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Preface 

 

Dear young reader, to understand the follow-

ing story let me briefly tell you that Objective 

Bayesianism is a normative approach to ra-

tional belief formation stipulating that  

A.  Beliefs should satisfy the axioms of prob-

ability. 

B.  Beliefs should satisfy constraints im-

posed by ones evidence. 

C.  Beliefs should maximize entropy among 

the probability functions satisfying the con-

straints imposed  by the agent’s evidence. 



A Bedtime Story 



Chapter 1 

So spoke the all-knowing oracle: ``Your beliefs 

shall be coherent (probabilistic). If they are not the 

Dutch-Book will make sure that you loose money.’’ 

The 

 

Dutch
 

 

Book 

B
. de Finetti  



Chapter 2 

So spoke the all-knowing oracle: ``Your beliefs 

shall be calibrated. Otherwise, repeated betting will 

loose you money.’’ 



Chapter 3 

So spoke the all-knowing oracle: ``Your beliefs 

shall be maximally equivocal. Otherwise, your worst-

case expectation betting returns are too low.’’ * 





And since the boy was a good Objective 

Bayesian he slept well; every single night. 



 

One night the son asks his dad: 

Why should I avoid three different 

types of loss (sure loss, expected 

loss, worst-case expected loss)? 



 

His dad did not have an answer 

and our little hero had a really bad 

night. 
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Scoring Rules 101 - The usual story

Idea: Ask DM for a forecast expressing her beliefs, i.e. bel :
SL → [0,1].

Denote by Ω the set of states (ω =
∧

1≤i≤n±xi ; elementary
events).
If ω ∈ Ω obtains, then DM will suffer loss L(ω,bel).
Expected loss then leads to the notion of a scoring rule

S(P,bel) :=
∑

ω∈Ω

P(ω)L(ω,bel) .

P is the chance function (distribution of some random vari-
able).
Low score is good!
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Scoring Rules - Reloaded

Normally, there are other good reasons (Dutch Book, Cox’s
Theorem) to adopt a probability function.
We want to give one account, which makes DM adopt a
probability function, i.e. get rid of nightmares.
Thus, a scoring rule S(P,bel) which only depends on the
bel(ω) for ω ∈ Ω is not going to cut it. – We would have no
way to constrain bel(ω1 ∨ ω2).

Instead, we will consider extended score

S(P,bel) =
∑

F⊆Ω

P(F ) · L(F ,bel)

compare with
∑

ω∈Ω

P(ω) · L(ω,bel) .
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Worst-Case Loss

However, DM does not know P∗, all she knows is P∗ ∈ E ⊆
P. Minimizing worst case loss makes sense.

sup
P∈E

S(P,bel) = sup
P∈E

∑

F⊆Ω

P(F ) · L(F ,bel) .
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Proposition Score and Proposition Entropy

We aim to justify adopting the P† which maximizes

HΩ(P) =
∑

ω∈Ω

−P(ω) · log(P(ω)) .

So our loss function will have to be logarithmic.
Axioms L1 – L4 imply that L(F ,bel) = − log(bel(F )).

L(F ,bel) = log(bel(F )) is interpreted as the loss distinct to
F , if F obtains.

SPΩ(P,B) := −
∑

F⊆Ω

P(F ) · log(bel(F ))

HPΩ(P) := SPΩ(P,P) .
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The loss function L for general beliefs

Our story is along the lines: Minimize (...) logarithmic loss!
If bel(F ) = 1 for all F ⊆ Ω, then L(F ,bel) = − log(1) = 0.
Thus, SPΩ(P,bel) =

∑
F⊆Ω P(F ) · 0 = 0.

So, bel ≡ 1 minimizes loss! This is BAD.
Houston, we have a problem!
Fact: This same problem raises its ugly head for every
local extended strictly proper scoring rule.
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Normalize!

For Ω = {ω1, ω2, ω3, ω4}, π = 〈(ω1, ω2, ω4), (ω3)〉 is a parti-
tion of Ω.

Let Π be the set of partitions of states of our language.
Let M := maxπ∈Π

∑
F∈π bel(F ).

Given a belief function bel : {F ⊆ Ω} −→ R≥0 (bel not
zero everywhere), its normalisation B is defined as B(F ) :=
bel(F )/M.

Set of normalized belief functions

B := {B : {F ⊆ Ω} −→ [0,1] :
∑

F∈π
B(F ) = 1 for some π

and
∑

F∈π
B(F )≤1 for all π ∈ Π} .
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Good News Everyone!

Theorem – Norm 1, 2
For convex E ⊆ P

arg inf
B∈B

sup
P∈E

Slog
PΩ(P,B) = arg sup

P∈E
HPΩ(P) = {P†PΩ} .

Theorem – Norm 1, 2, 3

If P= ∈ Ē, then

arg inf
B∈B

sup
P∈E

SPΩ(P,B) = arg sup
P∈E

HPΩ(P) = {P=} = arg sup
P∈E

HΩ(P)
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Not so good news

Theorem
There exists a convex E such that

arg inf
B∈B

sup
P∈E

SPΩ(P,B) = {P†PΩ} 6= arg sup
P∈E

HΩ(P) .
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Partition Entropy

There is another plausible way to define extended score:

SΠ(P,B) :=
∑

π∈Π

∑

F∈π
−P(F ) · log(B(F ))

=
∑

F⊆Ω

(∑

π∈Π
F∈π

1
)
− P(F ) · log(B(F ))

HΠ(P) := SΠ(P,P) .
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g-Entropy

There is a general way to define extended score:

Sg(P,B) :=
∑

π∈Π

g(π)
∑

F∈π
−P(F ) · log(B(F ))

=
∑

F⊆Ω

(∑

π∈Π
F∈π

g(π)
)
− P(F ) · log(B(F ))

Hg(P) := Sg(P,P) .

g : Π→ R≥0 such that
∑

π∈Π
F∈π

g(π) > 0 for all F ⊆ Ω.
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For convex E ⊆ P

arg inf
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Theorem – Norm 1, 2, 3

If P= ∈ Ē and if g is symmetric, then

arg inf
B∈B

sup
P∈E

Slog
g (P,B) = arg sup

P∈E
Hg(P) = {P=} = arg sup

P∈E
HΩ(P)
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Good News Everyone!
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Mixed News

Conjecture – Norm 3?
For all (reasonable) g there exists a convex E such that

arg inf
B∈B

sup
P∈E

H log
g (P) 6= arg sup

P∈E
HΩ(P) .

Theorem – Norm 3 asterisk

For fixed E let P†g be the unique g-entropy maximizer, then

P†Ω ∈ {P
†
g | g senisble} .
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The Boy sleeps well indeed - he is still very young
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The loss function L – Axiomatic Characterization

L1 L(F ,bel) = 0, if bel(F ) = 1.
L2 Loss strictly increases as bel(F ) decreases from 1 to-
wards 0.
L3 L is local. L is called local, if and only if L(F ,bel) =
L(bel(F )).

L4 Losses are additive when the language is composed of
independent sublanguages.
L1 – L4 imply that L(bel(F )) = − logb(bel(F )) for some
b ∈ R>0.
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