[Pawlak, 1991] and to systems of fuzzy logic [Dubois and Prade, 1980] than to
probabilistic logic.

The operator Prob(-,-) takes as arguments a sentence x in the first coordinate
and a set of statements I's in the second. The statements in I's represent a knowl-
edge base, which includes categorical statements as well as statistical generalities.
Theorems of logic and mathematics are examples of categorical statements, but so
too are contingent generalities. One example of a contingent categorical statement
is the ideal gas law. EP views the propositions “2 4+ 2 = 4” and “PV = nRT”

ISpecifically, the lower bound of Prob(x A, 's) may be strictly greater than the lower bound
of Prob(x, I's).

2See the essays by Levi and by Seidenfeld in [Harper and Wheeler, 2007] for a discussion of the
sharp differences between EP and Bayesian approaches, particularly on the issue of conditional-
ization. A point sometimes overlooked by critics is that there are different systems of evidential
probability corresponding to different conditions we assume to hold. Results pertaining to a
qualitative representation of EP inference, for instance, assume that I's is consistent. A version
of conditionalization holds in EP given that there is specific statistical statement pertaining to
the relevant joint distribution. See [Kyburg, 2007] and [Teng, 2007].

3EP does inherit some notions from Keynes’s [Keynes, 1921], however, including that proba-
bilities are interval-valued and not necessarily comparable.
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within a chemistry knowledge base as indistinguishable analytic truths that are
built into a particular language adopted for handling statistical statements to do
with gasses. In light of EP’s expansive view of analyticity, the theory represents
all categorical statements as universally quantified sentences within a guarded
fragment of first-order logic [Andréka et al., 1998].4

Statistical generalities within I's, by contrast, are viewed as direct inference
statements and are represented by syntax that is unique to evidential probability.
Direct inference, recall, is the probability assigned a target subclass given known
frequency information about a reference population, and is often contrasted to
indirect inference, which is the assignment of probability to a population given
observed frequencies in a sample. Kyburg’s ingenious idea was to solve the prob-
lem of indirect inference by viewing it as a form of direct inference. Since the
philosophical problems concerning direct inference are much less contentious than
those raised by indirect inference, the unusual properties and behavior of evidential
probability should be weighed against this achievement [Levi, 2007].

Direct inference statements are statements that record the observed frequency
of items satisfying a specified reference class that also satisfy a particular target
class, and take the form of

NT(7(Z), p(Z), |1, ul)-

This schematic statement says that given a sequence of propositional variables ¥
that satisfies the reference class predicate p, the proportion of p that also satisfies
the target class predicate 7 is between [ and wu.

Syntactically, ‘7(Z), p(Z), [I, u]’ is an open formula schema, where ‘7(-)” and ‘p(-)’
are replaced by open first-order formulas, ‘z’ is replaced by a sequence of propo-
sitional variables, and ‘[l,u]” is replaced by a specific sub-interval of [0,1]. The
binding operator ‘%’ is similar to the ordinary binding operators (V,3) of first-
order logic, except that ‘%’ is a 3-place binding operator over the propositional
variables appearing the target formula 7(Z) and the reference formula p(Z), and
binding those formulas to an interval.® The language £ of evidential probabil-
ity then is a guarded first-order language augmented to include direct inference
statements. There are additional formation rules for direct inference statements
that are designed to block spurious inference, but we shall pass over these details
of the theory.® An example of a direct inference statement that might appear in
F5 is

%x(B(x), A(x),[.71, .83]),

which expresses that the proportion of As that are also Bs lies between 0.71 and
0.83.

As for semantics, a model M of L is a pair, (D,Z), where D is a two-sorted
domain consisting of mathematical objects, D,,, and a finite set of empirical ob-
jects, D.. EP assumes that there is a first giraffe and a last carbon molecule. Z is

4A guarded fragment of first-order logic is a decidable fragment of first-order logic.
5Hereafter we relax notation and simply use an arbitrary variable ‘@’ for ‘@’
6See [Kyburg and Teng, 2001].
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an interpretation function that is the union of two partial functions, one defined
on D,, and the other on D,. Otherwise M behaves like a first-order model: the
interpretation function Z maps (empirical/mathematical) terms into the (empir-
ical/mathematical) elements of D, monadic predicates into subsets of D, n-arity
relation symbols into D", and so forth. Variable assignments also behave as one
would expect, with the only difference being the procedure for assigning truth to
direct inference statements.

The basic idea behind the semantics for direct inference statements is that the
statistical quantifier ‘%’ ranges over the finite empirical domain D, not the field
terms [, u that denote real numbers in D,,,. This means that the only free variables
in a direct inference statement range over a finite domain, which will allow us to
look at proportions of models in which a sentence is true. A satisfaction set of an
open formula ¢ whose only free n variables are empirical in the subset of D™ that
satisfies (.

A direct inference statement %z (7(x), p(z), [I,u]) is true in M under variable
assignment v iff the cardinality of the satisfaction sets for the open formula p
under v is greater than 0 and the ratio of the cardinality of satisfaction sets for
T(x*) A p(x*) over the cardinality of the satisfaction sets for p(z) (under v) is in
the closed interval [I, u], where all variables of x occur in p, all variables of T occur
in p, and z* is the sequence of variables free in p but not bound by %z [Kyburg
and Teng, 2001].

The operator Prob(-,-) then provides a semantics for a nonmonotonic conse-
quence operator [Wheeler, 2004; Kyburg et al., 2007]. The structural properties
enjoyed by this consequence operator are as follows:”

Properties of EP Entailment: Let = denote classical consequence and let
= denote classical logical equivalence. Whenever u A&, v A€ are sentences of LP,

Right Weakening: if p kv and v |= € then p Rk €.

Left Classical Equivalence: if u kv and p = ¢ then £ Rk v.

(KTW) Cautious Monotony: if ;1 = v and p k& then p A€ R v.
(KTW) Premise Disjunction: if y = v and £ kv then p V¢ R v.
(KTW) Conclusion Conjunction: if y |=v and p k€ then p kv AE.

As an aside, this qualitative EP-entailment relation presents challenges in handling
disjunction in the premises since the KTW disjunction property admits a novel re-
versal effect similar to, but distinct from, Simpson’s paradox [Kyburg et al., 2007;
Wheeler, 2007]. This raises a question over how best to axiomatize EP. One ap-
proach, which is followed by [Hawthorne and Makinson, 2007] and considered in

"Note that these properties are similar to, but strictly weaker than, the properties of the class
of cumulative consequence relations specified by System P [Kraus et al., 1990]. To yield the
axioms of System P, replace the nonmonotonic consequence operator |~ for = in the premise
position of [And*], [Or*], and [Cautious Monotonicity*].
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[Kyburg et al., 2007], is to replace Boolean disjunction by ‘exclusive-or’. While
this route ensures nice properties for ke, it does so at the expense of introducing
a dubious connective into the object language that is neither associative nor com-
positional.® Another approach explored in [Kyburg et al., 2007] is a weakened
disjunction axiom (KTW Or) that yields a sub-System P nonmonotonic logic and
preserves the standard properties of the positive Boolean connectives.

Now that we have a picture of what EP is, we turn to consider the inferential
behavior of the theory. We propose to do this with a simple ball-draw experiment
before considering the specifics of the theory in more detail in the next section.

EXAMPLE 1. Suppose the proportion of white balls (W) in an urn (U) is known
to be within [.33,4], and that ball ¢ is drawn from U. These facts are represented
in I's by the sentences, %z (W (z),U(x),[.33,.4]) and U(t).

(7) If these two statements are all that we know about ¢, i.e., they are the only
statements in I's pertaining to ¢, then Prob(W(t),T's) = [.33, .4].

(i) Suppose additionally that the proportion of plastic balls (P) that are white
is observed to be between [.31,.36], ¢ is plastic, and that every plastic ball is a
white ball. That means that %z (P(x),U(z),[.31,.36]), P(t), and Vx.P(x) —
W (z) are added to I's as well. Then there is conflicting statistical knowledge
about £, since either:

1. the probability that ball ¢ is white is between [.33,.4], by reason of
Yox(W(x),U(x),[.33,.4]), or

2. the probability that ball ¢ is white is between [.31,.36], by reason of
Yox(W (x), P(x),[.31,.36]),

may apply. There are several ways that statistical statements may conflict
and there are rules for handling each type, which we will discuss in the next
section. But in this particular case, because it is known that the class of
plastic balls is more specific than the class of balls in U and we have statistics
for the proportion of plastic balls that are also white balls, the statistical
statement in (2) dominates the statement in (1). So, the probability that ¢
is white is in [.31,.36].

(iii) Adapting an example from [Kyburg and Teng, 2001, 216], suppose U is
partitioned into three cells, uq, us, and ug, and that the following compound
experiment is performed. First, a cell of U is selected at random. Then a
ball is drawn at random from that cell. To simplify matters, suppose that
there are 25 balls in U and 9 are white such that 3 of 5 balls from wu; are
white, but only 3 of 10 balls in us and 3 of 10 in ug are white. The following
table summarizes this information.

8Example: ‘A xor B xor C’ is true if A, B,C are; and ‘(A xor B) xor C” is not equivalent to
‘A xor (B xor C)’ when A is false but B and C both true.
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Table 1. Compound Experiment
Uy Uz Uug
w13 3 3|9
Wl 2 7 7/]16
5 10 10| 25

We are interested in the probability that t is white, but we have a conflict.
Given these over all precise values, we would have Prob(W(t),I's) = 2.
However, since we know that ¢ was selected by performing this compound
experiment, then we also have the conflicting direct inference statement
%o, y(W*(z,y), U*(x,y), [ 4, .4]), where U* is the set of compound two stage
experiments, and W* is the set of outcomes in which the ball selected is
white.? We should prefer the statistics from the compound experiment be-
cause they are richer in information. So, the probability that t is white is
4.

(iv) Finally, if there happens to be no statistical knowledge in I's pertaining to
t, then we would be completely ignorant of the probability that ¢ is white.
So in the case of total ignorance, Prob(W(t),T's) = [0, 1].

We now turn to a more detailed account of how EP calculates probabilities.

2.2 Calculating Fvidential Probability

In practice an individual may belong to several reference classes with known statis-
tics. Selecting the appropriate statistical distribution among the class of potential
probability statements is the problem of the reference class. The task of assigning
evidential probability to a statement x relative to a set of evidential certainties
relies upon a procedure for eliminating excess candidates from the set of potential
candidates. This procedure is described in terms of the following definitions.

Potential Probability Statement: A potential probability statement for y
with respect to T's is a tuple (¢, 7(¢), p(t), [, u]), such that instances of x < 7(t),
p(t), and %z (r(x), p(x), [I,u]) are each in T';.

Given x, there are possibly many target statements of form 7(¢) in T's that have
the same truth value as y. If it is known that individual ¢ satisfies p, and known
that between .7 and .8 of p’s are also 7’s, then (¢,7(t), p(t),[.7,.8]) represents a
potential probability statement for y based on the knowledge base I's. Our focus

9T s should also include the categorical statements Va, y(U*{x,y) — W (y)), which says that
the second stage of U concerns the proportion of balls that are white, and three statements of
the form "W*(u,t) « W(t)', where p is replaced by wui,us2,us, respectively. This statement
tells us that everything that’s true of W* is true of W, which is what ensures that this conflict
is detected.
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will be on the statistical statements %z(7(x), p(x), [l,u]) in T's that are the basis
for each potential probability statement.

Selecting the appropriate probability interval for x from the set of potential
probability statements reduces to identifying and resolving conflicts among the
statistical statements that are the basis for each potential probability statement.

Conflict: Two intervals [I,u] and [I,u'] conflict iff neither [I,u] C [I',u'] nor
[l,u] D [I',u']. Two statistical statements conflict iff their intervals conflict.

Note that conflicting intervals may be disjoint or intersect. For technical reasons
an interval is said to conflict with itself.

Cover: Let X be a set of intervals. An interval [I,u] covers X iff for every
[,u] € X, <U"and v’ < wu. A cover [l,u] of X is the smallest cover, Cov(X), iff
for all covers [I*,u*] of X, I* <! and u < u*.

Difference Set: (i) Let X be a non-empty set of intervals and P(X) be the
powerset of X. A non-empty Y € P(X) is a difference set of X iff Y includes
every x € X that conflicts with some y € Y. (i) Let X be the set of intervals
associated with a set I' of statistical statements, and Y be the set of intervals
associated with a set A of statistical statements. A is a difference set to I iff YV is
closed under difference with respect to X.

EXAMPLE 2. An example might help. Let X be the set of intervals [.30,.40],
[.35,.45], [.325,.475], [.50,.55], [.30,.70], [.20,.60], [.10,.90]. There are three sets
closed under difference with respect to X:

(i) {[.30,.40],[.35, .45],[.325, .475], .50, .55]},
(i1) {[.30,.70],[.20,.60]},
(iii) {[.10,.90]}.

The intuitive idea behind a difference set is to eliminate intervals from a set that
are broad enough to include all other intervals in that set. The interval [.10,.90] is
the broadest interval in X. So, it only appears as a singleton difference set and is
not included in any other difference set of X. It is not necessary that all intervals
in a difference set X be pairwise conflicting intervals. Difference sets identify the
set of all possible conflicts for each potential probability statement in order to find
that conflicting set with the shortest cover.

Minimal Cover Under Difference: (i) Let X be a non-empty set of intervals
and Y = {Y1,...,Y,} the set of all difference sets of X. The minimal cover under
difference of X is the smallest cover of the elements of ), i.e., the shortest cover
in {Cov(Y1),...,Cov(Yy,)}.

(#i) Let X be the set of intervals associated with a set T" of statistical statements,
and Y be the set of all difference sets of X associated with a set A of statistical
statements. Then the minimal cover under difference of I' is the minimal cover
under difference of X.

EP resolves conflicting statistical data concerning x by applying two principles
to the set of potential probability assignments, Richness and Specificity, to yield
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a class of relevant statements. The (controversial) principle of Strength is then
applied to this set of relevant statistical statements, yielding a unique probability
interval for y. For discussion of these principles, see [Teng, 2007].

We illustrate these principles in terms of a pair (¢, ) of conflicting statistical
statements for x, and represent their respective reference formulas by p, and py.
The probability interval assigned to x is the shortest cover of the relevant statistics
remaining after applying these principles.

1. [Richness] If ¢ and ¢ conflict and ¢ is based on a marginal distribution
while ¢ is based on the full joint distribution, eliminate 9.

2. [Specificity] If ¢ and 9 both survive the principle of richness, and if p, C py,
then eliminate (7, py, [I,u]) from all difference sets.

The principle of specificity says that if it is known that the reference class p, is
included in the reference class py, then eliminate the statement ¢. The statisti-
cal statements that survive the sequential application of the principle of richness
followed by the principle of specificity are called relevant statistics.

3. [Strength] Let T'%S be the set of relevant statistical statements for x with
respect to I's, and let the set {A;, ..., A, } be the set of difference sets of I'*9.
The principle of strength is the choosing of the minimal cover under difference
of T i.e., the selection of the shortest cover in {Cov(A;),...,Cov(A,)}.
The evidential probability of x is the minimal cover under difference of TS,
We may define T'., the set of practical certainties, in terms of a body of
evidence I's:

Te={x:3Lu (Prob(—=x,Ts) =[l,ul Au<e€)},
or alternatively,
Ie={x:3LuProb(x,Is)=[LulAl>1—¢)}.

The set T'¢ is the set of statements that the evidence I's; warrants accepting; we
say a sentence x is e-accepted if x € I'c. Thus we may add to our knowledge base
statements that are nonmonotonic consequences of I's with respect to a threshold
point of acceptance.

Finally, we may view the evidence I's to provide real-valued bounds on ‘degrees
of belief’ owing to the logical structure of sentences accepted into I's. However,
the probability interval [I, u] associated with y does not specify a range of equally
rational degrees of belief between [ and u: the interval [, u] itself is not a quantity,
only [ and u are quantities, which are used to specify bounds. On this view, no
degree of belief within [I,u] is defensible, which is in marked contrast to the view
offered by Objective Bayesianism.
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3 SECOND-ORDER EVIDENTIAL PROBABILITY

3.1  Motivation

Second-order evidential probability—developed in [Haenni et al., 2010]—goes be-
yond Kyburg’s evidential probability in two ways. First, it treats an EP interval as
bounds on sharp probability. Second, it disentangles reasoning under uncertainty
from questions of acceptance and rejection. Here we explain both moves in more
detail.

3.1.0.1 Bounds on Degrees of Belief. Kyburg maintained that one can
interpret an evidential probability interval for proposition x as providing bounds
on the degree to which an agent should believe y, but he had reservations about
this move:

Should we speak of partial beliefs as ‘degrees of belief’? Although
probabilities are intervals, we could still do so. Or we could say that
any ‘degree of belief’ satisfying the probability bounds was ‘rational’.
But what would be the point of doing so? We agree with Ramsey that
logic cannot determine a real-valued a priori degree of belief in pulling
a black ball from an urn. This seems a case where degrees of belief are
not appropriate. No particular degree of belief is defensible. We deny
that there are any appropriate a priori degrees of belief, though there
is a fine a priori probability: [0,1]. There are real valued bounds on
degrees of belief, determined by the logical structure of our evidence.
[Kyburg, 2003, p. 147]

Kyburg is making the following points here. Evidence rarely determines a unique
value for an agent’s degree of belief—rather, it narrows down rational belief to
an interval. One can view this interval as providing bounds on rational degree of
belief, but since evidence can not be used to justify the choice of one point over
another in this interval, there seems to be little reason to talk of the individual
points and one can instead simply treat the interval itself as a partial belief.

This view fits very well with the interpretation of evidential probability as some
kind of measure of weight of evidence. (And evidential probability provides a
natural measure of weight of evidence: the narrower the interval, the weightier the
evidence.) Hence if evidence only narrows down probability to an interval, then
there does indeed seem to be little need to talk of anything but the interval when
measuring features of the evidence. But the view does not address how to fix a
sharp degree of belief—intentionally so, since Kyburg’s program was designed in
part to show us how far one can go with relative frequency information alone.
Even so, we may ask whether there is a way to use the resources of evidential
probability to fix sharp degrees of belief. In other words, we might return to
Carnap’s original distinction between probability; and probability, and ask how
a theory of the latter can be used to constrain the former. If we want to talk
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Step 1  Evidence {P(p) € [ly,uyl}
Step 2 Acceptance I's={¢:l,>1-46}
Step 3 Uncertain reasoning {P(x) € [ly,uy]}
Step 4  Acceptance I.={x:,>1—¢}

Figure 1. The structure of (first-order) EP inferences.

not only of the quality of our evidence but also of our disposition to act on that
evidence, then it would appear that we need a richer language than that provided
by EP alone: while evidence—and hence EP—cannot provide grounds to prefer
one point in the interval over another as one’s degree of belief, there may be other,
non-evidential grounds for some such preference, and formalising this move would
require going beyond EP.

Reconciling EP with a Bayesian approach has been considered to be highly
problematic [Levi, 1977; Levi, 1980; Seidenfeld, 2007], and was vigorously resisted
by Kyburg throughout his life. On the other hand, Kyburg’s own search for an
EP-compatible decision theory was rather limited [Kyburg, 1990]. It is natural
then to explore how to modify evidential probability in order that it might han-
dle point-valued degrees of belief and thereby fit with Bayesian decision theory.
Accordingly second-order EP departs from Kyburg’s EP by viewing evidential
probability intervals as bounds on rational degree of belief, P(x) € Prob(x, I's).
In §5 we will go further still by viewing the results of EP as feeding into objective
Bayesian epistemology.

3.1.0.2 Acceptance and Rejection. If we allow ourselves the language of
point-valued degrees of belief, (first-order) EP can be seen to work like this. An
agent has evidence which consists of some propositions ¢1, . .., ¢, and information
about their risk levels. He then accepts those propositions whose risk levels are
below the agent’s threshold d. This leaves him with the evidential certainties,
T's = {pi : P(p;) >1—6}. From I's the agent infers propositions ¢ of the
form P(x) € [l,u]. In turn, from these propositions the agent infers the practical
certainties ' = {x : {>1 — ¢}. This sequence of steps is depicted in Figure 1.

There are two modes of reasoning that are intermeshed here: on the one hand
the agent is using evidence to reason under uncertainty about the conclusion propo-
sition 7, and on the other he is deciding which propositions to accept and reject.
The acceptance mode appears in two places: deciding which evidential proposi-
tions to accept and deciding whether to accept the proposition x to which the
conclusion 1 refers.

With second-order EP, on the other hand, acceptance is delayed until all rea-
soning under uncertainty is completed. Then we treat acceptance as a decision
problem requiring a decision-theoretic solution—e.g., accept those propositions
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Step 1  Evidence O = {P(p) € [ly,uy]}
Step 2 Uncertain reasoning W = {P(x) € [ly,uy]}
Step 3 Acceptance {x : decision-theoretically optimal}

Figure 2. The structure of 20EP inferences.

whose acceptance maximises expected utility.'? Coupling this solution with the use
of point-valued probabilities we have second-order evidential probability (20EP),
whose inferential steps are represented in Figure 2.

There are two considerations that motivate this more strict separation of un-
certain reasoning and acceptance.

First, such a separation allows one to chain inferences—something which is not
possible in 10EP. By ‘chaining inferences’ we mean that the results of step 2 of
20EP can be treated as an input for a new round of uncertain reasoning, to be
recombined with evidence and to yield further inferences. Only once the chain
of uncertain reasoning is complete will the acceptance phase kick in. Chaining of
inferences is explained in further detail in §3.2.

Second, such a separation allows one to keep track of the uncertainties that
attach to the evidence. To each item of evidence ¢ attaches an interval [l,,, u]
representing the risk or reliability of that evidence. In 10EP, step 2 ensures that
one works just with those propositions ¢ whose risk levels meet the threshold of
acceptance. But in 20EP there is no acceptance phase before uncertain reasoning is
initiated, so one works with the entirety of the evidence, including the risk intervals
themselves. While the use of this extra information makes inference rather more
complicated, it also makes inference more accurate since the extra information can
matter—the results of 20EP can differ from the results of 10EP.

We adopt a decision-theoretic account of acceptance for the following reason. In
10EP, each act of acceptance uniformly accepts those propositions whose associ-
ated risk is less than some fixed threshold: ¢ in step 2 and ¢ in step 4. (This allows
statements to detach from their risk levels and play a role as logical constraints
in inference.) But in practice thresholds of acceptance depend not so much on
the step in the chain of reasoning as on the proposition concerned, and, indeed,
the whole inferential set-up. To take a favourite example of Kyburg’s, consider
a lottery. The threshold of acceptance of the proposition the lottery ticket that
the seller is offering me will lose may be higher than that of the coin with a bias
in favour of heads that I am about to toss will land heads and lower than that
of the moon is made of blue cheese. This is because nothing may hang on the

10Note that maximising expected utility is not straightforward in this case since bounds on
probabilities, rather than the probabilities themselves, are input into the decision problem. EP-
calibrated objective Bayesianism (§5) goes a step further by determining point-valued probabil-
ities from these bounds, thereby making maximisation of expected utility straightforward. See
[Williamson, 2009] for more on the combining objective Bayesianism with a decision-theoretic
account of acceptance.
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coin toss (in which case a 60% bias in favour of heads may be quite adequate
for acceptance), while rather a lot hangs on accepting that the moon is made of
blue cheese—many other propositions that I have hitherto granted will have to be
revisited if I were to accept this proposition. Moreover, if I am going to use the
judgement to decide whether to buy a ticket then the threshold of acceptance of
the lottery proposition should plausibly depend on the extent to which I value the
prize. Given these considerations, acceptance of a proposition can fruitfully be
viewed as a decision problem, depending on the decision set-up including associ-
ated utilities [Williamson, 2009]. Again, while this is more complicated than the
10EP solution of modelling acceptance using a fixed threshold, the subtleties of a
full-blown decision-theoretic account can matter to the resulting inferences.

3.2 Calculating Second-order EP

In this section we will be concerned with developing some machinery to perform
uncertain reasoning in second-order evidential probability (step 2 in Figure 2). See
[Haenni et al., 2010] for further details of this approach.

3.2.1 Entailment

Let £* be a propositional language whose propositional variables are of the form
©l*P for atomic propositions ¢ € L£.'' Here £ is the language of (first-order)
EP extended to include statements of the form P(y) € [, u], and, for proposition
@ of L, ol is short for P(¢) € [a,b]. Hence in £ we can express propositions
about higher-order probabilities, e.g., P(x) € [I,u]l*? which is short for P(P(x) €
[1,u]) € [a,b]. We write ¢ as an abbreviation of (l®.

For p,v € LF write ups,v if v deductively follows from p by appealing to the
axioms of probability and the following EP-motivated axioms:

Al: Given pi,..., ¢k if Prob(x, {®1,...,¢n}) = [[,u] is derivable by (first-order)
EP then infer ¢!, where ¢ € L is the statement P(x) € [, u].

A2: Given ! then infer x!"*), where ¢ € £ is the statement P(x) € [I,u].

Axiom Al ensures that EP inferences carry over to 20EP, while axiom A2 ensures
that probabilities at the first-order level can constrain those at the second-order
level.

The entailment relation ks, will be taken to constitute core second-order EP.
The idea is that when input evidence ® consisting of a set of sentences of L!,
one infers a set ¥ of further such sentences using the above consequence relation.
Note that although s, is essentially classical consequence with extra axioms, it is a
nonmonotonic consequence relation since 10EP is nonmonotonic. But 20EP yields
a strong logic inasmuch as it combines the axioms of probability with the rules of

11 As it stands £? contains uncountably many propositional variables, but restrictions can be
placed on a, b to circumscribe the language if need be.
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EP, and so questions of consistency arise. Will there always be some probability
function that satisfies the constraints imposed by 10EP consequences of evidence?
Not always: see [Seidenfeld, 2007] for some counterexamples. Consequently, some
consistency-maintenance procedure needs to be invoked to cope with such cases.
(Of course, some consistency maintenance procedure will in any case be required
to handle certain inconsistent sets of evidential propositions, so there may be no
extra burden here.) One option is to consider probability functions satisfying
(EP consequences of) maximal satisfiable subsets of evidential statements, for
example. In this paper we will not commit to a particular consistency-maintenance
procedure; we leave this interesting question as a topic for further research.

3.2.2 Credal Networks

This entailment relation can be implemented using probabilistic networks, as we
shall now explain. For efficiency reasons, we make the following further assump-
tions. First we assume that P is distributed uniformly over the EP interval unless
there is evidence otherwise:

A3: If Ok, x4 then P(x[v®) = W, as long as this is consistent with

other consequences of ®.

Second, we assume that items of evidence are independent unless there is evidence
of dependence:

A4: If 80[1111,1)1]7 e goggak’bk] € ® then P(gp[lal’bl], e gogfk’b’“]) = P(go[lal’bl]) e

P(cpgf’“’b"]), as long as this is consistent with other consequences of ®.

These assumptions are not essential to second-order EP, but they make the prob-
abilistic network implementation particularly straightforward.'? Note that these
assumptions are default rules; when determined by A1-4, the consequence relation
k%, is nonmonotonic.

A credal network can be used to represent and reason with a set of probability
functions [Cozman, 2000]. A credal network consists of (i) a directed acyclic
graph whose nodes are variables Aq,..., A, and (ii) constraints on conditional
probabilities of the form P(a; | par;) € [I,u] where a; is an assignment of a value
to a variable and par; is an assignment of values to its parents in the graph. It is
assumed that each variable is probabilistically independent of its non-descendants
conditional on its parents in the graph, written A; I ND; | Par;; this assumption
is known as the Markov Condition.

121f items of evidence are known to be dependent then the corresponding nodes will be con-
nected by arrows in the credal network representation outlined below. Any information that
helps to quantify the dependence will help determine the conditional probability distributions
associated with these arrows. If P is known to be distributed non-uniformly over the EP intervals
then information about its distribution will need to be used to determine conditional probability
distributions in the credal net.
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Credal networks are of fundamental importance for inference in probabilistic
logic [Haenni et al., 2010]. A logic is a probabilistic logic if its semantic interpre-
tations are probability functions; the entailment relation of first-order EP does
not constitute a probabilistic logic in this sense, but the entailment relation ks,
of second-order EP does. In a probabilistic logic we are typically faced with the
following sort of question: given premiss propositions ¢1, ..., ¢, and their respec-
tive probabilities X7, ..., X,, what probability should we attach to a conclusion
proposition ? This question can be written in the form

Al SR L

where R is the entailment relation of the probabilistic logic. For example, in
second-order evidential probability we might be faced with the following question

%ax(Fx, Re,[.2, 49U Rt ke, P(Ft) € [.2,.4])"

This asks, given evidence that (i) the proposition that the frequency of attribute F'
in reference class R is between .2 and .4 has probability at least .9, and (ii) ¢ falls
in reference class R, what probability interval should attach to the proposition
that the probability that ¢ has attribute F' is between .2 and .47 In first-order EP,
if 1 —§>.9 then Prob(Ft,T's) = [.2,.4] would be conclusively inferred (and hence
treated as if it had probability 1). Clearly this disregards the uncertainty that
attaches to the statistical evidence; the question is, what uncertainty should attach
to the conclusion as a consequence? (This is a second-order uncertainty; hence the
name second-order evidential probability.) One can construct a credal network to
answer this question as follows. Let ¢; be the proposition %z (Fx, Rz, [.2, .4]), @2
be Rt and 1) be P(F't) € [.2,.4]. These can all be thought of as variables that take
possible values True and False. The structure of 10EP calculations determines the
structure of the directed acyclic graph in the credal net:

The conditional probability constraints involving the premiss propositions are sim-
ply their given risk levels:
P((Pl) € [97 1]7

P(p2) = 1.

Turning to the conditional probability constraints involving the conclusion propo-
sition, these are determined by 10EP inferences via axioms A1-3:

P(lpr A w2) =1,
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P(p|=p1 A p2) = P(Y|o1 A —p2) = P(|~p1 A —p2) = 2.

Finally, the Markov condition holds in virtue of A4, which implies that ¢1 1 ¢a.
Inference algorithms for credal networks can then be used to infer the uncertainty
that should attach to the conclusion, P(¢) € [.92,1]. Hence we have:

Yox(Fa, Re, (.2, 4)"Y, Rtk P(F1) € [:2, 4]

3.2.2.1 Chaining Inferences. While it is not possible to chain inferences in
10EP, this is possible in 20EP, and the credal network representation can just as
readily be applied to this more complex case. Consider the following question:

%a(Fx, R, [.2, 4V Rt, %a (G, Fx,[.2,.4) 5Tk, P(Gt) € [0,.25])°

As we have just seen, the first two premisses can be used to infer something about
Ft, namely P(Ft) € [.2,.4]°%1. But now this inference can then be used in
conjunction with the third premiss to infer something about Gt. To work out
the probability bounds that should attach to an inference to P(Gt) € [0, .25], we
can apply the credal network procedure. Again, the structure of the graph in the
network is given by the structure of EP inferences:

Here ¢35 is %x(Gz, Fx,[.2,.4]) and ¢’ is P(Gt) € [0,.25]; other variables are as
before. The conditional probability bounds of the previous example simply carry
over

P(p1) € [9,1], P(p2) = 1,
P(blpr A p2) = 1, P(Y|=p1 A p2) = .2 = P(Y|o1 A =p2) = P(|=p1 A —p2).

But we need to provide further bounds. As before, the risk level associated with
the third premiss 3 provides one of these:

P(ps) € [.6,.7],
and the constraints involving the new conclusion 1)’ are generated by A3:

[[2x.6+.8x.1,.4x.7+.6x.1]N][0,.25]|

Py =
(WY A ps) [2x.6+.8x.1,4x.7+.6x.1]|

= .31,



322 Gregory Wheeler and Jon Williamson

P Aps) = .27, P[P A =p3) = PP |-¢ A —ps3) = .25.

The Markov Condition holds in virtue of A4 and the structure of EP inferences.
Performing inference in the credal network yields P(¢') € [.28,.29]. Hence

%a(Fx, Re,[.2, ALY, Rt, %a (G, F, [.2,.4]) 6T, P(Gt) € [0, .25]128-29],

This example shows how general inference in 20EP can be: we are not asking
which probability bounds attach to a 10EP inference in this example, but rather
which probability bounds attach to an inference that cannot be drawn by 1oEP.
The example also shows that the probability interval attaching to the conclusion
can be narrower than intervals attaching to the premisses.

4  OBJECTIVE BAYESIAN EPISTEMOLOGY

4.1 Motiation

We saw above that evidential probability concerns the impact of evidence upon
a conclusion. It does not on its own say how strongly one should belicve the
conclusion. Kyburg was explicit about this, arguing that evidential probabilities
can at most be thought of as ‘real-valued bounds on degrees of belief, determined
by the logical structure of our evidence’ [Kyburg, 2003, p. 147]. To determine
rational degrees of belief themselves, one needs to go beyond EP, to a normative
theory of partial belief.

Objective Bayesian epistemology is just such a normative theory [Rosenkrantz,
1977; Jaynes, 2003; Williamson, 2005]. According to the version of objective Bayes-
ianism presented in [Williamson, 2005], one’s beliefs should adhere to three norms:

Probability: The strengths of one’s beliefs should be representable by probabili-
ties. Thus they should be measurable on a scale between 0 and 1, and should
be additive.

Calibration: These degrees of belief should fit one’s evidence. For example,
degrees of belief should be calibrated with frequency: if all one knows about
the truth of a proposition is an appropriate frequency, one should believe
the proposition to the extent of that frequency.

Equivocation: One should not believe a proposition more strongly than the evi-
dence demands. One should equivocate between the basic possibilities as far
as the evidence permits.

These norms are imprecisely stated: some formalism is needed to flesh them
out.
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4.1.0.2 Probability. In the case of the Probability norm, the mathematical
calculus of probability provides the required formalism. Of course mathematical
probabilities attach to abstract events while degrees of belief attach to proposi-
tions, so the mathematical calculus needs to be tailored to apply to propositions.
It is usual to proceed as follows — see, e.g., [Paris, 1994]. Given a predicate
language £ with constants ¢; that pick out all the members of the domain, and
sentences 0, p of L, a function P is a probability function if it satisfies the following
axioms:

P1: If = 6 then P(0) = 1;
P2: If = (0 A p) then P(OV ¢) = P(6) + P(y);
P3: P(320(x)) = lim, 0o P(\/i 0(t;))-

P1 sets the scale, P2 ensures that probability is additive, and P3, called Gaifman’s
condition, sets the probability of ‘9 holds of something’ to be the limit of the prob-
ability of ‘9 holds of one or more of t1, ..., t,’, as n tends to infinity. The Probability
norm then requires that the strengths of one’s beliefs be representable by a prob-
ability function P over (a suitable formalisation of) one’s language. Writing P for
the set of probability functions over £, the Probability norm requires that one’s
beliefs be representable by some P € P.

4.1.0.3 Calibration. The Calibration norm says that the strengths of one’s
beliefs should be appropriately constrained by one’s evidence £. (By evidence
we just mean everything taken for granted in the current operating context—
observations, theory, background knowledge etc.) This norm can be explicated
by supposing that there is some set E C P of probability functions that satisfy
constraints imposed by evidence and that one’s degrees of belief should be rep-
resentable by some Ps € E. Now typically one has two kinds of evidence: quan-
titative evidence that tells one something about physical probability (frequency,
chance etc.), and qualitative evidence that tells one something about how one’s
beliefs should be structured. In [Williamson, 2005] it is argued that these kinds
of evidence should be taken into account in the following way. First, quantitative
evidence (e.g., evidence of frequencies) tells us that the physical probability func-
tion P* must lie in some set P* of probability functions. One’s degrees of belief
ought to be similarly constrained by evidence of physical probabilities, subject to
a few provisos:

C1: E #0.

If evidence is inconsistent this tells us something about our evidence rather than
about physical probability, so one cannot conclude that P* = (§ and one can
hardly insist that Pe € (). Instead P* must be determined by some consistency
maintenance procedure—one might, for example, take P* to be determined by
maximal consistent subsets of one’s evidence—and neither P* nor E can ever be
empty.
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C2: If £ is consistent and implies proposition 6 that does not mention physical
probability P*, then P(f) =1 for all P € E.

This condition merely asserts that categorical evidence be respected—it prevents
E from being too inclusive. The qualification that 6 must not mention physi-
cal probability is required because in some cases evidence of physical probability
should be treated more pliably:

C3: If P,Q € P* and R = AP + (1 — M)Q for X\ € [0,1] then, other things being
equal, one should be permitted to take R as one’s belief function Pg.

Note in particular that C3 implies that, other things being equal, if P € P* then
P € E; it also implies C1 (under the understanding that P* # (}). C3 is required to
handle the following kind of scenario. Suppose for example that you have evidence
just that an experiment with two possible outcomes, a and —a, has taken place.
As far as you are aware, the physical probability of a is now 1 or 0 and no value
in between. But this does not imply that your degree of belief in a should be 1
or 0 and no value in between—a value of %, for instance, is quite reasonable in
this case. C3 says that, in the absence of other overriding evidence, (P*) C E
where (P*) is the convex hull of P*. The following condition imposes the converse
relation:

C4: E C (P*).

Suppose for example that evidence implies that either P*(a) = 0.91 or P*(a) =
0.92. While C3 permits any element of the interval [0.91,0.92] as a value for one’s
degree of belief Pg(a), C4 confines Pg(a) to this interval—indeed a value outside
this interval is unwarranted by this particular evidence. Note that C4 implies C2:
0 being true implies that its physical probability is 1, so P(6) = 1 for all P € P*,
hence for all P € (P*), hence for all P € E.

In the absence of overriding evidence the conditions C1-4 set E = (P*). This
sheds light on how quantitative evidence constrains degrees of belief, but one may
also have qualitative evidence which constrains degrees of belief in ways that are
not mediated by physical probability. For example, one may know about causal
influence relationships involving variables in one’s language: this may tell one
something about physical probability, but it also tells one other things—e.g., that
if one extends one’s language to include a new variable that is not a cause of the
current variables, then that does not on its own provide any reason to change
one’s beliefs about the current variables. These constraints imposed by evidence
of influence relationships, discussed in detail in [Williamson, 2005], motivate a
further principle:

C5: E C S where S is the set of probability functions satisfying structural con-
straints.
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We will not dwell on C5 here since structural constraints are peripheral to the
theme of this paper, namely to connections between objective Bayesian epistemol-
ogy and evidential probability. It turns out that the set S is always non-empty,
hence C1-5 yield:

Calibration: One’s degrees of belief should be representable by Pz € E = (P*)NS.

4.1.0.4 Equivocation. The third norm, Equivocation, can be fleshed out by
requiring that Pg be a probability function, from all those that are calibrated with
evidence, that is as close as possible to a totally equivocal probability function
P_ called the equivocator on L. But we need to specify the equivocator and also
what we mean by ‘as close as possible’. To specify the equivocator, first create an
ordering aq, as, ... of the atomic sentences of L—sentences of the form Ut where
U is a predicate or relation and ¢ is a tuple of constants of corresponding arity—
such that those atomic sentences involving constants ¢, ...t,_1 occur earlier in
the ordering than those involving t,,. Then we can define the equivocator P— by
P:(ajj | aft A.../\aj"_’f) =1/2 for all j and all e1,...¢e; € {0,1}, where a} is just
a; and af is —a;. Clearly P— equivocates between each atomic sentence of £ and
its negation. In order to explicate ‘as close as possible’ to P— we shall appeal to

the standard notion of distance between probability functions, the n-divergence of
P from Q:

P(a$* A Aapim)
Qlag* A+ Aar)

1
dy(P,Q) = Y P(af A Aarir)log

€1,.-ser, =0

Here ay, ..., a,, are the atomic sentences involving constants ¢y, ..., t,,; we follow the
usual convention of taking 0log0 to be 0, and note that the n-divergence is not
a distance function in the usual mathematical sense because it is not symmetric
and does not satisfy the triangle inequality—rather, it is a measure of the amount
of information that is encapsulated in P but not in Q. We then say that P
is closer to the equivocator than @ if there is some N such that for n > N,
dn(P,P-) < d,(Q, P=). Now we can state the Equivocation norm as follows. For
a set Q of probability functions, denote by |Q the members of Q that are closest
to the equivocator P—.'3 Then,

El: P: € |E.

This principle is discussed at more length in [Williamson, 2008]. It can be con-
strued as a version of the maximum entropy principle championed by Edwin
Jaynes. Note that while some versions of objective Bayesianism assume that an
agent’s degrees of belief are uniquely determined by her evidence and language,
we make no such assumption here: |E may not be a singleton.

131f there are no closest members (i.e., if chains are all infinitely descending: for any member
P of Q there is some P’ in Q that is closer to the equivocator than P) the context may yet
determine an appropriate subset |Q C Q of probability functions that are sufficiently close to
the equivocator; for simplicity of exposition we shall ignore this case in what follows.
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Figure 3. Constraint graph.

Figure 4. Graph satisfying the Markov Condition.

4.2 Calculating Objective Bayesian Degrees of Belief

Just as credal nets can be used for inference in 20EP, so too can they be used for
inference in OBE. The basic idea is to use a credal net to represent |E, the set of
rational belief functions, and then to perform inference to calculate the range of
probability values these functions ascribe to some proposition of interest. These
methods are explained in detail in [Williamson, 2008]; here we shall just give the
gist.

For simplicity we shall describe the approach in the base case in which the
evidence consists of interval bounds on the probabilities of sentences of the agent’s
language £, &€ = {P*(¢;) € [li,u;] : ¢ = 1,...,k}, £ is consistent and does not
admit infinite descending chains; but these assumptions can all be relaxed. In this
case E = (P*) NS = P*. Moreover, the evidence can be written in the language £
introduced earlier: & = {ga[lll’ul], e cpgcl’“’“’“]},
Bayesian epistemology takes the form

and the question facing objective

(p[lll,ul]’ o (pgclk,ulc] F’OBE'(/J?

where Ropp s the entailment relation defined by objective Bayesian epistemology
as outlined above. As explained in [Williamson, 2008], this entailment relation is
nonmonotonic but it is well-behaved in the sense that it satisfies all the System-P
properties of nonmonotonic logic.

The method is essentially this. First construct an undirected graph, the con-
straint graph, by linking with an edge those atomic sentences that appear in the
same item of evidence. One can read off this graph a list of probabilistic inde-
pendencies that any function in |E must satisfy: if node A separates nodes B
and C in this graph then B 1L C | A for each probability function in |E. This
constraint graph can then be transformed into a directed acyclic graph for which
the Markov Condition captures many or all of these independencies. Finally one
can calculate bounds on the probability of each node conditional on its parents
in the graph by using entropy maximisation methods: each probability function
in |E maximises entropy subject to the constraints imposed by &, and one can
identify the probability it gives to one variable conditional on its parents using
numerical optimisation methods [Williamson, 2008].
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To take a simple example, suppose we have the following question:
Ve (Ux — Vx)3/5,Vx(Vz — Wx)3/4, Uty 08U o Wt!

A credal net can be constructed to answer this question. There is only one constant
symbol ¢1, and so the atomic sentences of interest are Uty, Vi1, Wt,. Let A be
Uty, As be Vi, and Az be Wity. Then the constraint graph G is depicted in Fig. 3
and the corresponding directed acyclic graph H is depicted in Fig. 4. It is not
hard to see that P(Al) = 4/5,P(A2|A1) = 3/4,P(A2|_‘A1) = 1/2,P(A3‘A2) =
5/6, P(As|—Az2) = 1/2; together with H, these probabilities yield a credal net-
work. (In fact, since the conditional probabilities are precisely determined rather
than bounded, we have a special case of a credal net called a Bayesian net.) The
Markov Condition holds since separation in the constraint graph implies proba-
bilistic independence. Standard inference methods then give us P(A43) = 11/15 as
an answer to our question.

5 EP-CALIBRATED OBJECTIVE BAYESIANISM

5.1 Motiwation

At face value, evidential probability and objective Bayesian epistemology are very
different theories. The former concerns the impact of evidence of physical proba-
bility, Carnap’s probabilitys, and concerns acceptance and rejection; it appeals to
interval-valued probabilities. The latter theory concerns rational degree of belief,
probability, and invokes the usual point-valued mathematical notion of probabil-
ity. Nevertheless the core of these two theories can be reconciled, by appealing to
second-order EP as developed above.

20EP concerns the impact of evidence on rational degree of belief. Given statis-
tical evidence, 20EP will infer statements about rational degrees of belief. These
statements can be viewed as constraints that should be satisfied by the degrees
of belief of a rational agent with just that evidence. So 20EP can be thought
of as mapping statistical evidence £ to a set E of rational belief functions that
are compatible with that evidence. (This is a non-trivial mapping because fre-
quencies attach to a sequence of outcomes or experimental conditions that admit
repeated instantiations, while degrees of belief attach to propositions. Hence the
epistemological reference-class problem arises: how can one determine appropriate
single-case probabilities from information about generic probabilities? Evidential
probability is a theory that tackles this reference-class problem head on: it deter-
mines a probability interval that attaches to a sentence from statistical evidence
about repetitions.)

But this mapping from £ to E is just what is required by the Calibration norm
of OBE. We saw in §4 that OBE maps evidence & to E = (P*) NS, a set of
probability functions calibrated with that evidence. But no precise details were
given as to how (P*), nor indeed P*, is to be determined. In special cases this is
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straightforward. For example, if one’s evidence is just that the chance of a is %,
P*(a) = 1/2, then (P*) =P* = {P € P: P(a) = 1/2}. But in general, determining
(P*) is not a trivial enterprise. In particular, statistical evidence takes the form
of information about generic frequencies rather than single-case chances, and so
the reference-class problem arises. It is here that 20EP can be plugged in: if £
consists of propositions of £#—i.e., propositions, including statistical propositions,
to which probabilities or closed intervals of probabilities attach—then (P*) is the
set of probability functions that satisfy the ks, consequences of £.

C6: If £ is a consistent set of propositions of £f then (P*) = {P : P(x) € [I,u]
for all x,1,u such that Ers, x4},

We shall call OBE that appeals to calibration principles C1-6 epistemic-probability-
calibrated objective Bayesian epistemology, or EP-OBE for short. We shall denote
the corresponding entailment relation by 5.

We see then that there is a sense in which EP and OBE can be viewed as
complementary rather than in opposition. Of course, this isn’t the end of the
matter. Questions still arise as to whether EP-OBE is the right way to flesh out
OBE. One can, for instance, debate the particular rules that EP uses to handle
reference classes (§2.2). One can also ask whether EP tells us everything we need
to know about calibration. As mentioned in §4.1, further rules are needed in
order to handle structural evidence, fleshing out C5. Moreover, both 10EP and
20EP take statistical statements as input; these statements themselves need to
be inferred from particular facts—indeed EP, OBE and EP-OBE each presume
a certain amount of statistical inference. Consequently we take it as understood
that Calibration requires more than just C1-6.

And questions arise as to whether the alterations to EP that are necessary to
render it compatible with OBE are computationally practical. Second-order EP
replaces the original theory of acceptance with a decision theoretic account which
will incur a computational burden. Moreover, some thought must be given as to
which consistency maintenance procedure should be employed in practice. Having
said this, we conjecture that there will be real inference problems for which the
benefits will be worth the necessary extra work.

5.2 Calculating EP-Calibrated Objective Bayesian Probabilities

Calculating EP-OBE probabilities can be achieved by combining methods for cal-
culating 20EP probabilities with methods for calculating OBE probabilities. Since
credal nets can be applied to both formalisms independently, they can also be ap-
plied to their unification. In fact in order to apply the credal net method to
OBE, some means is needed of converting statistical statements, which can be
construed as constraints involving generic, repeatably-instantiatable variables, to
constraints involving the single-case variables which constitute the nodes of the
objective Bayesian credal net; only then can the constraint graph of §4.2 be con-
structed. The 20EP credal nets of §3.2 allow one to do this, since this kind
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of net incorporates both statistical variables and single-case variables as nodes.
Thus 20EP credal nets are employed first to generate single-case constraints, at
which stage the OBE credal net can be constructed to perform inference. This
fits with the general view of 20EP as a theory of how evidence constrains rational
degrees of belief and OBE as a theory of how further considerations—especially
equivocation—further constrain rational degrees of belief.

Consider the following very simple example:

%zx(Fz, Rr,[.2,.5]), Rt,Va(Fz — Ga)*/*REE_Gt’
Now the first two premisses yield Ftl'2-5] by EP. This constraint combines with

the third premiss to yield an answer to the above question by appealing to OBE.
This answer can be calculated by constructing the following credal net:

(r)——()
(=)

Here ¢ is the first premiss. The left-hand side of this net is the 20EP net, with
associated probability constraints

P(p)=1,P(Rt) =1,
P(Ft|p A Rt) € [.2,.5], P(Ft|=¢ A Rt) = 0= P(Ft|p A —Rt) = P(Ft|—p A -Rt).
The right-hand side of this net is the OBE net with associated probabilities
P(Gt|Ft) = 7/10, P(Gt|=Ft) = 1/2.
Standard inference algorithms then yield an answer of 7/12 to our question:

%x(Fz, Rx,[.2, .5]), Rt,Va(Fz — Ga)* REr_GtT/12

6 CONCLUSION

While evidential probability and objective Bayesian epistemology might at first
sight appear to be chalk and cheese, on closer inspection we have seen that their
relationship is more like horse and carriage—together they do a lot of work, cov-
ering the interface between statistical inference and normative epistemology.
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Along the way we have taken in an interesting array of theories—first-order ev-
idential probability, second-order evidential probability, objective Bayesian episte-
mology and EP-calibrated OBE—that can be thought of as nonmonotonic logics.

20EP and OBE are probabilistic logics in the sense that they appeal to the usual
mathematical notion of probability. More precisely, their entailment relations
are probabilistic: premisses entail the conclusion if every model of the premisses
satisfies the conclusion, where models are probability functions. This connection
with probability means that credal networks can be applied as inference machinery.
Credal nets yield a perspicuous representation and the prospect of more efficient
inference [Haenni et al., 2010].
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