
Chapter 13
Epistemic Complexity from an Objective
Bayesian Perspective

Jon Williamson

13.1 Introduction

This paper will focus on a particular kind of epistemic complexity, namely
complexity of evidence. In particular we will look at the question of how com-
plex evidence should impact on the strengths of an agent’s beliefs.

It is a platitude to say that the strengths of our beliefs should depend on our
available evidence, but it is notoriously hard to say exactly how evidence constrains
appropriate degrees of belief. Bayesian epistemology begins to tackle this question,
but typically considers only the simplest kinds of evidence, e.g., the case in which
the evidence consists of a set of atomic propositions, or the case in which the evi-
dence consists of a large database of good quality data. Reality, of course, is rarely
if ever so simple. Evidence can be structured in a number of ways – causally, hierar-
chically, logically, for instance – and tends to be multifarious, a mixture of different
kinds of structure from a mixture of different sources.

In this paper I will show how objective Bayesianism – one particular version
of Bayesian epistemology – can help shed light on the precise relation between
complex evidence and belief. Causal evidence will be considered in Section 13.4,
hierarchically structured evidence in Section 13.5, logical structure in Section 13.6,
and varied structure in Section 13.7. First, a crash-course on objective Bayesianism.

13.2 Objective Bayesian Epistemology

Some preliminaries An agent’s language L is the means by which she
expresses the propositions that concern her. Her epistemic background or evidence
E is taken to consist of everything she takes for granted in her current operating
context. This includes background knowledge, observations, theoretical assump-
tions and so on. (We will not assume that this evidence is in any way articulable, let
alone articulable in L.)
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According to objective Bayesian epistemology, the agent’s beliefs should satisfy
certain norms, the first of which says:

Probability The strengths of the agent’s beliefs should be representable by
probabilities.

Suppose, for example, that the agent’s language L can express n different elemen-
tary (i.e., non logically complex) propositions A1; : : : ; An. An atomic state ! on L
is a sentence of the form A

j1

1 ^ � � � ^ A
jn
n where j1; : : : ; jn 2 f0; 1g, A0

i is :Ai and
A1

i is just Ai . Let � be the set of atomic states. Then the Probability norm says that
the strengths of the agent’s beliefs in the 2n atomic states should be representable
by non-zero real numbers that sum to 1; the degree to which she should believe an
arbitrary proposition � should be representable by the sum of her degrees of belief
in those atomic states that logically imply � . Thus the strengths of the agent’s beliefs
should be representable by a probability function over L: a function P such that (i)
P.!/	0 for each !, (ii)

P
!2� P.!/ D 1, and (iii) P.�/ D P

!2�;!ˆ� P.!/.1

A second norm says that beliefs should fit with evidence:

Calibration The agent’s degrees of belief should satisfy constraints imposed by
evidence.

Evidence E can constrain degrees of belief in a variety of ways. If E implies that
proposition � is true, then the agent should fully believe � . More generally, if E
implies that the empirical probability function P � on L lies in a non-empty set P�
of probability functions, then the probability function PE that represents the degrees
of belief that the agent should adopt on the basis of E lies in the convex hull ŒP�	 of
P�. Other kinds of constraint imposed by E will be discussed in subsequent sections
of this paper. Let E denote the set of probability functions that are compatible with
the agent’s evidence (e.g., E D ŒP�	/. Then the calibration norm says that PE 2 E.2

The third norm says that beliefs should only be as bold as evidence warrants:

Equivocation Degrees of belief should otherwise be as equivocal as possible.

Here ‘be as equivocal as possible’ is just ‘be as close as possible to maximally
equivocal’.3 The probability function that is maximally equivocal – the equivoca-
tor PD on L – is the function that gives each atomic state the same probability,
PD.!/ D 1=2n for all ! 2 �. The distance from one probability function to
another is measured by cross entropy, d.P; Q/ D P

! P.!/ log P.!/=Q.!/.

1 This norm is typically justified by an appeal to a Dutch book argument or Cox’s theorem – see,
e.g., Paris (1994, Chapter 3).
2 This norm is typically justified on the grounds that degrees of belief are used to make predictions,
and calibrated degrees of belief lead to optimal predictions in the long run (Howson and Urbach,
1989, �13.e). Strictly speaking PE depends on L as well as E; we will write P L

E where we need to
emphasise this dependence, but drop reference to L and E where the context permits. Williamson
(2005, Chapter 12) discusses language change in the context of objective Bayesianism.
3 This norm may be justified on the grounds that degrees of belief are used as a basis for action,
extreme degrees of belief lead to riskier actions, and one should only take on risk to the extent that
evidence demands – see Williamson (2007).
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Distance to the equivocator, d.P; PD/ D P
! P.!/ log.2nP.!//, is minimised

just when entropy H.P / D � P
! P.!/ log P.!/ is maximised. Hence our three

norms give us:

Maximum Entropy Principle An agent’s degrees of belief should be repre-
sentable by a probability function PE , from all those that satisfy constraints
imposed by evidence E , that has maximum entropy: PE 2 fP 2 E W P D
argmaxH g.

Note that once we have these three norms we don’t need any further prin-
ciple to guide the updating of degrees of belief in the light of new evidence.
As the evidence E changes to E 0, the agent’s belief function will correspond-
ingly change from PE , a maximally equivocal probability function from those com-
patible with E , to PE 0 , a maximally equivocal probability function from those
compatible with E 0. On a language L expressing n elementary propositions, PE
and PE 0 are selected by successive applications of the maximum entropy principle
(Williamson 2008).

13.3 Objective Bayesian Nets

Objective Bayesianism tells us how we should set our degrees of belief. Of course
we can only be expected to follow the norms of objective Bayesianism to the extent
that we can follow these norms. But following these norms is non-trivial: abiding
by the maximum entropy principle is at first sight computationally demanding, since
the number 2n of atomic states grows exponentially with the number n of express-
ible elementary propositions. Fortunately, there are computational tools that mitigate
this computational challenge. The machinery of objective Bayesian nets allows one
to compute objective Bayesian probabilities more efficiently. In this section we shall
introduce the concepts of Bayesian net and objective Bayesian net.

First some notation. For i D 1; : : : ; n the propositional variable Ai takes one of
two possible values, true or false; let ai or a1

i signify the assignment Ai D true and
Nai or a0

i signify the assignment Ai D false. It is taken for granted that an agent’s
degree of belief that a proposition is true (respectively false) is just her degree of
belief in the proposition itself (respectively in its negation): P.ai / D P.Ai / and
P. Nai / D P.:Ai /.

A Bayesian net offers an efficient way of representing and manipulating a
probability function. A Bayesian net on A1; : : : ; An consists of a directed acyclic
graph whose nodes are A1; : : : ; An, as in Fig. 13.1 for instance, together with the
probability distribution P.Ai jPari / of each variable conditional on its parents in
the graph. An assumption called the Markov Condition is made; this says that each

Fig. 13.1 A directed acyclic
graph

A1 � A2 � A3
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variable is probabilistically independent of its non-descendants in the graph, con-
ditional on its parents, written Ai ?? NDi j Pari . Under this assumption, the
Bayesian net determines a probability function over L via the identity P.!/ D
P.A

j1

1 ^ � � � ^ A
jn
n / D Qn

iD1 P.a
ji

i jpar!/, where par! is the assignment to Pari

that is determined by !, and where j1; : : : ; jn 2 f0; 1g. Conversely, any probability
function P over a finite language can be represented by a Bayesian net: simply (i)
determine the independencies that are satisfied by P , (ii) represent as many of these
as possible by a directed acyclic graph satisfying the Markov condition with respect
to P , and (iii) add the conditional probability functions P.Ai jPari /. A wide variety
of algorithms have been developed for calculating probabilities from a Bayesian
net. If the graph in the Bayesian net is relatively sparse, the size of the net can in-
crease sub-exponentially with n, meaning that it may be computationally feasible to
represent and reason with a probability function even where n is very large.

An objective Bayesian net is just a Bayesian net that represents an objective
Bayesian probability function PE , which in turn represents degrees of belief that are
appropriate on the basis of evidence E . An objective Bayesian net can be constructed
by (i) determining conditional independencies that PE must satisfy; (ii) representing
these independencies by a directed acyclic graph, and (iii) maximising entropy to
find the conditional probability distributions PE.Ai jPari /. Fortunately a maximum
entropy function PE will normally satisfy a large number of probabilistic indepen-
dencies. Construct an undirected graph by linking two variables if they both occur
in the same constraint imposed by E : then X ?? Y j Z for PE if in this undirected
graph the variables in Z separate those in X from those in Y . Hence the graph in
an objective Bayesian net will typically be sparse and it will typically be feasible to
handle objective Bayesian probabilities.

For example, suppose E imposes the following constraints: P.A1j:A2/ 	 0:7;

P.A2 _ A4/ D P.A3/; P.:A5 ^ :A3/ D 0; P.A4/ 2 Œ0:4; 0:5	. Then Fig. 13.2
represents the independencies of PE . This can be transformed into a directed acyclic
graph Fig. 13.3 that represents the same independencies via the Markov Con-
dition. All that remains is to determine the conditional probability distributions.
See Williamson (2005, Chapter 5) for a full algorithm for constructing an objective
Bayesian net.

Fig. 13.2 An undirected
graph representing the
independencies of PE

A1 A2 A4

A3 A5

Fig. 13.3 A directed acyclic
graph representing the
independencies of PE via the
Markov Condition

A1 A2 A4

A3 A5
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13.4 Causal Structure

In Section 13.2 we saw that evidence of empirical probability constrains degrees of
belief in a rather straightforward way: the set of probability functions compatible
with evidence is just the convex hull of the set of functions in which (according to
the evidence) the empirical probability function lies – written E D ŒP�	. But evi-
dence can contain information other than information about empirical probability,
and the question arises as to what constraints E imposes on degrees of belief in such
cases. In this section we shall look at the case in which evidence of causal relations
is available to the agent.

Suppose for example that the agent grants the following evidence E : smoking
causes bronchitis and lung cancer, each of which cause chest pains; 30% of the
population are smokers, 4% of the population but 10% of smokers get bronchitis,
2% of the population but 5% of smokers get lung cancer, 5% of the population but
99% of those with bronchitis or lung cancer have chest pains, Bob is a non-smoker
with chest pains. Suppose further that L can express the elementary propositions S :
Bob is a smoker, B: Bob has bronchitis, L: Bob has lung cancer, C : Bob has chest
pains. The agent’s causal evidence can be represented as in Fig. 13.4.

Causal evidence imposes constraints on degrees of belief in the following way.
Causality is an influence relation in the sense that learning just of new non-
influences provides no grounds for changing degrees of belief (Williamson 2005).
More precisely, if the language L is extended to L0, which expresses a new propo-
sition, and it is known that the corresponding variable is not a cause of any of the
former variables, and other information in E does not indicate otherwise, then the
agent’s degrees of belief over the former language should not change: PL0

E .�/ D
PL
EL.�/ for each sentence � of L, where EL is the evidence in E that concerns L.

Hence causal evidence imposes equality constraints on degrees of belief.
In our example PL

E .S/ D P
fSg
EfSg

.S/ is but one such constraint. In fact these
equality constraints ensure that the objective Bayesian net can be constructed by
taking the causal graph Fig. 13.4 as the directed acyclic graph, and by iteratively
maximising entropy to find the conditional probability distributions. See Williamson
(2005, �5.8) for a detailed description of the procedure for constructing an objective
Bayesian net in the presence of causal constraints. Ignoring for the moment the
information that Bob is a non-smoker with chest pains, the objective Bayesian net
has conditional probability distributions specified by:

Fig. 13.4 Smoking causes
Bronchitis and Lung Cancer,
each of which cause Chest
Pains

B

S C

L
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P.s/ D 3

10
I

P.bjs/ D 1

10
; P.bjNs/ D 1

70
I

P.l js/ D 1

20
; P.l jNs/ D 1

140
I

P.cjbl/ D 99

100
; P.cj Nbl/ D 99

100
; P.cjb Nl/ D 99

100
; P.cj Nb Nl/ D 40491

659100
:

Now if we take the information specific to Bob into account by instantiating S

to Ns and C to c in the network we get PE .b/ D P.bjc Ns/ ' 0:65 and PE.l/ D
P.l jc Ns/ ' 0:33.

13.5 Hierarchical Structure

Causal structure provides one kind of evidential complexity, but there are others.
In this section we shall look at evidence of hierarchical structure. Hierarchical struc-
ture occurs in descriptions of mechanisms. For instance, in describing mechanisms
in the human body we often need to talk simultaneously about processes that occur
at the level of the body as a whole (e.g., the circulation of the blood), those at the
level of the cell (e.g., oxygenation of haemoglobin), and those at the level of the
genome (e.g., mutation of a single nucleotide of the ˇ-globin gene). Hierarchical
structure also occurs in describing causal relationships, because causal relations can
themselves act as causes and effects. For example, smoking causing cancer causes
governments to restrict tobacco advertising, which prevents smoking and thereby
prevents cancer (Fig. 13.5). This example shows that the same variable can occur at
more than one level in the hierarchy.

Consider a simple example of hierarchically structured evidence. The National
Farmer’s Union needs to decide whether to lobby government for more subsidies.
The evidence globally is that lobbying L is a cause of national agricultural policy A

(Fig. 13.6). Here A is a hierarchical variable: one assignment a corresponds to the
case in which farming F causes subsidy S (Fig. 13.7); a second assignment Na is the
case in which there is no link between farming and subsidy (Fig. 13.8). The evidence
is that if farming causes subsidy, P �.sjf / D 1, but 5% of the population receive

SC A S C

Fig. 13.5 SC : smoking causes cancer; A: tobacco advertising; S : smoking; C : cancer

Fig. 13.6 Lobbying L causes
Agricultural Policy A

L A
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Fig. 13.7 a: Farming F

causes Subsidy S F S

Fig. 13.8 Na: Farming F

unrelated to Subsidy S F S

subsidies in any case, since fishing and other industries are subsidised. 10% of
the population are farmers, and lobbying raises the probability of getting policy
a by 20%.

In order to make sense of such an example we need to be clear about how evi-
dence of hierarchical structure constrains degrees of belief. Call variable A superior
to variable B if A occurs at a higher level in the hierarchy to B . Plausibly, superi-
ority is an influence relation: learning of a new variable that is not superior to any
of the current variables (and is not an influence in another respect – e.g., a causal
influence) provides no grounds for changing degrees of belief concerning the cur-
rent variables. So if the agent’s language changes from L to L0 and it is known that
new propositions are not hierarchically superior to the old, then the agent’s degrees
of belief over the old language should not change: PL0

E .�/ D PL
EL.�/ for each sen-

tence � of L, where EL is the evidence in E that concerns L. Hence hierarchical
evidence imposes equality constraints on degrees of belief in the same way that
causal evidence imposes such constraints.

Our example contains a mixture of causal and hierarchical evidence, but since
both are evidence of influence relations, both can be treated alike. In this case the ob-
jective Bayesian net is a hierarchical or recursive Bayesian net (Williamson 2005).
At the higher level is a network based on Fig. 13.6 – here the conditional probabili-
ties are:

P.l/ D 1

2
I

P.ajl/ D 3

5
; P.aj Nl/ D 2

5
:

At the lower level, the network for a, based on Fig. 13.7, has probabilities

Pa.f / D 1

10
I

Pa.sjf / D 1; Pa.sj Nf / D 1

20
:

The network for Na, based on Fig. 13.8, has probabilities

P Na.f / D 1

10
I

P Na.s/ D 1

20
:
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Given this hierarchical net, the probability of a farmer receiving subsidy after lobby-
ing, P.sjlf /, is 0:62, while with no lobbying P.sj Nlf / D 0:46. These probabilities
can be helpful for calculating the change lobbying will make to the expected sub-
sidy, and thus helpful for the decision facing the National Farmer’s Union.

13.6 Logical Structure

In the case of logical structure, we shall consider two kinds of evidential complexity.
The first kind involves evidence of logical implications. The second kind involves
evidence concerning the probabilities of logically complex propositions.

Logical Influence

The first kind – evidence of logical implications – proceeds analogously to the cases
of causal structure (Section 13.4) and hierarchical structure (Section 13.5). To take a
rather elementary example, suppose the agent’s evidence includes the knowledge
that � ! ' and that � logically implies '. As well as this logical structure, the
agent knows that if Socrates was a man then he was mortal .A ! B/, and that it is
as at least twice as likely as not that Socrates existed and was a man .A/.

Now logical connection is an influence relation: a new proposition that does not,
together with some current propositions, logically imply a current proposition, pro-
vides no grounds for changing degrees of belief over the current propositions. So if
the agent’s language changes from L to L0 and it is known that new propositions
are not influences (logical or otherwise) of the old, then the agent’s degrees of belief
over the old language should not change: PL0

E .�/ D PL
EL.�/ for each sentence � of

L, where EL is the evidence in E that concerns L. Hence logical evidence imposes
equality constraints on degrees of belief in the same way that causal or hierarchical
evidence imposes such constraints.

In our example, the objective Bayesian net has the graph of Fig. 13.9. (Here C

can be considered to be a hierarchical variable where assignment c corresponds to a
net whose graph has nodes A and B and an arrow from A to B .) The probabilities are

Fig. 13.9 C : if Socrates was
a man then he was mortal; A:
Socrates was a man; B:
Socrates was mortal

C

B

A
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P.c/ D 1I

P.a/ D 2

3
I

P.bjca/ D 1; P.bj Nca/ D 1

2
; P.bjc Na/ D 1

2
; P.bj Nc Na/ D 1

2
:

In particular, the agent should believe that Socrates was mortal to degree P.b/ D
5=6. See Williamson (2005, Chapter 11) for a full discussion of logical influence.

Predicate Languages

The second kind of complexity arises where the agent’s evidence concerns logically
complex propositions. The framework of Section 13.2 already handles arbitrary
propositions in the propositional calculus. For instance, if the evidence says just that
the physical probability of proposition � is at least 0.8, P �.�/	0:8, then the agent’s
degrees of belief should be representable by probability function PE which is closest
to the equivocator, from all those in E D ŒP�	 D P� D fP W P.�/ 	 0:8g. But the
question arises as to how handle evidence and beliefs concerning propositions
with predicates, relations, constants, variables, quantifiers, etc. – i.e., propositions
expressed in a predicate language.

If L is a predicate language, then the objective Bayesian method can be
developed by appealing to the same three norms introduced in Section 13.2.
Let A1; A2; : : : enumerate the atomic propositions of L, i.e., the statements of
the form Ut where U is a predicate or relation symbol and t D .t1; : : : ; tk/ is a
tuple of constants of corresponding arity. An atomic n-state !n is an atomic state
involving the first n of these atomic propositions: !n has the form A

j1

1 ^ � � � ^ A
jn
n

where j1; : : : ; jn 2 f0; 1g. Let �n be the set of atomic n-states.

Probability The strengths of an agent’s beliefs should be representable by
probabilities.

Here a probability function is a function P such that (i) P.!n/ 	 0 for all
!n, (ii) for each n,

P
!n2�n

P.!n/ D 1, (iii) for quantifier-free � , P.�/ DP
!n2�n;!nˆ� P.!n/ where n is chosen large enough such that A1; : : : ; An in-

cludes all the atomic propositions in � . Note that quantified sentences can be
assigned probabilities as follows: P.9x�.x// D limm!1 P.

Wm
iD1 �.ti // and

P.8x�.x// D limm!1 P.
Vm

iD1 �.ti //, where the t1; t2; : : : are the constant sym-
bols, and where it is assumed that each element of the domain is named by precisely
one constant symbol.

Calibration The agent’s degrees of belief should satisfy constraints imposed by
evidence.

Here, as before, the set E of probability functions compatible with evidence E is
determined as follows. First take the convex closure of the set P� of probability
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functions in which the empirical probability function is presumed to lie. Then re-
move those functions which do not satisfy the equality constraints imposed by
structural evidence – e.g., evidence of causal, hierarchical or logical influence con-
sidered above. Hence E D ŒP�	 \ S where S is the set of probability functions that
satisfy the structural constraints.

Equivocation Degrees of belief should otherwise be as equivocal as possible.

Again, ‘be as equivocal as possible’ is just ‘be as close as possible to maxi-
mally equivocal’. The equivocator is defined by PD.!n/ D 1=2n for all !n.
Let dn.P; Q/ D P

!n2�n
P.!n/ log P.!n/=Q.!n/. Then take P to be closer to

the equivocator than Q if there is some N such that for all n 	 N; dn.P; PD/ <

dn.Q; PD/. Thus the recipe is just as for the propositional case outlined in
Section 13.2: the agent’s degrees of belief should be representable by a proba-
bility function PE from E that is closest to the equivocator.

Note that P is closer to the equivocator than Q if there is some N such that
for all n 	 N; Hn.P / > Hn.Q/, where Hn is the n-entropy defined by Hn.P / D
� P

!n2�n
P.!n/ log P.!n/. If we deem P to have greater entropy than Q if this

condition holds (i.e., 9N; 8n	N; Hn.P / > Hn.Q//, then we have a version of the
maximum entropy principle for predicate languages:

Maximum Entropy Principle An agent’s degrees of belief should be repre-
sentable by a probability function PE , from all those that satisfy constraints
imposed by evidence E , that has maximum entropy in the sense outlined above.

Consider a simple example. Suppose that the agent’s evidence says that all men
are mortal has empirical probability at least 3=4, All those who are virtuous are men
has empirical probability at least 3=5, and that Socrates is virtuous has probability
4=5. The graph of the resulting objective Bayesian net is depicted in Fig. 13.10.
The corresponding probabilities are

P.v/ D 4

5
I

P.hjv/ D 3

4
; P.hjNv/ D 1

2
I

P.mjh/ D 5

6
; P.mj Nh/ D 1

2
:

It turns out then that the agent should believe that Socrates is mortal to degree
P.m/ D 11=15. See Haenni et al. (2010) for more on objective Bayesianism with
predicate languages, and on how to construct objective Bayesian nets in such cases.

Fig. 13.10 V : virtuous; H :
(hu)man; M : mortal; s:
Socrates

Vs Hs Ms
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13.7 Varied Evidence

Examples concerning the mortality of Socrates can seem remote from practical
applications; in this section we shall look at a more realistic case study which ex-
hibits a variety of kinds of evidence.

We will consider the application of objective Bayesian nets to breast cancer prog-
nosis, described in detail in Nagl et al. (2008). The problem here is that a patient
has breast cancer and an agent must make an appropriate treatment decision. Some
treatments have harsh side-effects and it would not be justifiable to inflict these on
low-risk patients. Broadly speaking, the higher the probability of recurrence of the
cancer, the more aggressive the treatment that should be given. So it is important
to determine the degree to which the agent should believe the patient’s cancer will
recur.

This is a genuine case of epistemic complexity in the sense that the evi-
dence available is multifarious and exhibits various kinds of structure. Evidence
includes the following. There are a variety of clinical datasets describing the clin-
ical symptoms and disease progress of past patients. There are genomic datasets
describing the presence or absence of molecular markers in past patients. There are
scientific papers that provide evidence of causal relations, mechanisms, and statis-
tical information that quantifies the strength of connection between the variables
under study. Causal relationships and mechanisms can also be elicited from experts
in the field, such as clinicians and researchers in cancer systems biology. And there
are also a whole host of prior medical informatics systems which provide a variety
of evidence: e.g., evidence of ontological relationships between variables in medical
ontologies, evidence of logical relationships in medical argumentation systems.4

Traditional machine learning methodology would take one of two standard
courses. One option is to choose the best piece of data – e.g., a clinical dataset –
and to build a model – e.g., a Bayesian net – that represents the distribution of that
data. The resulting model would then be used as a basis for decision. Clearly this
approach ignores much of the available evidence, and will not yield useful results if
the chosen data is not plentiful, accurate and relevant. A second option is to build a
model from each piece of evidence and to combine the results – e.g., by each model
taking a vote on the recommended decision and somehow aggregating these votes.
There are several difficulties with this approach. One is that most machine learning
methods only take a dataset as input; consequently the qualitative causal evidence
and the evidence concerning hierarchical mechanisms is likely to be ignored. A sec-
ond is that the resulting models may be based on mutually inconsistent assumptions,
in which case it is not clear that they should be combined at all. A third difficulty
is that the problem of aggregating the judgements of the various models is itself
fraught (Williamson 2009). In contrast, the approach taken in Nagl et al. (2008)

4 Ontological or semantic evidence may be understood in terms of influence relations, just as can
causal, hierarchical and logical evidence – see Williamson (2005, �11.4).
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is to construct a single model – an objective Bayesian net – that takes into account
the full range of evidence. We considered four evidential sources, which will now
be described.

The first source is the SEER study, a clinical dataset involving 3 million patients
in the US from 1975–2003; of these 4731 were breast cancer patients. This dataset
measures the following variables: Age, Tumour size (mm), Grade (1–3), HR Status
(Oestrogen/Progesterone receptors), Lymph Node Tumours, Surgery, Radiotherapy,
Survival (months), Status (alive/dead). A sample of the dataset appears below.

Age T size Grade HR LN Surgery Radiotherapy Survival Status

70–74 22 2 1 1 1 1 37 1
45–49 8 1 1 0 2 1 41 1

: : : : : : : : : : : : : : : : : : : : : : : : : : :

If standard machine learning methods for learning a Bayesian net that repre-
sents the empirical probability distribution of this dataset were invoked, they would
generate a net with a graph similar to that of Fig. 13.11. In our case, however, we
treat this empirical distribution as a constraint on appropriate degrees of belief. An
agent’s degree of belief in any sentence that involves only variables measured in this
dataset should match the empirical probability of that sentence as determined by the
dataset: PE .�/ D P �.�/ for all � involving just variables in the dataset.

Fig. 13.11 Graph of a Bayesian net representing the empirical distribution of the clinical data



13 Epistemic Complexity from an Objective Bayesian Perspective 243

Table 13.1 Graph of a Bayesian net representing the empirical distribution of the clinical
data

1p31 1p32 1p34 2q32 3q26 4q35 5q14 7p11 8q23 20p13 Xp11 Xq13

0 0 0 1 �1 0 0 1 0 0 0 �1
0 0 1 1 0 0 0 �1 �1 0 0 0
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Table 13.2 Graph in a Bayesian net representation of a genomic dataset

Lymph Nodes 1q22 1q25 1q32 1q42 7q36 8p21 8p23 8q13 8q21 8q24

0 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

The second source consists of genomic data from a Progenetix dataset, with 502
cases. A sample appears in Table 13.1.

The empirical distribution of this dataset is represented by a Bayesian net with
the graph of Fig. 13.12. Again, from an objective Bayesian point of view, this data
imposes the constraint that PE.�/ D P �.�/ for all � involving just variables in the
dataset.

The third source was a further genomic dataset (119 cases with clinical annota-
tion) from the Progenetix database (Table 13.2).

The fourth source was a paper published study (Fridlyand et al. 2006), which con-
tains causal and quantitative information concerning the probabilistic dependence
between the variables HR status and 22q12 – this provided a further bridge between
clinical and genomic variables represented in Fig. 13.13.

The resulting objective Bayesian net has the graph depicted in Fig. 13.14.
This kind of representation is attractive in that it involves both clinical and molecular
variables, permitting inferences from one kind of variable to the other. Thus one can
use molecular as well as clinical evidence to determine an appropriate prognosis.
See Nagl et al. (2008) for a fuller discussion of the construction and uses of this
objective Bayesian net.

13.8 Conclusion

Complexity of evidence is one kind of epistemic complexity. In this paper we have
seen how objective Bayesian epistemology can begin to tackle this kind of epistemic
complexity. Objective Bayesianism offers a unifying framework for integrating and
interpreting not just evidence of empirical probability, but also evidence of causal,
hierarchical and logical structure. Objective Bayesian probability can be defined
over predicate languages as well as propositional languages, and the machinery of
objective Bayesian nets can be used to represent and reason with objective Bayesian
degrees of belief.
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Fig. 13.13 Lymph nodes
status, hormone receptor
status and 22q12

LN

22

HR

Fig. 13.14 Graph of the objective Bayesian net
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