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1. Introduction

Choice under complete uncertainty refers to a situation in which a choice
has to be made among a set of known acts where the possible outcomes of each
act are known, but the Decision Maker (DM) does not have any information
on the (relative) probabilities of the possible outcomes (uncertainty about
occurrence of events). Furthermore, the possible outcomes are totally ordered
by the DM’s ordinal preference relation, which allows comparisons, whether
one outcome is preferred to another outcome. The final ingredient is that
the DM’s preferences do not allow a cardinal assessment of how much more
an outcome is appreciated than another outcome (uncertainty about utility
of outcomes), cf. [7, Chapter 3].

One important tool for the analysis of choice under complete uncertainty
are investigations, in particular axiomatic characterizations, of preference
relations [22]. Preference relations are here used for comparing utilities of
possible outcomes, thus enabling a comparison of preferences over acts. One
particular such preference relation is the min-max decision rule �mnx, intro-
duced in [15], which represents a risk-averse DM of bounded rationality. The
relation �mnx as well as its lexicographic refinement �L

mnx have attracted
considerable interest [3, 4, 7, 9, 29].

In choice under complete uncertainty approaches the preference relations
used to represent the DM’s preference structure over the set of outcomes are
most often linear orders. Such a representation is appropriate, for instance,
if the DM can assign every possible outcome a single number reflecting an
ordinal utility the outcome will yield. Staying true to the theme of complete
uncertainty we here investigate a situation, in which such a representation is
not appropriate. We will consider a DM which can only imprecisely specify
the ordinal utilities attaching to outcomes.

We will here develop two frameworks where the utility obtained from a
possible outcome is best represented as an interval in some connected totally
ordered space X. The two frameworks we introduce differ from each other
in the way they aggregate utilities from different outcomes resulting from
the same act. In these frameworks we study min-max decision rules wmnx

,wC
mnx,w2mnx,wL

2mnx which are natural generalizations of �mnx and �L
mnx

respectively. The refinements wC
mnx,wL

2mnx enable us to distinguish between
more acts, i.e., to break ties of wmnx respectively w2mnx .

The rest of the paper is organized as follows. First we give some examples
motivating our approach, then we put our work into a wider context by
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discussing related work. In the first technical part of the paper we introduce
a set-based framework for interval-valued utilities in which the objects of
choice are sets of utilities formed by finite unions of intervals, which can be
visualized as utility intervals that may have gaps in them. In the second
part of the paper, we introduce a vector- or multi-set-based framework in
which the objects of choice are finite multi-sets of intervals whose members
are considered as distinct objects even if they overlap. In both parts we shall
investigate min-max decision rules and lexicographic refinements. Finally we
conclude. In Appendix A and Appendix B we show how some of the axioms
which we introduced for the multi-valued utility framework, can be adapted
to yield an axiomatic characterization of the �mnx relation. Furthermore, we
improve upon Arlegi’s axiomatic characterization of �mnx given in [4].

2. Motivating Examples

Example 1: At a fair you have the opportunity to buy a ticket for one of
three raffles, each of which is a lottery that offers a chance of winning one
out of a number of plush toys. The toys that may be won in each raffle are
on display, but the chances of winning a given toy in a given raffle are not
exactly known. You plan to take the toy home and give it to your nephew, if
you did purchase a winning ticket. So the utility you obtain from a winning a
certain toy (possible outcome) depends on the appreciation of a third person
(your nephew).

Example 2: Consider a student deciding when to e-mail in a summer
break take-home assignment. If the student sends the assignment off right
away, then the resulting grade may either be a “B” or a “C”. If the student
works two further weeks on it and then sends it off, the grade may possibly
improve to an “A”. Given that a better grade is likely to lead to better
(paying) job offers she prefers a better grade to a worse grade.

Example 3: A student in the process of graduating from university with a
business degree is looking for a permanent job. Several companies in different
cities hold assessment tests on the same day. A company typically has several
different vacancies in different branches at the same time. The salary for
such a job may contain a variable part, which depends on the performance
of the employee as well as the whole company. Depending on the student’s
performance she is invited to interview for a subset of the available positions.

The common theme of these examples is that a DM may be reluctant
to assign a single number to each outcome representing her utility. More-
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over, the DM might not be willing to specify a single probability function
expressing her beliefs in obtaining a certain utility from an outcome. The
DM may feel more comfortable assigning each outcome a range of utilities it
may possibly yield without making any assertion concerning the likelihood
of the outcomes yielding these utilities. Thus, the DM’s preferences over acts
(with in general more than one possible outcome) are best be represented by
preferences over sets of intervals of utility.

3. Related Work

3.1. Choice under Complete Uncertainty

Choice under complete uncertainty can be understood as subfield of rank-
ing sets of objects [6, 7, 21, 27, 34, 42]. The latter is the study of how to
extend preferences defined over objects to preferences over sets of such ob-
jects. The former interprets these objects as possible outcomes and acts as
sets of possible outcomes. A DM’s relative preference for one act over another
can thus be understood as relative preference of one set of possible outcomes
over another such set. A good albeit slightly outdated overview of this field
can be found in [7, Section 3].

Bossert & Slinko [16] studied uncertainty aversion in set-based models
of choice under complete uncertainty. They provided a complete ranking of
certain decision rules according to relative degree of uncertainty aversion.
Gravel et al. [29] took a slightly different approach, characterizing decision
rules under complete uncertainty via expected utility. Arlegi [3] showed how
some well-known decision rules under complete uncertainty can be reinter-
preted in procedural terms. From such a perspective the DM evaluates pos-
sible acts by comparing certain focal elements in the set of possible outcomes
of these acts, losing sight or even completely ignoring all non-focal elements.
Decision models using only a limited amount of information are of particular
interest in psychology [28]. Ben Larbi et al. investigated strategies of agents
playing multiple outcomes games [8]. They thus demonstrated the relevance
of choice under complete uncertainty to game theory.

Recall that in the framework of choice under complete uncertainty it is
assumed that the DM knows all possible outcomes resulting from each act.
If we instead assume that the DM cannot envision the possible outcomes of
acts, then choices are said to be taken under complete ignorance. Ben Larbi
et al. [9] axiomatically investigated a min-max decision rule under complete
ignorance. They then compare their results to those of [4] and [15].
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3.2. Uncertain Utility

Decision making with acts of known but uncertain outcomes, in which
the DM cannot specify the subjective expected utility of an outcome, have
featured prominently in the literature. We concentrate here only on the
aspects of such investigations that are more relevant to us, see [11, 12] for
classical overviews. Building on the work of Kreps [38], Olszewski and Ahn
studied choices between sets of lotteries in [1, 40]. Ahn [1] presented a theory
of objective ambiguity without a state space. Olszewski [40] considered a
framework where Nature chooses a particular lottery from the selected set of
lotteries. Vierø [44] considered acts which map to sets of lotteries and gave
an axiomatic characterization of certain decision rules. Jaffray & Jeleva [32]
investigated acts that are only partially analyzable.

A further approach describes uncertain utility by interval probabilities,
for which the axiomatic foundations were laid by Weichselberger [47]. Kozine
& Utkin [37] used these probabilities to study Markov chains. For a recent
overview of the many applications of interval probabilities refer to Augustin
& Coolen [5, Section 2]. Range based utilities, with or without interval prob-
abilities [46], have found their way into more practical applications. Such
ranges have successfully been applied in (group) decision making and recom-
mender systems, e.g. in [20, 30, 33, 35, 36, 43] and in the economics literature,
exemplary we mention [2, 18].

3.3. Interval Orders

The problem of ordering intervals is well-known and well-studied. The
most important notion in this field is that of an interval order, cf. [23, 25].
An interval order IO on an ordered space (X,>) orders subsets of X such
that for all Y, Z ⊂ X and Y IO Z it holds that the minimum of Y is greater
than the maximum of Z, where the minimum and maximum are according
to > . However, the focus of this research field is on the representability of
interval orders by real-valued functions [13, 17, 19, 39] and not on axiomatic
characterizations of preference relations as it is here.

Preference relations over intervals taking only endpoints into account are
by design a rather simple class. Thus, preference orders over intervals taking
also selected interior points into considerations have been developed. In [41]
a general framework is developed for the comparisons of “n-point intervals”.
However, this framework only allows for comparisons of intervals having the
same number of points.
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4. The Min-Max Relation for Intervals

4.1. The Formal Framework

We now introduce our set-based approach; for discussions on the merits
of the set-based approach see [7, 15, 42]. We let A be the set of acts, O be
the set of possible outcomes and U be the possible utilities obtained from the
o ∈ O. We here follow approaches in “choice under complete uncertainty”
in which utilities are measured on an ordinal scale. The notion of “utility”
used here is thus different from the classical notion of utility introduced by
von Neumann and Morgenstern. For a detailed introduction to choice under
complete uncertainty motivating the set-up in detail we refer the reader to
[7, Section 3].

Denote by Oa the set of possible outcomes for act a ∈ A, which we assume
to be finite. A set Oa containing more than one element is interpreted as
an uncertain prospect where the DM does not have any information on the
likelihood over the possible outcomes in Oa. Now assume for a moment that
the utility obtained from every possible outcome o ∈ O can be described
by a single value u ∈ U. Furthermore, consider an act a ∈ A with multiple
possible outcomes, where two of these outcomes, o, o′ ∈ Oa say, yield the
same utility u ∈ U. The DM thus knows that obtaining utility u from act a
is possible. The presence of multiple outcomes yielding the same utility does
not give the DM any further information concerning the question: “Which
values u ∈ U may an act a ∈ A possibly yield?”

As it is customary in decision science, for the purpose of deciding how to
act, we identify an act a ∈ A with the utility/utilities it may yield. Thus, if
ϕ maps every o ∈ O to the utility DM obtains from it, we can represent an
act a ∈ A by the set of utilities

⋃
o∈Oa

ϕ(o) ⊆ U.
For a DM possessing information on the relative likelihoods of outcomes

for a given act, the question of which outcome may yield which utility would
surely be relevant. However, we here have a situation where this is not the
case. Plausibly, we can thus represent an act in such a situation by the u ∈ U
it may possibly yield.

Let us now backtrack and assume that the utility obtained from a possible
outcome o ∈ O consists possibly of more than one u ∈ U. Following the
reasoning above, we identify an act a ∈ A with

⋃
o∈Oa

ϕ(o) ⊆ U where now
the ϕ(o) may contain more than value. If Oa contains only one single element,
then the act a does not have any uncertain outcomes. The utility obtained
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from such an act is deterministic, if and only if for the unique oa ∈ Oa it
holds that ϕ(oa) consists of a unique u ∈ U.

Bossert et al. introduced �mnx in [15] where they considered a finite set
of outcomes. There, the DM was assumed to have a reflexive, transitive and
complete binary preferences on O, thus the DM’s preferences are given by
an injective function f : O → N. In their framework O and U can thus be
understood as finite subsets of N.

We here identify U with R and assume that the utility obtained from an
o ∈ Oa is represented by a compact interval in R.2 The complete linear order
on R will simply be denoted by > . Thus, for all a ∈ A the set

⋃
o∈Oa

ϕ(o) ⊂ R
consists of finitely many connected components of R. Hence, acts a ∈ A can
be evaluated by comparing finite unions of compact intervals. For example, if
Oa = {o, o′, o′′} with ϕ(o) = [1.5, 1.7], ϕ(o′) = [1.67, 2], ϕ(o′′) = [1, 1.3], then⋃

o∈Oa
ϕ(o) = [1, 1.3] ∪ [1.5, 2].

2Let us be absolutely clear here. We could in general assume that U is some infinite
connected topological space with a complete linear order. Nothing hinges on the particular
space, we will here simply use R. Since the preference relations we consider are invariant
under order preserving transformations of the underlying space; here R; the canonical
structure on R only carries meaning here in as far as it allows ordinal comparisons.
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Figure 1: On the left: Two raffles as described in Example 1 with possible outcomes and
uncertain utilities attaching to the outcomes. On the right: Uncertain utilities attaching
to outcomes are aggregated via ϕ.

4.2. Intervals

A set of the form [s, t] := {r ∈ R|s ≤ r ≤ t} is an interval in R. The
degenerate interval [s, s], which consists of a single number, will be denoted
merely by [s] to simplify notation. We will not consider the empty set to be
an interval. Let INT be the set of intervals and let I be the set of all finite
unions of intervals, i.e.

I := {
⋃
f∈F

If | If ∈ INT for all f ∈ F, F is finite} . (1)

We define the size of a J ∈ I as the number of connected components it
possesses as a subset of R, which will be denoted by #J. For J ∈ I let
j, j ∈ R denote, respectively, the minimum and maximum of J with respect
to the standard order > on R.

Let w be an ordering over I, i.e. it is a reflexive, transitive and complete
binary relation. This ordering is interpreted as the DM’s preference structure
over the uncertain outcomes, which we want to investigate. Let = and ≈
denote, respectively, the asymmetric and symmetric parts of w .

Reflexivity and transitivity of preferences are such widely - though by no
means universally - accepted assumptions in decision science that we shall
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not dwell on them here. The completeness assumption is more contentious.
Note that all we will assume here is that whenever the DM is presented with
two acts and their possible outcomes, the DM can decide whether the former
act is at least of equal preference as the latter act. The DM is allowed to
conclude that both acts are of equal preference. For example, the simple
decision rule to avoid worst cases gives rise to a preference order P with a
plethora of ties. Note that we do not require the DM to be able to efficiently
communicate the complete preference relation P nor do we require that P
is fully open to introspection. In light of these comments the assumption of
completeness appears plausible.

4.3. Axioms and Preference Relations for Intervals

We now introduce a first set of axioms. With the exception of the substi-
tution axiom, all other axioms have already appeared in the standard choice
under uncertainty framework (in non-interval form) in [4] and [15].

Interval Simple Monotonicity (ISM): For all r, s ∈ R such that r > s we
have [r] = [s, r] = [s].3

Interval Simple Dominance 1 (ISD1): For all r, s, t ∈ R such that r > s > t
we have [t, r] = [t, s].
Interval Simple Dominance 2 (ISD2): For all r, s, t ∈ R such that r > s > t
we have [s, r] = [t, r].
Interval Simple Uncertainty Aversion (ISUA): For all r, s, t ∈ R such that
r > s > t we have [s] = [t, r].
Interval Simple Uncertainty Appeal (ISUP): For all r, s, t ∈ R such that
r > s > t we have [t, r] = [s].
Interval Weak Substitution (IWSUB): For all I,K ∈ INT with i < k we
have [i, k] = [i, k] ∪K w I ∪K w I ∪ [i, k] = [i, k].
Interval Substitution (ISUB): For all J ∈ I with J = J1 ∪ J2 ∪ . . .∪ J#J and
for all r ≥ s ≥ jl ∈ R with J ∩ int([s, r]) = ∅ we have (J \Jl)∪ [s, r] w J and
for all j

l
≥ r ≥ s ∈ R with J ∩ int([s, r]) = ∅ we have J w (J \ Jl) ∪ [s, r].

Interval Monotone Consistency (IMC): For all H, J ∈ I with H w J we have
H ∪ J w J.
Interval Robustness (IROB): For all H, J ∈ I with H w J we have H w H∪J.

3This standard abuse of notation, formally correct and cumbersome notation would be:
“[r] = [s, r] and [s, r] = [s]”. We will continue to abuse the notation in this way.
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The dominance and monotonicity axioms formalize the idea that better out-
comes are strongly preferred. ISUA and ISUP fix the DM’s attitude towards
uncertain utilities.

In ISUB int denotes the interior of the interval [s, r] ⊂ R in the standard
topology on R, i.e. int([s, r]) = {t ∈ R|s < t < r}. If s = r, then the
interior of the interval [s, r] is empty. Roughly speaking, the axioms says
that removing some connected component [s1, r1] from J and replacing it by
an interval some other interval [s2, r2], which is not already in J and such
that r1 < s2, yields a union of intervals J ′ which is strictly preferred to J or
of equal preference to J.

Note that ISUB is in general stronger than IWSUB. Furthermore, IWSUB
implies for i < k that [i, k] ≈ [i] ∪ [k].

We now define the min-max relation (wmnx) and the max-min relation
(wmxn) on I × I. The strict parts are defined on pairs H, J ∈ I as follows

H =mnx J , if and only if [h > j or (h = j and h > j)] (2)

H =mxn J , if and only if [h > j or (h = j and h > j)] . (3)

Under this min-max relation two acts are compared primarily by their worst
possible outcome. If the worst possible outcome of an act is preferred to the
worst possible outcome of another act, then the former act is preferred. If
the worst possible outcomes are of equal preference, then the DM does not
necessarily consider both acts to be of equal preference. In such cases, ties
are broken by comparing best possible outcomes. Only in the case of equal
preference of worst possible outcomes and equal preference of best possible
outcomes is there indifference between acts. For example in the situation
depicted in Figure 1 a DM applying the min-max rule prefers a ticket from
raffle 1 over a ticket from raffle 2. For both raffles the worst possible outcome
is of the same utility while the best outcome for raffle 1 is preferable to the
best outcome for raffle 2.

Clearly, wmnx and wmxn are in a natural sense dual to each other in that
max and min have swapped roles. So every true statement about wmnx can
be turned into true statement about wmxn by an appropriate dualization and
vice versa. For the remainder we will concentrate on wmnx . We shall use
≈mnx to denote the symmetric part of wmnx; so if H wmnx J and J wmnx H,
then H ≈mnx J.
wmnx is uncertainty-averse, wmxn is uncertainty-seeking. For a discussion

of uncertainty-aversion and uncertainty-seeking in nonprobabilistic decision
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models refer to [14].

4.4. A First Axiomatic Characterisation of the Min-Max Relation

Let us consider for a moment the set of intervals INT and the preference
relationwmnx restricted to INT. For two different intervals, [s1, r1] and [s2, r2]
say, at least one of the following inequalities holds: s1 > s2, s2 > s1, r1 > r2,
r2 > r1. For example, if s1 > s2, then [s1, r1] =mnx [s2, r2]. In general, it
follows that either [s1, r1] =mnx [s2, r2] or [s2, r2] =mnx [s1, r1]. Thus, wmnx is
complete on INT and there are no ties between different intervals.

We shall now see that the uncertainty aversion axiom together with the
monotonicity axiom and the first dominance axiom are jointly strong enough
to ensure that every preference relation in our sense (reflexive, transitive and
complete) agrees with the min-max rule when comparing pairs M,N ∈ INT.

Lemma 1. w satisfies ISM, ISD1 and ISUA, if and only if w agrees with
wmnx on INT.
w satisfies ISM, ISD2 and ISUP, if and only if w agrees with wmxn on INT.

Proof If w agrees with wmnx on INT, then it clearly satisfies ISM, ISD1 and
ISUA.
Conversely, assume that w satisfies ISM, ISD1 and ISUA. It is sufficient to
prove that for all M,N ∈ INT

(M ≈mnx N implies M ≈ N) and (M =mnx N implies M = N) . (4)

If intervals M,N are such that M ≈mnx N, then M = N and by the reflex-
ivity of w we find M ≈ N.

Next consider intervals M,N such that M =mnx N. There are four cases
to consider: (i) m = m and n = n, (ii) m < m and n = n, (iii) m = m and
n < n and (iv) m < m and n < n.
If (i) holds, then m = m > n = n. By ISM we have M = N.
If (ii) holds, then either m > m = n = n or m > m > n = n. By ISM we
have [m,m] = [m] and in the former case of (ii) we also have [m] ≈ [n] = N.
Transitivity of = now implies M = N. In the latter case of (ii) we have
[m,m] = [m] = [n] = N by ISM. Again using the transitivity of = gives
M = N.
If (iii) holds, then m = m > n. Since n < n we either have m = m ≥ n > n
or n > m = m > n. In the former case ISM and transitivity imply [m] w
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[n] = [n, n]. In the latter case an application of ISUA yields M = N.
If (iv) and M =mnx N hold, then one of the following four conditions has to
hold:

m > m > n > n, (5)

m > m = n > n, (6)

m > m and n > m > n, (7)

m > n > m = n . (8)

If (5) holds, then by ISM and transitivity of = we find [m,m] = [m] = [n] =
[n, n].
If (6) holds, then by ISM and transitivity of = we obtain [m,m] = [m] ≈
[n] = [n, n].
If (7) holds, then ISM, ISUA and transitivity of = we have [m,m] = [m] =
[n, n].
In case of (8) we apply ISD1 to obtain M = N.

The second equivalence will not be proved here. The proof is either along
the lines used above or the above mentioned dualization argument may be
applied. �

Theorem 2. If w satisfies ISUB, IMC and IROB, then J ≈ [j, j] for all
J ∈ I.

In plain English this means that any holes in J are ignored by w .
Proof For J = [j, j] this is self-evident.

Let us now assume that J contains some holes, i.e. J =
⋃#J

i=1[ri, si] with
ri ≤ si for all 1 ≤ i ≤ #J ≥ 2 and si < ri+1 for all 1 ≤ i ≤ #J − 1. 4 We
have by ISUB that J w [s1, r2]∪

⋃#J−1
i=1 [ri, si]. Since w is reflexive, i.e. J w J,

we can now apply IROB to obtain J w [r1, s2] ∪
⋃#J

i=3[ri, si]. Repeating this
procedure eventually yields J w [j, j].

Conversely we have by ISUB [s1, r2] ∪
⋃#J

i=2[ri, si] w J. Reflexivity of w
and IMC imply [r1, s2]∪

⋃#J
i=3[ri, si] w J. So we have managed to fill the gap

between s1 and r2. We now proceed as often as necessary (#J−2 times to be
exact) to fill the remaining gaps. We eventually obtain [r1, s#J ] = [j, j] w J.

Noting that J w [j, j] w J implies J ≈ [j, j] completes the proof. �

4Note that the inductive arguments we give in this proof require J to be a finite union.
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From the above lemma it follows that in the presence of ISM, ISD1 and
ISUA we can replace IWSUB equivalently with
Interval Weak Substitution′ (IWSUB′): For all I,K ∈ INT with [k] = [i] we
have [i, k] = [i, k] ∪K w I ∪K w I ∪ [i, k] = [i, k].

Hence, in the following axiomatic characterization of wmnx in Corollary 3,
the only axioms mentioning the order > are ISM, ISD1 and ISUA.

Corollary 3.
w satisfies IWSUB′, IMC, IROB, ISM, ISD1 and ISUA, if and only if
w=wmnx .
w satisfies IWSUB′, IMC, IROB, ISM, ISD2 and ISUP, if and only if w=wmxn

.

Proof It is straightforward to check that wmnx satisfies these six axioms.
Conversely, we may assume that w satisfies ISM, ISD1 and ISUA. It

follows from Lemma 1 that w agrees with wmnx on INT. It remains to show
that w agrees with wmnx on all of I.

Now let J ∈ I, we will show that J ≈ [j, j]. We shall show this by

induction on #J. If #J = 1, then J = [j, j] and hence J ≈ [j, j].

If #J = 2, then there are I,K ∈ INT with J = I ∪ K and i < k.
By IWSUB′ we have [i, k] w J. Since also J ≈ J we find via IMC that
[j, j] = J ∪ [i, k] w J. We also have by IWSUB′ that J w [i, k]. Applying

IROB yields J w J ∪ [i, k] = [j, j]. Hence, [j, j] w J w [j, j].

If #J = 3, then J = I ∪K ∪M with I,K,M ∈ INT and i < k ≤ k < m.
From the above case we already know that [i,m] ≈ I ∪ M. On the other
hand [i,m] = [i, k] ≈ I ∪ K. Applying IROB we find [i,m] ≈ I ∪ M w
(I∪K)∪(I∪M) = I∪K∪M = J. Furthermore, we know that I∪M ≈ [i,m]
and K ∪M ≈ [k,m] = [i,m] ≈ I ∪M. Applying IMC gives J = I ∪K ∪M w
I ∪M ≈ [i,m]. Hence, we have shown that J ≈ [j, j] for #J ≤ 3.

If #J > 3, then J =
⋃#J

i=1[ri, si] with ri ≤ si for all 1 ≤ i ≤ #J and
si < ri+1 for all 1 ≤ i ≤ #J − 1. Then [j, j] ≈ J \ [r2, s2] ≈ J \ [r3, s3] by the

induction hypothesis. Applying IROB and IMC yields J ≈ [j, j].
The part of the proof concerning wmxn is omitted. �

4.5. Independence of Axioms

Lemma 4. ISUA is independent of ISM, ISD1, ISD2, IWSUB, IROB and
IMC.
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Proof wmxn satisfies ISM, ISD1, ISD2, IWSUB, IMC, IROB and ISUP. wmxn

does not satisfy ISUA. �

Lemma 5. ISM is independent of ISD1, ISUB, ISUA, IROB and IMC.

Proof Consider the preference relation wmin defined for H, J ∈ I by H wmin

J if and only if h ≥ j. This relations fails to satisfy ISM but does satisfy the
other five axioms. �

Lemma 6. IWSUB is independent of ISM, ISD1, ISD2, ISUA, IROB and
IMC.

Proof We define a preference relation wW that differs from wmnx by breaking
certain ties. Consider J, J ′ ∈ I such that J ≈mnx J ′. If J is of the form
J = [j, k] ∪ [j, j] with j < k < j, then J ′ =W J, if J ′ is not of this form.
Since IWSUB implies for t < s < r that [t, s] ∪ [r] w [t, r] this relation does
not satisfy IWSUB. �

This last result shows, that ISM, ISD1, ISUA, IROB and IMC are not
strong enough to characterize wmnx . This is in contrast to the characteri-
zation of �mnx in [4] which only requires SM, SD1, SUA, ROB and MC to
hold.

4.6. Further Characterizations of the Min-Max Relation

Arlegi’s proof in [4] contains an axiomatic characterization of the min-
max relation that corrected an erroneous proof in [15]. To obtain this char-
acterization three new axioms are required. It is however possible to achieve
this characterization without introducing any new axioms. We merely have
to slightly modify one of the axioms introduced in [15], see Theorem 24 on
page 31 for details. Interestingly, we can do a very similar proof in our in-
terval framework. The axiom we need to introduce is a close relative of the
Axiom of Independence. The prototype of this axiom was first introduced
in [26] and later fruitfully applied, for instance in [34].

Interval Independence (IIND): For all H, J ∈ I and all I ∈ INT with
I w H w J we have H ∪ I w J ∪ I.

Theorem 7. If w satisfies IIND, ISM, ISD1, IWSUB and ISUA, then for
all J ∈ I we have J ≈ [j, j].
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Proof The proof is done by induction #J. For #J = 1, there is nothing to
prove.

We shall show in Lemma 12 on page 19 that ISD2 follows from ISM and
ISUA. We may thus apply this axiom here.

If #J = 2, then let J = [r, s] ∪ [u, v] with v ≥ u > s ≥ r. By ISM we
have [u, v] = [r, s] and hence by IIND we obtain [u, v] w [r, s]∪ [u, v] = J. By
IWSUB we have J w [r, u]. Applying IIND to J w [r, u] yields J ∪ [u, v] =
J w [r, u] ∪ [u, v] = [j, j]. Now for the other direction we have by ISD1
[r, v] = [r, s] and by ISD2 we obtain [u, v] = [r, v]. Applying IIND yields
[j, j] = [r, v] = [r, v] ∪ [u, v] w [r, s] ∪ [u, v] = J.

For #J ≥ 3 we let J = I1 ∪ . . . ∪ I#J where il ≤ il < il+1 and Il ∈ INT
for all l. By the induction hypothesis and ISM we find

I1 ∪ . . . ∪ I#J−1 ≈ [j, i#J−1] and I#J = [j, i#J−1] . (9)

Applying IIND yields [j, i#J−1] ∪ I#J w I1 ∪ . . . ∪ I#J = J. Applying the

induction hypothesis to [j, i#J−1] ∪ I#J yields

[j, j] ≈ [j, i#J−1] ∪ I#J w I1 ∪ · · · ∪ I#J = J .

Addressing the other direction note that by ISM and the induction hypothesis
we have I#J w [i#J ] = [i#J−1] = [j, i#J−1] ≈ I1 ∪ · · · ∪ I#J−1. We now apply
IIND to the first equation in (9) and obtain

J = I1 ∪ · · · ∪ I#J w [j, i#J−1] ∪ I#J ≈ [j, j]

where the last step is by the induction hypothesis. �

Corollary 8. w satisfies IIND, IWSUB, ISM, ISD1 and ISUA, if and only
if w=wmnx .

Proof First note that wmnx satisfies these 5 axioms.
On the other hand by Lemma 1 w agrees with wmnx on intervals. By Theo-
rem 7 we have that for all J ∈ I that J ≈ [j, j] holds. �

We now give one further characterization of wmnx . The following simple
property highlights the fact that a DM comparing outcomes only focuses
on a subset of all available information, see [15, p. 302-303] for a discussion
on focal elements in decision making. The second axiom relates the prefer-
ences of the union two intervals with an empty intersection to focal elements.
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Interval Focal Property (IFP): For all H, J ∈ I such that H ≈ J we have
H ∪ J ≈ H ∩ J ≈ H.
Interval Indifference (II): For all K,N ∈ INT such that K ∩N = ∅ we have
K ∪N ≈ [min{k, n},max{k, n}].

Theorem 9. If w satisfies IFP and II, then J ≈ [j, j] for all J ∈ I.

Proof We shall proceed by induction on #J. If #J = 1, then this is obvious
and if #J = 2, then this follows from II.

If #J = 3 with J = [r, s]∪ [t, u]∪ [v, w] and w ≥ v > u ≥ t > s ≥ r, then
by the induction hypothesis

[r, w] ≈ [r, u] ∪ [v, w] ≈ [r, s] ∪ [t, w] .

Taking the intersection of [r, u] ∪ [v, w] with [r, s] ∪ [t, w] and applying IFP
yields J ≈ [j, j].

For #J ≥ 4 note that we can always obtain J ∈ I from a union of
G,H ∈ I with #G = 3,#H = #J − 1 and g = h = j and g = h = j. By the
induction hypothesis we obtain G ≈ H. Applying IFP completes the proof.
�

Corollary 10. w satisfies II, IFP, ISM, ISD1 and ISUA, if and only if
w=wmnx .

So, in the presence of ISM, ISD1 and ISUA we have that the following
sets of axioms are equivalent:

• IWSUB & IMC & IROB,

• IWSUB & IIND,

• IFP & II.

The axiomatic characterizations of wmnx proved in this section are collected
together and displayed in Table 1.
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Corollary 3 Corollary 8 Corollary 10

Interval Simple Monotonicity X X X
r > s⇒ [r] = [s, r] = [s]
Interval Simple Dominance 1 X X X
r > s > t⇒ [t, r] = [t, s]
Interval Simple Uncertainty Aversion X X X
r > s > t⇒ [s] = [t, r]
Interval Weak Substitution X X
i < k ⇒ [i, k] w I ∪K w [i, k]
Interval Monotone Consistency X
H w J ⇒ H w H ∪ J
Interval Robustness X
H w J ⇒ H ∪ J w J
Interval Independence X
(I w H w J)⇒ I ∪H w I ∪ J
Interval Focal Property X
H ∼ J ⇒ H ∼ H ∪ J ∼ H ∩ J
Interval Indifference X
k ≥ k > n ≥ n⇒ N ∪K ∼ [n, k]

Table 1: Overview of axiomatic characterizations of the wmnx-decision rule.

5. Lexicographic Refinement

The min-max relation introduced by [15] is not fine enough to distinguish
between any two acts. To refine this relation Bossert et al. introduced a
lexicographic version, denoted by �L

mnx, which breaks ties by removing the
worst and the best possible outcome and comparing the remainder via the
min-max relation. This process is then iterated to eventually break all ties.
We will here now define a lexicographic version of wC

mnx refining wmnx .5 The
resulting refinement wC

mnx will not break all ties.
There are two natural ways how to translate Bossert et al.’s approach to

our interval framework. Firstly, for each act a ∈ A we could remove the best
and the worst possible outcome. However, this straightforward plan would
not be in the spirit of the set-based approach, which we are taking here.
Recall, that we argued in Section 4.1 that it should be irrelevant how many
possible outcomes may yield a particular utility value u. The lexicographic
refinement would then depend on whether there is only one possible outcome

5We follow the terminology of Bossert et al. by calling the refinement “lexicographic”.
The standard use of the term lexicographic is somewhat different, see [24].
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yielding the lowest utility or if there are multiple such outcomes.
The second natural way is to remove the connected components which

contain the lowest and the highest utility. Since this approach does not
suffer from the flaw highlighted above we shall pursue it here.

5.1. The Lexicographic Min-Max Relation wC
mnx

Definition 11. Let J ∈ I with J = I1 ∪ I2 ∪ · · · ∪ I#J where Il = [rl, sl] and
sl < rl+1 for all l. Now put nJ := #J/2, if #J is even and nJ := (#J + 1)/2
if #J is odd. Let J0 := J and let for all 1 ≤ t ≤ nJ Jt := Jt−1 \ (It∪I#J+1−t)
and finally we put nJG := min{nJ , nG} for all J,G ∈ I.
For all J,G ∈ I we now define

J wC
mnx G :⇐⇒ ∃t ∈ {0, . . . , nJG} such that (10)

[Js ∼mnx Gs for all s < t] and [Jt =mnx Gt or ∅ = Gt] .

SowC
mnx refineswmnx by breaking certain but not all ties. Suppose J ≈mnx G,

we then remove the C onnected C omponents containing the minimum and
the maximum and compare the remaining sets via wmnx . We do this until
either a preferable set is eventually found or both Jt and Gt are empty. In
this last case J ≈C

mnx G.
If G, J ∈ I, with G ≈mnx J, are either intervals or the union of two

intervals, then after removing the connected components we are left with
two empty sets. Then G wC

mnx J and J wC
mnx G, hence G ≈C

mnx J. For such
pairs G, J ∈ I the refinement wC

mnx does not break ties.
For example for G = [s1, r1] ∪ [s2, r2] ∪ [s3, r3] with s1 ≤ r1 < s2 ≤ r2 <

s3 ≤ r3 and J = [s1, t1] ∪ [t2, t3] ∪ [t4, t5] ∪ [t6, r3] with s1 ≤ t1 < t2 ≤
t3 < t4 ≤ t5 < t6 ≤ r3 we have G ≈mnx J. After removing the connected
components, as described above, we are left with [s2, r2] and [t2, t3] ∪ [t4, t5].
Thus, G ≈C

mnx J, if and only if s2 = t2 and r2 = t5.
For G as above and K = [s1, t1] ∪ [t6, r3] with s1 ≤ t1 < t6 ≤ r3 we will

remove all of K and be left with the empty set. According to the definition
G =C

mnx K holds. This may be motivated as follows: At first the DM com-
pares the worst possible outcomes and the best possible outcomes. If they
are of equal preference, the DM will use the not-yet compared intervals to
make a decision. Eventually, there are only intervals for one act left. Then,
the DM has some idea how she appreciates these outcomes. For the other act
however, there is no more interval left and the DM may thus fear the very
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worst. Since we here consider a strongly risk-averse DM, a preference rela-
tion according to which some known (possible dire) consequences are strictly
preferred to a state of limbo appears appropriate.

5.2. A Second Set of Axioms

We now introduce axioms to characterizewC
mnx . The first four are inspired

by their counterparts in [15]. IUA is a variant of the previously introduced
ISUA. IM is seemingly needed as we are dealing with intervals.

Interval Type 1 Dominance (ID1): For all J ∈ I and all M,N ∈ INT
such that m > j ≥ j > n we have [n,m] = N ∪ J.
Interval Extension Principle type 1 (IEP1): For all J ∈ I with J = I1 ∪ I2 ∪
· · ·∪I#J and all M,N ∈ INT with M ∩J = N ∩J = ∅ such that Il = M ∪N
for all 1 ≤ l ≤ #J and such that J = M ∪N we have J ∪M ∪N = M ∪N.
Interval Type 1 Monotonicity (IMON1): For all M ∈ INT and all J,H ∈ I
with M = J and M = H we have M = J ∪H.
Interval Extension Independence (IEIND): For all J,H ∈ I and all M,N,M ′, N ′ ∈
INT with m = m′, n = n′, m > j ≥ j > n and m′ > h ≥ h > n′ we have
[J = H ⇐⇒ J ∪M ∪N = H ∪M ′ ∪N ′].
Interval Uncertainty Aversion (IUA): For all N,M,K ∈ INT with n > m ≥
m > k we have M = K ∪N.
Interval Monotonicity (IM): For all r ≥ s > t ≥ u we have [u, t]∪[s, r] = [u, t].

Lemma 12. The following implications hold:

1. II& ID1 ⇒ ISD1,

2. II& ISD1 ⇒ IM,

3. ISUA & ISM & II ⇒ IUA and

4. ISUA & ISM ⇒ ISD2.

Proof Proof of 1: Let r, s, t ∈ R be such that r > s > t. Then via ID1 and
II [t, r] = [t] ∪ [s] ≈ [t, s].
Proof of 2: Let r ≥ s > t ≥ u, we have by II and ISD1 [u, t]∪ [s, r] ≈ [u, r] =
[u, t].
Proof of 3: Let M,N,K ∈ INT with n < k ≤ k < m. Then by ISM
K = [k, k] w [k] and via ISUA [k] = [n,m]. Furthermore, because of II we
have [n,m] ≈ N ∪M. Hence, K = N ∪M.
Proof of 4: Let r > s > t, then by ISM we find [s, r] = [s] and by ISUA we
have [s] = [t, r]. This now yields [s, r] = [t, r]. �
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5.3. A Characterization of the Lexicographic Min-Max Relation

Before giving the characterization of wC
mnx we first prove a lemma. The

lemma sheds light on situations in which we remove connected components
and are then left with the empty set.

Lemma 13. If w satisfies IUA, IEP1 and IM, then for all J ∈ I and all
M,N ∈ INT such that m > j and such that j > n we have J ∪M ∪ N =

M ∪N.

Proof Let J = I1 ∪ I2 ∪ · · · ∪ I#J with il < il+1 for all l. Let M,N ∈ INT
be such that m > j and such that j > n.

Put I#J+1 := M and I0 := N. Let 0 ≤ s < l < r ≤ #J + 1 then by IUA

Il = Is ∪ Ir . (11)

Suppose that #J is even, we let h := #J/2. By (11) we have Ih−1 = Ih+1 ∪
Ih−2. By application of IM we obtain Ih ∪ Ih−1 = Ih+1 ∪ Ih−2. From IEP1 it
follows that Ih−2 ∪ Ih−1 ∪ Ih ∪ Ih+1 = Ih−2 ∪ Ih+1.

Similarly as above using IM and (11) we obtain Ih−2∪ Ih+1 = Ih−3∪ Ih+2.
Using the transitivity of = yields Ih−2∪Ih−1∪Ih∪Ih+1 = Ih−3∪Ih+2. Applying
IEP1 we obtain

Ih−3 ∪ Ih−2 ∪ Ih−1 ∪ Ih ∪ Ih+1 ∪ Ih+2 = Ih−3 ∪ Ih+2 .

Continuing this way we eventually obtain J ∪N ∪M =
⋃#J+1

l=0 Il = N ∪M.
Now suppose that #J is odd, we let 2g := #J + 1. By (11) we have Ig−1 =
Ig−2 ∪ Ig. By IEP1 we find

Ig−2 ∪ Ig−1 ∪ Ig = Ig−2 ∪ Ig . (12)

Again applying (11) gives Ig−2 = Ig−3∪Ig+1. By transitivity of = and repeated
application of IM we obtain Ig−2 ∪ Ig = Ig−3 ∪ Ig+1. Together with (12) this
yields Ig−2 ∪ Ig−1 ∪ Ig = Ig−3 ∪ Ig+1. Hence by IEP1 and (11) we find

Ig−3 ∪ Ig−2 ∪ Ig−1 ∪ Ig ∪ Ig+1 = Ig−3 ∪ Ig+1 .

We can now follow this procedure to eventually obtain J ∪N ∪M = N ∪M.
�

Theorem 14. w satisfies ISM, ISUA, ID1, IEP1, IMON1, II and IEIND,
if and only if w=wC

mnx .
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We shall use IM and ISD1 in this proof. Recall that IM and ISD1 follow
from ID1 & II, see Lemma 12.
Proof wC

mnx satisfies ISM, ISUA, ID1, IEP1, II and IEIND. We shall now
prove that =C

mnx satisfies IMON1.
Let M ∈ INT and J,H ∈ I such that M =C

mnx J and M =C
mnx N.

Then either (m > j) or (m = j and m > j). Also either (m > h) or

(m = h and m > h). If m > j or if m > h then m > min{j, h} and hence

M =C
mnx J ∪H. So we can assume that m = j = h. Hence, j < m > h and

thus m > max{j, h}.
Let us now turn to the other more interesting direction of the proof. It

is sufficient to show for all J,H ∈ I that

J ≈C
mnx H implies J ≈ H (13)

and

J =C
mnx H implies J = H . (14)

If J ≈C
mnx H, we know that there is a t such that Jt = Ht = ∅ and Jt−1 6=

∅ 6= Ht−1. Note that Jt−1 and Ht−1 each contain at most two connected
components. Furthermore j

t−1 = ht−1 and jt−1 = ht−1 have to hold. Hence

by II Jt−1 ≈ [j
t−1, jt−1] = [ht−1, ht−1] ≈ Ht−1. Reading IEIND both ways

yields Jt−2 ≈ Ht−2. Repeated application of IEIND eventually yields J ≈ H.
Now suppose that J =C

mnx H. The proof proceeds by considering cases.
Assuming (14) there are three possibilities:

J =mnx H (15)

∃t ∈ {1, . . . , nJH} such that Js ≈mnx Hs for all s < t and Jt =mnx Ht (16)

∃t ∈ {1, . . . , nJH} such that Js ≈mnx Hs for all s < t and Jt 6= ∅ = Ht.
(17)

If (15) holds, then there are four subcases to be considered. Case A) J,H ∈
INT, case B) J /∈ INT and H ∈ INT, case C) J ∈ INT and H /∈ INT and
case D) J,H /∈ INT.
Case A: If j > h, then by ISM and ISUA J = [j, j] w [j] = H. If j = h, then

j > h. By ISD1 hence J = H.
Case B: By Lemma 13 we have J w [j, j]. Also j > h or (j = h and j > h).

In the first case we have J w [j, j] w [j]. Since H is an interval we use ISUA

21



to obtain [j] = H. In the second case we observe that J w [j, j] = [h, h] by
the above lemma and ISD1.
Case C: Let H :=

⋃#H
l=1 [rl, sl] with sl < rl+1 for all 1 ≤ l ≤ #H − 1. There

are three subcases: (X) j ≥ h; (Y) h > j > h and (Z) j = h and j > h.
In case CX: J w [j] w [r#H , s#H ] by ISM. Repeated application of IMON1

and II gives J w [r#H , s#H ] = [r#H , s#H ]∪[r#H−1, s#H−1] = . . . =
⋃#H

l=1 [rl, sl] =
H.
In case CY: J w [j]. For all l if j > sl, then by IUA [j] = [rl, sl]∪ [r#H , s#H ].
And if sl ≥ j > h, then [j] = [r1, s1] ∪ [rl, sl]. Applying IMON1 gives
J w [j] = H.

In case CZ: ID1 yields [j, j] = [h, j] = H.

Now assume (15) and case D hold. So either (j = h and j > h) or j > h.

In the the first case we obtain using Lemma 13, II and ID1: J w [j, j] ≈
[j] ∪ [j] = H. In the second case we use that J = [j] and proceed as in cases
CX and CY.

In case of (16) we know that Jt =mnx Ht. We just showed that then
Jt = Ht holds. Application of IEIND (possibly repeated) gives J = H.

In case of (17) we know that Jt−1 is the union of at least three pairwise
disjoint intervals and that

Jt−1 6= Ht−1 =

{
[j

t−1, jt−1]

[j
t−1, k] ∪ [k + k′, jt−1]

(18)

where jt−1 ≤ k, k′ > 0 and k + k′ ≤ jt−1. In both cases we have Jt−1 =

[j
t−1, jt−1] ≈ Ht−1 by Lemma 13 and II. Application of IEIND (possibly

repeated) yields J = H. �
Although we used the axiom IM in Lemma 13 it is not required in the

above characterization.

6. Utilities represented as Multi-Sets of Intervals

In our set-based approach the utility obtained from an act was taken to
be the point-wise union of utilities obtained from all possible outcomes. We
will now deviate from this approach and take the utility obtained from an act
a ∈ A to be the union of intervals in R which represent the utility obtained
from the o ∈ Oa. For example, if an act a has two possible outcomes which
yield respective intervals [0.5, 1.1] and [0.7, 1.2], then the overall utility from
this act is represented by 〈[0.5, 1.1], [0.7, 1.2]〉 and not by [0.5, 1.2].
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We thus study preference relations on such sets of intervals. Observe
that if two possible outcomes o, o′ of the same act a yield the same utility
interval, then the multi-set of utility intervals representing the act a contains
ϕ(o) more than once. Using the terminology of [7] this approach could be
called vector-based, although we do not require the vectors we compare to be
of the same dimension nor does the order of the components of the vectors
matter. We hence call our approach multi-set based.

Figure 2: Multi-set aggregation of utility intervals arising from a decision problem between
two raffles.

With the sole exception of IDOUB all axioms we introduce in this section
are direct translations of axioms in [15] into our framework and thus inherit
the justification of their brethren. Again, we shall assume that the DM has
a linear preference relation over single outcomes. This now amounts to a
binary relation over INT, which we denote by w .

Definition 15. Let V = {I1, I2, . . . , In} with Il ∈ INT be a finite multi-set
of intervals; the Il are thus not all necessarily pairwise distinct. We let SI
be the set of all such multi-sets of intervals. For V ∈ SI let #V denote the
number of intervals comprising V.

Definition 16. For V ∈ SI let v be the interval I in V such that for all
other J ∈ V we have J wmnx I. Let v be the so defined maximum. Define
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the strict part of the min-max decision rule w2mnx on SI for V,W ∈ SI by

V =2mnx W if and only if [v =mnx w or (v = w and v =mnx w)] . (19)

Recall that for I, J ∈ INT we have I = J , if and only if I ≈mnx J. We can
thus reorder V = {I1, I2, . . . , I#V } to achieve that for all l we have Il+1 w2mnx

Il with Il ≈2mnx Il+1, if and only if Il = Il+1. For V = {I1, I2, . . . , I#V } ∈
SI and W = {J1, J2, . . . , J#W} ∈ SI the relation w2mnx is given by first
comparing the worst interval in V to the worst interval in W via the min-
max relation. If I1 =mnx J1, then V =2mnx W. If I1 = J1, then I#V and J#W

are compared via the min-max rule. In that case if I#V =mnx J#W , then
V =2mnx W. Thus, V ≈mnx J holds, if and only if I1 = J1 and I#V = J#W .

In plain English, w2mnx compares worst possible outcomes by the min-
max rule. If there is a tie, best possible outcomes are compared by the min-
max rule. If there is a second tie, then V ≈2mnx W. The double application
of the min-max rule inspired the name w2mnx . Likewise, the number “2” in
the following axioms indicates that they are closely related to their cousins
in the set-based interval approach.

For the example in Figure 2, a DM applying w2mnx would prefer a ticket
of raffle 2 over a ticket of raffle 1. Both tickets have the same worst possible
outcome, however for the best possible outcomes according to the min-max
rule (winning a “bear” or a “lion”) the outcome “lion” is preferred to the
outcome “bear” according to the min-max rule. Recall that a DM applying
wmnx prefers a ticket of raffle 1.

Interval Cautious Substitution (ICSUB): Let V ∈ SI, I, J ∈ INT be such
that I, J /∈ V and J w I, then J ∪ V w V ∪ I.6

Interval Double (IDOUB): Let V ∈ SI, I, J ∈ INT and I, J ∈ V be such
that I = J, then V ≈ V \ I.
2 Interval Simple Monotonicity (2ISM): For all I, J ∈ INT such that I = J
we have I = I ∪ J = J.
2 Interval Simple Dominance 1 (2ISD1): For all I, J,K ∈ INT such that
I = J = K we have K ∪ I = K ∪ J.
2 Interval Simple Uncertainty Aversion (2ISUA): For all I, J,K ∈ INT such
that I = J = K we have J = I ∪K.

6Here and in the following we drop the brackets {,} in the notation. So V ∪ I is the
multi-set containing the interval I and the intervals in V.
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The axiom IDOUB implies that multiple outcomes from the same act which
yield the exact same utility interval are treated as if there was only one
such outcome. Accepting this axioms is appropriate in case the DM is only
interested in which utility intervals I ∈ INT an act a ∈ A may possibly
yield.

Theorem 17. w satisfies ICSUB, IDOUB, ISM, 2ISM, ISD1, 2ISD1, ISUA
and 2ISUA, if and only if w=w2mnx .

Proof Clearly, w2mnx satisfies these axioms.
Now suppose that w on SI satisfies these axioms. By the proof of

Lemma 1 w agrees with wmnx on INT. Since wmnx agrees with w2mnx on
INT we have that w agrees with w2mnx on INT.

Next consider a V ∈ SI. By replacing all intervals in V different from
v with v and applying ICSUB and IDOUB we obtain v ∪ v w V. Replacing
in V all intervals other than the maximum with v and applying ICSUB and
IDOUB we obtain V w v∪v. Thus V ≈ v∪v. For the remainder of the proof
we may thus suppose that V = v ∪ v and W = w ∪w, possibly v = v and/or
w = w. We will now imitate the proof of Lemma 1.

If i) V ≈2mnx W then v ≈mnx w and v ≈mnx w. Thus v = w and v = w
and hence V = W. V ≈ W follows trivially.
If ii) V =2mnx W, then either a) v = v and w = w, b) v 6= v and w = w, c)
v = v and w 6= w, d) v 6= v and w 6= w.
Suppose a) holds, then V = v =mnx w = W, hence V = W.
Suppose b) holds, if v = W then by 2ISM V = v ∪ v = W. If v 6= W, then
v = W ; since we assumed that V =2mnx W. We thus have V w v = W.
Suppose c) holds, then V = v = w. If v w w = w, then by 2ISM V = v w
w = w ∪ w = W. If w w v = w, then by 2ISUA we have V = W.
Suppose d) holds and recall that we assume that V =2mnx W. One of the
following then has to hold

v = v = w = w, (20)

v = v = w = w, (21)

v = v and w = v = w, (22)

v = w = v = w . (23)

If (20) holds, then by 2ISM V = v ∪ v = v = w = w ∪ w = W.
If (21) holds, then by 2ISM V = v ∪ v = v = w = w ∪ w = W.
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If (22) holds, then by 2ISM and 2ISUA V = v ∪ v = v = w ∪ w = W.
If (23) holds, then simply by 2ISD1 V = W. �

6.1. Lexicographic Refinement

Defining a Bossert-style lexicographic refinement wL
2mnx of w2mnx on SI is

uncontentious, since the worst and best element of a V ∈ SI are well-defined.
Instead of giving a technical definition of wL

2mnx, which would require the
introduction of more notation, we give an intuitive description of wL

2mnx .
wL

2mnx is defined as a refinement of w2mnx . Suppose V,W ∈ SI are such
that V ≈2mnx W and V 6= W. Then we remove the worst and the best
element of V and of W, thus we obtain V ′ and W ′; where worst and best are
here according to =mnx . We then compare the V ′ to W ′ via w2mnx . If W ′

is empty, then V =L
2mnx W. If V ′,W ′ 6= ∅, then V ′ is compared to W ′ via

w2mnx . If V ′ =2mnx W ′, then V =L
2mnx W. If V ′ ≈2mnx W ′, then we again

remove the worst and best elements and continue in this manner.
Since we assumed that V 6= W we eventually obtain either V =L

2mnx W
or W =L

2mnx V, that is according to =L
2mnx no two different V,W ∈ SI are

equally preferred. We now give an axiomatic characterization of =L
2mnx .

Definition 18. Let SI2 := {V ∈ SI|#V ≤ 2}.

Lemma 19. If w satisfies ISM, 2ISM, ISD1, 2ISD1, ISUA and 2ISUA, then
w agrees with wL

2mnx on SI2.

Proof Lemma 1 shows that w agrees with wmnx on INT and hence it agrees
there with wL

2mnx . We now mimic the proof of Lemma 2 on page 303 in [15]
to extend the agreement to SI2. �

Completely analogously to Lemma 4 on page 308 in [15] we will obtain
the next lemma. Before that we need to introduce one further axiom.
2 Interval Extension Principle 1 (2IEP1): For all V ∈ SI, N,M ∈ INT
such that N,M /∈ V and such that for all v ∈ V we have N = v = M and
V = N ∪M, then V ∪N ∪M = N ∪M.

Lemma 20. Let V ∈ SI, M,N ∈ INT be such that M,N /∈ V and let w
satisfy 2ISM, 2ISUA and 2IEP1. If for all I ∈ V we have M = I = N, then
V ∪M ∪N = M ∪N.
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To complete the axiomatic characterization we need to introduce a few
more axioms.
2 Interval Dominance 1 (2ID1): Let V ∈ SI and N,M ∈ INT be such that
for all I ∈ V we have N = I = M. Then N ∪M = V ∪M.
2 Interval Monotonicity 1 (2IMON1): Let N ∈ INT, V,W ∈ SI be such
that N = V and N = W. Then N = V ∪W.
2 Interval Extension Independence (2IEIND): Let N,M ∈ INT, V,W ∈ SI
be such that M,N /∈ V,W and such that N = I and J = M for all I ∈ V
and all J ∈ W. Then, V = W holds, if and only if N ∪ V ∪M = N ∪W ∪M
holds.

Theorem 21. If w satisfies ISM, 2ISM, ISUA, 2ISUA, ISD1, 2ID1, 2IEP1,
2IMON1 and 2IEIND, then w=wL

2mnx .

Proof First note that wL
2mnx satisfies all these axioms.

For the other direction note that we already proved that w agrees with
wL

2mnx on SI2. The rest of the proof is a simple adaptation of the proof of
Theorem 5 on page 309 in [15]. �

Comparing the characterization of wL
2mnx to that of �L

mnx (see Theorem
5 in [15]) we note that SM, SUA and D1 have all been split into two axioms
reflecting the fact that we first have to fix the DM’s preferences on INT
before we can move to comparisons of multi-sets of intervals. EP1, MON1 and
EIND on the other hand have been translated directly to the here introduced
framework.

7. Conclusions

We have put forward two frameworks for choice under complete uncer-
tainty. The key ingredient in these frameworks is the assumption that the
ordinal utility obtained from an outcome cannot be described by a sim-
ple number but is better represented by an interval of utilities. The first
framework applied a set-based approach to aggregate utilities from different
possible outcomes from the same act while the second framework relied on
multi-sets to aggregate uncertain utilities. Then we axiomatically character-
ized several decision rules for risk-averse boundedly rational DMs in these
frameworks.

Our approach is limited by the assumptions we have made. For instance
we assumed that there is absolutely no information on the (relative) likeli-
hood of possible outcomes available nor can utilities be cardinally compared.
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The further assumption of transitivity of preference relations for decision
problems under (complete) uncertainty seems to be in line with human DMs
facing such problems. Vrijdags found in [45] that human DMs faced with
a choice under complete uncertainty rarely violate transitivity. A related
similar result is that of Birnbaum & Schmidt [10] who reported that human
DMs display transitive preferences when facing risky choices. The transitiv-
ity assumption in our approach hence appears to be in line with real-world
human DMs.

Transferring other preference relations (for instance median based rela-
tions) to our framework and (axiomatic) investigations of these transferred
relations are logical next steps to take. This could yield a better understand-
ing of the frameworks introduced here as well as [the properties of] their
preference relations. Furthermore, empirical investigations of choice under
complete or imprecise uncertainty (such as [31, 45]) may be carried out to
determine whether decision rules based on our frameworks can lead to better
explanations of observed choice behaviour under complete uncertainty (or
even to predict such choices).

Appendix A. A Condensed Extract of Bossert, Pattanaik & Xu
and Arlegi

Appendix A.1. The Framework

Let X denote the finite set of possible outcomes, where #X denotes the
size of X. Let K be the power set of X without the empty set. A subset of
X containing at least two elements is interpreted as the uncertain prospect
with possible outcomes “being” the elements of this subset. A singleton set
{x} ⊂ X is interpreted as a “trivial” uncertain (i.e. certain) prospect with
only one possible outcome, namely x. Put also K2 := {A ∈ K | 1 ≤ #A ≤ 2}.

Furthermore, consider a fixed linear preference ordering R on X, i.e. R is
reflexive, transitive and complete. For A ∈ K let a, a denote, respectively the
minimum and maximum of A with respect to R. Let P be the antisymmetric
part of R and I be the symmetric part.

Let � be an ordering over K, i.e. it is reflexive, transitive and complete.
This ordering is interpreted as the agent’s preference over the uncertain out-
comes. � and ∼ denote, respectively, the asymmetric and symmetric parts
of � .
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Appendix A.2. Existing Axiomatic Characterization of classical Min-Max
Relation

The following axioms were introduced in [4] and [15].
Simple Monotonicity (SM): For all x, y ∈ X such that xPy we have {x} �
{x, y} � {y}.
Simple Dominance 1 (SD1): For all x, y, z ∈ X such that xPyPz 7 we have
{x, z} � {y, z}.
Simple Dominance 2 (SD2): For all x, y, z ∈ X such that xPyPz we have
{x, y} � {x, z}.
Simple Uncertainty Aversion (SUA): For all x, y, z ∈ X such that xPyPz we
have {y} � {x, z}.
Simple Uncertainty Appeal (SUP): For all x, y, z ∈ X such that xPyPz we
have {x, z} � {y}.
Substitution (SUB): For all A ∈ K, for all y ∈ A and all x ∈ X \A with xPy
we have (A ∪ {x}) \ {y} � A.
Monotone Consistency (MC): For all A,B ∈ K with A � B we have A∪B �
B.
Robustness (ROB): For all A,B,C ∈ K with A � B and A � C we have
A � B ∪ C.

The two basic preference relations investigated are the min-max relation
�mnx and the max-min relation �mxn. They are defined on K as follows

A �mnx B, if and only if [aPb or (aIb and aRb)] (A.1)

A �mxn B, if and only if [aPb or (aIb and aRb)] . (A.2)

In Lemma 2 on pages 303-304 in [15] the authors prove two equivalences
� satisfies SM, SD1 and SUA, if and only if � agrees with �mnx on K2.
� satisfies SM, SD2 and SUP, if and only if � agrees with �mxn on K2.

Theorem 1 on page 222 in [4] reads:
If � satisfies SUB, MC and ROB, then A ∼ {a, a} for all A ∈ K.

Theorem 2 in [4] on page 223 states that

7This standard abuse notation, formally correct and cumbersome notation is
(xPy and yPz). We will continue to abuse the notation similarly elsewhere.
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� satisfies SM, ROB, MC, SD1 and SUA, if and only if �=�mnx .
� satisfies SM, ROB, MC, SD2 and SUP, if and only if �=�mxn .

Appendix B. Improved and further Characterizations

It was later found that the axiomatic characterization of the min-max
relation given in [15] was erroneous and subsequently a correct characteriza-
tion was given, see [4]. For this later characterization three new axioms were
introduced: SUB, MC and ROB.

Appendix B.1. Improved Characterization of the classical Min-Max Relation

We will here show how to characterize �mnx by only slightly modifying
one of the axioms in the erroneous proof.
Independence’ (IND’): For all A,B ∈ K and all x ∈ X such that {x} � A �
B we have A ∪ {x} � B ∪ {x}.

Theorem 22. If � satisfies SM, IND’ and SD1, then for all A ∈ K we have
A ∼ {a, a}.

Proof The proof is done by induction. If #A ≤ 2, then clearly A ∼ {a, a}.
Let A = {b1, . . . , bm} with b1Pb2P . . . P bm−1Pbm. If #A = 3, then by SM

{b2, b3} � {b3} . (B.1)

Since by SM we have

{b1} � {b1, b2} � {b2} � {b2, b3} � {b3} (B.2)

we can apply IND’ to find

{b1, b2, b3} � {b1, b3} . (B.3)

Now for the other direction we have by SM and SD1

{b1} � {b1, b3} � {b2, b3} . (B.4)

and via IND’ we find
{b1, b3} � {b1, b2, b3} . (B.5)

Hence, for #A ≤ 3 we have A ∼ {a, a}.
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Now assume that m := #A ≥ 4. By the induction hypothesis, SM and
SD1 we find

{b1} � {b2} � {b2, bm} ∼ {b2, . . . , bm} . (B.6)

Applying IND’ twice gives

{b1, b2, bm} ∼ {b1, b2, . . . , bm} . (B.7)

Using the induction hypothesis on the left hand side yields

{b1, bm} ∼ {b1, b2, bm} ∼ {b1, b2, . . . , bm} . (B.8)

�
We now restate Lemma 2 in [15] on page 303.

Lemma 23. � satisfies SM, SD1 and SUA, if and only if � agrees with
�mnx on K2.

Theorem 24. � satisfies SM, SD1, SUA and IND’, if and only if �=�mnx .

Proof First of all let us verify that �mnx satisfies IND’.
Let {x} �mnx A and A �mnx B. If #A = 1, then xP a. If furthermore

A ∼mnx B then A = B and hence A ∪ {x} = B ∪ {x} and so A ∪ {x} ∼mnx

B ∪ {x}. If A �mnx B, then a P b and so {a} ∪ {x} P {b} ∪ {x}. Hence
A ∪ {x} �mnx B ∪ {x}.

If #A ≥ 2, then x P a. Since a R b we have x P b. This yields
A ∪ {x}RB ∪ {x}. If a = b, then a R b. Then also A ∪ {x}RB ∪ {x}. We
hence have A ∪ {x} �mnx B ∪ {x}.

Hence, �mxn satisfies IND’ and it also satisfies the other above axioms.
Combining Theorem 22 and Lemma 23 yields the other direction. �

Appendix B.2. Further Characterizations

We now translate the ideas from Section 4.6 to this framework.

Focal Property (FP): For all A,B ∈ K with A ∼ B we have A ∼ A ∪ B ∼
A ∩B.
Forgotten Middle (FM): For all A ∈ K with A = {b1, b2, b3} with b1Pb2Pb3
we have A ∼ {b1, b3}.

Lemma 25. If � satisfies FP and FM, then for all A ∈ K we have A ∼
{a, a}.

31



Proof The proof is by induction on #A. If #A ≤ 2, then there is nothing
to prove.

If #A = 3, we apply FM.
If #A =: m ≥ 4 with A = {b1, b2, . . . , bm} and b1Pb2Pb3 . . . bm−1Pbm,

then A = {b1, b2, bm} ∪ {b1, b3, b4, . . . , bm}. Note that by the induction hy-
pothesis these last two sets are of equal preference. Applying FP to their
union and intersection yields A ∼ {a, a}. �

Theorem 26. � satisfies SM, SD1, SUA, FP and FM, if and only if �=�mnx

.

In Table B.2 the characterizations given in the appendix can be seen at one
glance. Unsurprisingly, there is a high degree of symmetry between Table 1
and Table B.2.

32



“Theorem 3” in [15] Theorem 2 in [4] Theorem 24 Theorem 26

Simple Monotonicity X X X X
xPy ⇒ {x} � {x, y} � {y}
Simple Dominance 1 X X X X
xPyPz ⇒ {x, z} � {y, z}
Simple Uncertainty Aversion X X X X
xPyPz ⇒ {y} � {x, z}
Independence X
(x /∈ A ∪B & A � B)⇒ A ∪ {x} � B ∪ {x}
Independence’ X
{x} � A � B ⇒ A ∪ {x} � B ∪ {x}
Monotone Consistency X
(A � B &A � C)⇒ A � B ∪ C
Robustness X
A � B ⇒ A ∪B � B
Focal Property X
A ∼ B ⇒ A ∼ A ∪B ∼ A ∩B
Forgotten middle X
xPyPz ⇒ {x, z} ∼ {x, y, z}

Table B.2: Schematic overview of axiomatic characterizations of the �mnx-decision rule.
The quotation marks around Theorem 3 indicate an erroneous proof.
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[22] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade.
Preferences in AI: An overview. Artificial Intelligence, 175(7-8):1037–
1052, 2011.

[23] P.C. Fishburn. Interval orders and interval graphs: A study of partially
ordered sets. Wiley, 1985.

[24] Peter C. Fishburn. Lexicographic Orders, Utilities and Decision Rules:
A Survey. Management Science, 20(11):1442–1471, 1974.

[25] Peter C. Fishburn. Interval graphs and interval orders. Discrete Math-
ematics, 55(2):135–149, 1985.

[26] Peter Gärdenfors. Manipulation of social choice functions. Economic
Theory, 13(2):217–228, 1976.

[27] Christian Geist and Ulrich Endriss. Automated search for impossibility
theorems in social choice theory: Ranking sets of objects. Journal of
Artificial Intelligence Research, 40:143–174, 2011.

[28] Gerd Gigerenzer and Daniel G Goldstein. Reasoning the fast and frugal
way: Models of bounded rationality. Psychological Review, 103(4):650–
669, 1996.

[29] Nicolas Gravel, Thierry Marchant, and Arunava Sen. Ranking com-
pletely uncertain decisions by the uniform expected utility criterion.
IDEP Working Papers 0705, Institut d’economie publique (IDEP), Mar-
seille, France, 2007. Presented at the 3rd World Congress of the Game
Theory Society, Evanston.

[30] Linda M. Haines. A statistical approach to the analytic hierarchy process
with interval judgements. (I). Distributions on feasible regions. European
Journal of Operational Research, 110(1):112–125, 1998.

[31] Takashi Hayashi and Ryoko Wada. Choice with imprecise information:
an experimental approach. Theory and Decision, 69:355–373, 2010.

[32] Jean-Yves Jaffray and Meglena Jeleva. How to deal with partially ana-
lyzable acts? Theory and Decision, 71:129–149, 2011.

36



[33] G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, and A.R. Davoodi. Extension
of TOPSIS for decision-making problems with interval data: Interval
efficiency. Mathematical and Computer Modelling, 49(5-6):1137–1142,
2009.

[34] Yakar Kannai and Bezalel Peleg. A note on the extension of an order
on a set to the power set. Journal of Economic Theory, 32(1):172–175,
1984.

[35] Jae Kyeong Kim and Sang Hyun Choi. A utility range-based interactive
group support system for multiattribute decision making. Computers &
Operations Research, 28(5):485–503, 2001.

[36] Soung Hie Kim, Sang Hyun Choi, and Jae Kyeong Kim. An interactive
procedure for multiple attribute group decision making with incomplete
information: Range-based approach. European Journal of Operational
Research, 118(1):139–152, 1999.

[37] Igor O. Kozine and Lev V. Utkin. Interval-valued finite markov chains.
Reliable Computing, 8:97–113, 2002.

[38] David M. Kreps. A Representation Theorem for “Preference for Flexi-
bility”. Econometrica, 47(3):565–577, 1979.

[39] Esteban Oloriz, Juan Carlos Candeal, and Esteban Induráin. Repre-
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