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Abstract

Objective Bayesian epistemology invokes three norms: the strengths of our
beliefs should be probabilities, they should be calibrated to our evidence of
physical probabilities, and they should otherwise equivocate sufficiently between
the basic propositions that we can express. The three norms are sometimes
explicated by appealing to the maximum entropy principle, which says that a
belief function should be a probability function, from all those that are calibrated
to evidence, that has maximum entropy. However, the three norms of objective
Bayesianism are usually justified in different ways. In this paper we show that
the three norms can all be subsumed under a single justification in terms of
minimising worst-case expected loss. This, in turn, is equivalent to maximising
a generalised notion of entropy. We suggest that requiring language invariance,
in addition to minimising worst-case expected loss, motivates maximisation of
standard entropy as opposed to maximisation of other instances of generalised
entropy.

Our argument also provides a qualified justification for updating degrees of
belief by Bayesian conditionalisation. However, conditional probabilities play
a less central part in the objective Bayesian account than they do under the
subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem.

http://www.mdpi.com/journal/entropy/special_issues/bayes-theorem
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§1
Introduction

Objective Bayesian epistemology is a theory about strength of belief. As formulated
by Williamson (2010), it invokes three norms:

Probability. The strengths of an agent’s beliefs should satisfy the axioms of probabil-
ity. That is, there should be a probability function PE : SL −→ [0,1] such that
for each sentence θ of the agent’s language L , PE(θ) measures the degree to
which the agent, with evidence E, believes sentence θ.1

Calibration. The strengths of an agent’s beliefs should satisfy constraints imposed
by her evidence E. In particular, if the evidence determines just that physical
probability (aka chance) P∗ is in some set P∗ of probability functions defined
on SL , then PE should be calibrated to physical probability insofar as it
should lie in the convex hull E= 〈P∗〉 of the set P∗.2

Equivocation. The agent should not adopt beliefs that are more extreme than is de-
manded by her evidence E. That is, PE should be a member of E that is suf-
ficiently close to the equivocator function P= which gives the same probability
to each ω ∈Ω, where the state descriptions or states ω are sentences describing
the most fine-grained possibilities expressible in the agent’s language.

One way of explicating these norms proceeds as follows. Measure closeness of PE

to the equivocator by Kullback-Leibler divergence d(PE ,P=)=∑
ω∈ΩPE(ω) log PE (ω)

P=(ω) .
Then, if there is some function in E that is closest to the equivocator, PE should be
such a function. If E is closed then there is guaranteed to be some function in E
closest to the equivocator; as E is convex, there is at most one such function. Then
we have the maximum entropy principle (Jaynes, 1957): PE is the function in E that
has maximum entropy H, where H(P)=−∑

ω∈ΩP(ω) logP(ω).
The question arises as to how the three norms of objective Bayesianism should

be justified, and whether the maximum entropy principle provides a satisfactory
explication of the norms.

The Probability norm is usually justified by a Dutch book argument. Interpret
the strength of an agent’s belief in θ to be a betting quotient, i.e., a number x such
that the agent is prepared to bet xS on θ with return S if θ is true, where S is an
unknown stake, positive or negative. Then the only way to avoid the possibility that
stakes may be chosen so as to force the agent to lose money, whatever the true state
of the world, is to ensure that the betting quotients satisfy the axioms of probability
(see, e.g., Williamson, 2010, Theorem 3.2).

The Calibration norm may be justified by a different sort of betting argument.
If the agent bets repeatedly on sentences with known chance y with some fixed
betting quotient x then she is sure to lose money in the long run unless x = y
(see, e.g., Williamson, 2010, pp. 40–41). Alternatively: on a single bet with known
chance y, the agent’s expected loss is positive unless her betting quotient x = y, where
the expectation is determined with respect to the chance function P∗ (Williamson,
2010, pp. 41–42). More generally, if evidence E determines that P∗ ∈ P∗ and the

1Here L will be construed as a finite propositional language and SL as the set of sentences of L ,
formed by recursively applying the usual connectives.

2We assume throughout this paper that chance is probabilistic, i.e., that P∗ is a probability function.



agent makes such bets then sure loss / positive expected loss can be forced unless
PE ∈ 〈P∗〉.

The Equivocation norm may be justified by appealing to a third notion of loss.
In the absence of any particular information about the loss L(ω,P) one incurs when
one’s strengths of beliefs are represented by P and ω turns out to be the true
state, one can argue that one should take the loss function L to be logarithmic,
L(ω,P) = − logP(ω) (Williamson, 2010, pp. 64–65). Then the probability function
P that minimises worst case expected loss, subject to the information that P∗ ∈ E
where E is closed and convex, is simply the probability function P ∈ E closest to the
equivocator—equivalently, the probability function in E that has maximum entropy
(Topsøe, 1979; Grünwald and Dawid, 2004).

The advantage of these three lines of justification is that they make use of the
rather natural connection between strength of belief and betting. This connection
was highlighted by Frank Ramsey:

all our lives we are in a sense betting. Whenever we go to the station
we are betting that a train will really run, and if we had not a sufficient
degree of belief in this we should decline the bet and stay at home.
(Ramsey, 1926, p. 183.)

The problem is that the three norms are justified in rather different ways. The Prob-
ability norm is motivated by avoiding sure loss. The Calibration norm is motivated
by avoiding sure long-run loss, or by avoiding positive expected loss. The Equivoca-
tion norm is motived by minimising worst-case expected loss. In particular, the loss
function appealed to in the justification of the Equivocation norm differs from that
invoked by the justifications of the Probability and Calibration norms.

In this paper we seek to rectify this problem. That is, we seek a single justification
of the three norms of objective Bayesian epistemology.

The approach we take is to generalise the justification of the Equivocation norm,
outlined above, in order to show that only strengths of beliefs that are probabilistic,
calibrated and equivocal minimise worst-case expected loss. We shall adopt the
following starting point: as discussed above, E = 〈P∗〉 is taken to be convex and
non-empty throughout this paper; we shall also assume that the strengths of the
agent’s beliefs can be measured by non-negative real numbers—an assumption which
is rejected by advocates of imprecise probability, a position which we will discuss
separately in §5.3. We do not assume throughout that E is such that it admits
some function that has maximum entropy—e.g., that E is closed—but we will be
particularly interested in the case in which E does contain its entropy maximiser, in
order to see whether some version of the maximum entropy principle is justifiable in
that case.

In §2, we shall consider the scenario in which the agent’s belief function bel is
defined over propositions, i.e., sets of possible worlds. Using ω to denote a possible
world as well as the state of L that picks out that possible world, we have that bel
is a function from the power set of a finite set Ω of possible worlds ω to the non-
negative real numbers, bel : PΩ−→R≥0. When it comes to justifying the Probability
norm, this will give us enough structure to show that degrees of belief should be
additive. Then, in §3, we shall consider the richer framework in which the belief
function is defined over sentences, i.e., bel : SL −→ R≥0. This will allow us to go
further by showing that different sentences that express the same proposition should
be believed to the same extent. In §4 we shall explain how the preceding results can
be used to motivate a version of the maximum entropy principle. In §5 we draw out



some of the consequences of our results for Bayes’ theorem. In particular, conditional
probabilities and Bayes’ theorem play a less central role under this approach than
they do under subjective Bayesianism. Also in §5, we relate our work to the imprecise
probability approach, and suggest that the justification of the norms of objective
Bayesianism presented here can be reinterpreted in a non-pragmatic way.

The key results of the paper are intended to demonstrate the following points.
Theorem 12 (which deals with beliefs defined over propositions) and Theorem 31
(respectively, belief over sentences) show that only a logarithmic loss function sat-
isfies certain desiderata that, we suggest, any default loss function should satisfy.
This allows us to focus our attention on logarithmic loss. Theorems 24, 25 (for
propositions), and Theorems 35, 36 (for sentences) show that minimising worst-case
expected logarithmic loss corresponds to maximising a generalised notion of en-
tropy. Theorem 39 justifies maximising standard entropy, by viewing this maximiser
as a limit of generalised entropy maximisers. Theorem 49 demonstrates a level of
agreement between updating beliefs by Bayesian conditionalisation and updating by
maximising generalised entropy. Theorem 89 shows that the generalised notion of
entropy considered in this paper is pitched at precisely the right level of generalisa-
tion.

Three appendices to the paper help to shed light on the generalised notion of
entropy introduced in this paper. A motivates the notion by offering justifications of
generalised entropy that mirror Shannon’s original justification of standard entropy.
B explores some of the properties of the functions that maximise generalised entropy.
C justifies the level of generalisation of entropy to which we appeal.

§2
Belief over propositions

In this section we shall show that if a belief function defined on propositions is to
minimise worst-case expected loss, then it should be a probability function, cali-
brated to physical probability, which maximises a generalised notion of entropy. The
argument will proceed in several steps. As a technical convenience, in §2.1 we shall
normalise the belief functions under consideration. In §2.2 we introduce the appro-
priate generalisation of entropy. In §2.3 we argue that, by default, loss should be
taken to be logarithmic. Then in §2.4 we introduce scoring rules, which measure
expected loss. Finally, in §2.5 we show that worst-case expected loss is minimised
just when generalised entropy is maximised.

For the sake of concreteness we will take Ω to be generated by a propositional
language L = {A1, . . . , An} with propositional variables A1, . . . , An. The states ω take
the form ±A1 ∧·· ·∧±An where +A i is just A i and −A i is ¬A i . Thus there are 2n

states ω ∈ Ω = {±A1 ∧ ·· · ∧±An}. We can think of each such state as representing
a possible world. A proposition (or, in the terminology of the mathematical theory
of probability, an ‘event’) may be thought of as a subset of Ω, and a belief function
bel : PΩ −→ R≥0 thus assigns a degree of belief to each proposition that can be
expressed in the agent’s language. For a proposition F ⊆Ω we will use F̄ to denote
Ω\F . |F| denotes the size of proposition F ⊆ Ω, i.e., the number of states under
which it is true.

Let Π be the set of partitions of Ω; a partition π ∈Π is a set of mutually exclusive
and jointly exhaustive propositions. To control the proliferation of partitions we shall
take the empty set ; to be contained only in one partition, namely {Ω,;}.



§2.1. Normalisation

There are finitely many propositions (PΩ has 22n
members), so any particular belief

function bel takes values in some interval [0, M] ⊆ R≥0. It is just a matter of con-
vention as to the scale on which belief is measured, i.e., as to what upper bound M
we might consider. For convenience we shall normalise the scale to the unit interval
[0,1], so that all belief functions are considered on the same scale.

Definition 1 (Normalised belief function on propositions). Let M =maxπ∈Π
∑

F∈πbel(F).
Given a belief function bel : PΩ−→R≥0 that is not zero everywhere, its normalisation
B : PΩ −→ [0,1] is defined by setting B(F) = bel(F)/M for each F ⊆ Ω. We shall
denote the set of normalised belief functions by B, so

B = {B : PΩ −→ [0,1] :
∑
F∈π

B(F)≤1 for all π ∈Π and
∑
F∈π

B(F) = 1 for some π}.

Without loss of generality we rule out of consideration the non-normalised belief
function that gives zero degree of belief to each proposition; it will become clear in
§2.4 that this belief function is of little interest as it can never minimise worst-case
expected loss. For purely technical convenience we will often consider the convex
hull 〈B〉 of B. In which case we rule into consideration certain belief functions
that are not normalised, but which are convex combinations of normalised belief
functions. Henceforth, then, we shall focus our attention on belief functions in B
and 〈B〉.

Note that we do not impose any further restrictions on the agent’s belief function—
such as additivity, or the requirement that B(G)≤ B(F) whenever G ⊆ F, or that the
empty proposition ; has belief zero or the sure proposition Ω is assigned belief
one. Our aim is to show that belief functions that do not satisfy such conditions will
expose the agent to avoidable loss.

For any B ∈ 〈B〉 and every F ⊆Ω we have B(F)+B(F̄) ≤ 1 because {F, F̄} is a
partition. Indeed,

∑
F⊆Ω

B(F)= 1
2
·
( ∑

F⊆Ω
B(F)+ ∑

F⊆Ω
B(F̄)

)
≤ 1

2
· |PΩ| = 22n−1. (1)

Recall that a subset of RN is compact, if and only if it is closed and bounded.

Lemma 2 (Compactness). B and 〈B〉 are compact.
Proof: B⊂R|PΩ| is bounded, where ⊂ denotes strict subset inclusion. Now consider
a sequence (Bt)t∈N ∈B which converges to some B ∈R|PΩ|. Then for all π ∈Π we find∑

F∈πB(F) ≤ 1. Assume that B ∉ B. Thus for all π ∈Π we have
∑

F∈πB(F) < 1. But
then there has to exist a t0 ∈N such that for all t ≥ t0 and all π ∈Π, ∑

F∈πBt(F)< 1.
This contradicts Bt ∈B. Thus, B is closed and hence compact.

〈B〉 is the convex hull of a compact set. Hence, 〈B〉 ⊂R|PΩ| is closed and bounded
and thus compact. 2

We will be particularly interested in the subset P⊆ B of belief functions defined
by:

P= {B : PΩ−→ [0,1] :
∑
F∈π

B(F)= 1 for all π ∈Π}.

P is the set of probability functions:



Proposition 3. P ∈P if and only if P : PΩ−→ [0,1] satisfies the axioms of probability:

P1 : P(Ω)= 1 and P(;)= 0.

P2: If F ∩G =; then P(F)+P(G)= P(F ∪G).

Proof: Suppose P ∈ P. P(Ω) = 1 because {Ω} is a partition. P(;) = 0 because {Ω,;}
is a partition and P(Ω) = 1. If F,G ⊆Ω are disjoint then P(F)+P(G) = P(F ∪G)
because {F,G,F ∪G} and {F ∪G,F ∪G} are both partitions so P(F)+P(G) = 1−
P(F ∪G)= P(F ∪G).

On the other hand, suppose P1 and P2 hold. That
∑

F∈πP(F)= 1 can be seen by
induction on the size of π. If |π| = 1 then π= {Ω} and P(Ω)= 1 by P1. Suppose then
that π= {F1, . . . ,Fk+1} for k≥1. Now

∑k−1
i=1 P(Fi)+P(Fk∪Fk+1)= 1 by the induction

hypothesis and P(Fk∪Fk+1)= P(Fk)+P(Fk+1) by P2, so
∑

F∈πP(F)= 1 as required.
2

Example 4 (Contrasting B with P). Using (1) we find
∑

F⊆ΩP(F) = |PΩ|
2 ≥∑

F⊆ΩB(F)
for all P ∈ P and B ∈ B. For probability functions P ∈ P probability is evenly dis-
tributed among the propositions of fixed size in the following sense:∑

F⊆Ω|F|=t

P(F)= ∑
ω∈Ω

P(ω) · |{F ⊆Ω : |F| = t and ω ∈ F}|

= ∑
ω∈Ω

P(ω)

(
|Ω|−1
t−1

)
=

(
|Ω|−1
t−1

)
,

where P(ω) abbreviates P({ω}). For B ∈B and t > |Ω|
2 ≥ 2 we have in general only the

following inequality

0≤ ∑
F⊆Ω|F|=t

B(F)≤ |{F ⊆Ω : |F| = t}| =
(
|Ω|
t

)
.

For B1 ∈ B defined as B1(ω) = 1 for some specific ω and B1(F) = 0 for all other
F ⊆Ω we have that the lower bound is tight. For B2 ∈ B defined as B2(F) = 1 for
|F| = t and B2(F)= 0 for all other F ⊆Ω the upper bound is tight.

To illustrate the potentially uneven distribution of beliefs for a B ∈ B, let A1, A2
be the propositional variables in L , so Ω contains four elements. Now consider the
B ∈B such that B(;)= 0, B(F)= 1

100 for |F| = 1, B(F)= 1
2 for |F| = 2, B(F)= 99

100 for
|F| = 3 and B(Ω)= 1. Note, in particular, that there is no P ∈P such that B(F)≤ P(F)
for all F ⊆Ω.

§2.2. Entropy

The entropy of a probability function is standardly defined as:

HΩ(P) :=− ∑
ω∈Ω

P(ω) logP(ω).

We shall adopt the usual convention that −x log0= x ·∞=∞ if x > 0 and 0log0= 0.
We will need to extend the standard notion of entropy to apply to normalised

belief functions, not just to probability functions. Note that the standard entropy only



takes into account those propositions that are in the partition {{ω} : ω ∈Ω}, which
partitions Ω into states. This is appropriate when entropy is applied to probability
functions because a probability function is determined by its values on the states.
But this is not appropriate if entropy is to be applied to belief functions: in that case
one cannot simply disregard all those propositions which are not in the partition of
Ω into states—one needs to consider propositions in other partitions too. In fact
there are a range of entropies of a belief function, according to how much weight is
given to each partition π in the entropy sum:

Definition 5 (g-entropy). Given a weighting function g : Π −→ R≥0, the generalised
entropy or g-entropy of a normalised belief function is defined as

Hg(B) :=− ∑
π∈Π

g(π)
∑
F∈π

B(F) logB(F).

The standard entropy HΩ corresponds to gΩ-entropy where

gΩ(π)=
{

1 : π= {{ω} :ω ∈Ω}
0 : otherwise

.

We can define the partition entropy HΠ to be the gΠ-entropy where gΠ(π)= 1 for
all π ∈Π. Then

HΠ(B) = − ∑
π∈Π

∑
F∈π

B(F) logB(F)

= − ∑
F⊆Ω

par(F)B(F) logB(F),

where par(F) is the number of partitions in which F occurs. Note that according
to our convention, par(;) = 1 and par(Ω) = 2 because Ω occurs in partitions {;,Ω}
and {Ω}. Otherwise, par(F)= b|F̄| where bk :=∑k

i=1 1/i!
∑i

j=0(−1)i− j(i
j
)
jk is the k’th

Bell number , i.e., the number of partitions of a set of k elements.
We can define the proposition entropy HPΩ to be the gPΩ-entropy where

gPΩ(π)=
{

1 : |π| = 2
0 : otherwise

.

Then,

HPΩ(B) = − ∑
π∈Π

∑
F∈π|π|=2

B(F) logB(F)

= − ∑
F⊆Ω

B(F) logB(F).

In general, we can express Hg(B) in following way, which reverses the order of
the summations,

Hg(B)=− ∑
F⊆Ω

( ∑
π∈Π
F∈π

g(π)
)
B(F) logB(F).

As noted above, one might reasonably demand of a measure of the entropy of a
belief function that each belief should contribute to the entropy sum, i.e., for each
F ⊆Ω, ∑

π∈Π
F∈π

g(π) 6= 0:



Definition 6 (Inclusive weighting function). A weighting function g :Π −→ R≥0 is in-
clusive if for all F ⊆Ω there is some partition π containing F such that g(π)> 0.

This desideratum rules out the standard entropy in favour of other candidate
measures such as the partition entropy and the proposition entropy.

We have seen so far that g-entropy is a natural generalisation of standard entropy
from probability functions to belief functions. In §2.5 we shall see that g-entropy is of
particular interest because maximising g-entropy corresponds to minimising worst-
case expected loss—this is our main reason for introducing the concept. But there is
a third reason why g-entropy is of interest. Shannon (1948, §6) provided an axiomatic
justification of standard entropy as a measure of the uncertainty encapsulated in a
probability function. Interestingly, as we show in Appendix A, Shannon’s argument
can be adapted to give a justification of our generalised entropy measure. Thus g-
entropy can also be thought of as a measure of the uncertainty of a belief function.

In the remainder of this section we will examine some of the properties of g-
entropy.

Lemma 7. The function − log : [0,1] → [0,∞] is continuous in the standard topology on
R≥0 ∪ {+∞}.

Proof: To obtain the standard topology on R≥0 ∪ {+∞}, take as open sets infinite
unions and finite intersections over the open sets of R≥0 and sets of the form (r,∞]
where r ∈ R. In this topology on [0,∞], a set M ⊆ R≥0 is open if and only if it is
open in the standard topology in R≥0. Hence, − log is continuous in this topology
on (0,1].

Let (at)t∈N be a sequence in [0,1] with limit 0. For all ε> 0 there exists a T ∈N
such that − logat > 1

ε
for all t > T. Hence, for all open sets U containing +∞ there

exists a K such that − logam ∈ U , if m > K . So, − logat converges to +∞. Thus,
limt→∞− logat =+∞=− loglimt→∞ at. 2

Proposition 8. g-entropy is non-negative and, for inclusive g, strictly concave on 〈B〉.
Proof: B(F) ∈ [0,1] for all F so logB(F)≤0, and g(π)

∑
F∈πB(F) logB(F)≤0. Hence∑

π∈Π−g(π)
∑

F∈πB(F) logB(F)≥ 0, i.e., g-entropy is non-negative.
Take distinct B1,B2 ∈ 〈B〉 and λ ∈ (0,1) and let B =λB1 + (1−λ)B2. Now, x log x

is strictly convex on [0,1], i.e.,

B(F) logB(F)≤λB1(F) logB1(F)+ (1−λ)B2(F) logB2(F)

with equality just when B1(F)= B2(F).
Consider an inclusive weighting function g.

Hg(λB1 + (1−λ)B2) = − ∑
π∈Π

g(π)
∑
F∈π

B(F) logB(F)

≥ − ∑
π∈Π

g(π)
∑
F∈π

(λB1(F) logB1(F)+ (1−λ)B2(F) logB2(F))

= λHg(B1)+ (1−λ)Hg(B2),

with equality iff for all F, B1(F) = B2(F), since g is inclusive. But B1 and B2 are
distinct so equality does not obtain. In other words, g-entropy is strictly concave.
2



Corollary 9. For inclusive g, if g-entropy is maximised by a function P† in convex E⊆P,
it is uniquely maximised by P† in E.

Corollary 10. For inclusive g, g-entropy is uniquely maximised in the closure [E] of E.

If g is not inclusive, concavity is not strict. For example, if the standard entropy
HΩ is maximised by B† then it is also maximised by any belief function C† that
agrees with B† on the states ω ∈Ω.

Note that different g-entropy measures can have different maximisers on a convex
subset E of probability functions. For example, when Ω = {ω1,ω2,ω3,ω4} and E =
{P ∈P : P(ω1)+2.75P(ω2)+7.1P(ω3)= 1.7, P(ω4)= 0} then the proposition entropy
maximiser, the standard entropy maximiser and the partition entropy maximiser are
all different, as can be seen from Fig. 1.

Figure 1: Plotted are the partition entropy, the standard entropy and the proposition
entropy under the constraints P(ω1)+P(ω2)+P(ω3)+P(ω4)= 1, P(ω1)+2.75P(ω2)+
7.1P(ω3) = 1.7, P(ω4) = 0 as a function of P(ω2). The dotted lines indicate the
respective maxima which obtain for different values of P(ω2).

§2.3. Loss

As Ramsey observed, all our lives we are in a sense betting. The strengths of our
beliefs guide our actions and expose us to possible losses. If we go to the station
when the train happens not to run, we incur a loss: a wasted journey to the station
and a delay in getting to where we want to go. Normally, when we are deliberating
about how strongly to believe a proposition, we have no realistic idea as to the losses



that that belief will expose us to. That is, when determining a belief function B we
do not know the true loss function L∗.

Now a loss function L is standardly defined as a function L :Ω×P−→ (−∞,∞],
where L(ω,P) is the loss one incurs by adopting probability function P ∈ P when ω
is the true state of the world. Note that a standard loss function will only evaluate
an agent’s beliefs about the states, not the extent to which she believes other propo-
sitions. This is appropriate when belief is assumed to be probabilistic, because a
probability function is determined by its values on the states. But we are concerned
with justifying the Probability norm here and hence need to consider the full range
of the agent’s beliefs, in order to show that they should satisfy the axioms of proba-
bility. Hence we need to extend the concept of a loss function to evaluate all of the
agent’s beliefs:

Definition 11 (Loss function). A loss function is a function L : PΩ×〈B〉 −→ (−∞,∞].

L(F,B) is the loss incurred by a belief function B when proposition F turns out
to be true. We shall interpret this loss as the loss that is attributable to F in isolation
from all other propositions, rather than the total loss incurred when proposition F
turns out to be true. When F turns out to be true so does any proposition G for
F ⊂G. Thus the total loss when F turns out true includes L(G,B) as well as L(F,B).
The total loss on F turning out true might therefore be represented by

∑
G⊇F L(G,B),

with L(F,B) being the loss distinctive to F, i.e., the loss on F turning out true over
and above the loss incurred by G ⊃ F .

Is there anything that one can presume about a loss function in the absence of
any information about the true loss function L∗? Plausibly:3

L1. L(F,B)= 0 if B(F)= 1.

L2. L(F,B) strictly increases as B(F) decreases from 1 towards 0.

L3. L(F,B) depends only on B(F).4

To express the next condition we need some notation. Suppose L = L1 ∪L2: say
that L = {A1, ..., An}, L1 = {A1, ..., Am}, L2 = {Am+1, ..., An} for some 1 < m < n.
Then ω ∈Ω takes the form ω1 ∧ω2 where ω1 ∈Ω1 is a state of L1, and ω2 ∈Ω2 is
a state of L2. Given propositions F1 ⊆Ω1 and F2 ⊆Ω2 we can define F1 ×F2 :=
{ω=ω1 ∧ω2 :ω1 ∈ F1,ω2 ∈ F2}, a proposition of L . Given a fixed belief function B
such that B(Ω) = 1, L1 and L2 are independent sublanguages, written L1⊥⊥BL2, if
B(F1 ×F2) = B(F1) ·B(F2) for all F1 ⊆Ω1 and F2 ⊆Ω2, where B(F1) := B(F1 ×Ω2)
and B(F2) := B(Ω1×F2). The restriction B�L1 of B to L1 is a belief function on L1
defined by B�L1 (F1)= B(F1)= B(F1 ×Ω2), and similarly for L2.

L4. Losses are additive when the language is composed of independent sublan-
guages: if L = L1 ∪L2 for L1⊥⊥BL2 then L(F1 ×F2,B) = L1(F1,B�L1 )+
L2(F2,B�L2 ), where L1,L2 are loss functions defined on L1,L2 respectively.

3These conditions correspond to conditions L1–4 of Williamson (2010, pp. 64–65) which were put
forward in the special case of loss functions defined over probability functions as opposed to belief
functions.

4This condition, which is sometimes called locality, rules out that L(F,B) depends on B(F ′) for F ′ 6= F .
It also rules out a dependence on |F|, for instance.



L1 says that one should presume that fully believing a true proposition will not
incur loss. L2 says that one should presume that the less one believes a true propo-
sition, the more loss will result. L3 expresses the interpretation of L(F,B) as the loss
attributable to F in isolation of all other propositions. L4 expresses the intuition
that, at least if one supposes two propositions to be unrelated, one should presume
that the loss on both turning out true is the sum of the losses on each.

The four conditions taken together tightly constrain the form of a presumed loss
function L:

Theorem 12. If loss functions are assumed to satisfy L1–4 then L(F,B)=−k logB(F) for
some constant k > 0 that does not depend on L .

Proof: We shall first focus on a loss function L defined with respect to a language
L that contains at least two propositional variables.

L3 implies that L(F,B)= fL (B(F)), for some function fL : [0,1]−→ (−∞,∞].
For our fixed L and each x, y ∈ [0,1] choose some particular B ∈ 〈B〉,L1,L2,F1 ⊆

Ω1,F2 ⊆Ω2 such that L =L1∪L2 where L1⊥⊥BL2, B(F1)= x and B(F2)= y. This
is possible because L has at least two propositional variables. Note in particular
that since L1 and L2 are independent sublanguages we have B(Ω)= 1.

Note that
1= B(Ω)= B(Ω1 ×Ω2)= B�L1 (Ω1),

and similarly B�L2 (Ω2)= 1. By L1, then, L1(Ω1,B�L1 )= L2(Ω2,B�L2 )= 0.
So by applying L4 twice:

fL (xy) = fL (B(F1) ·B(F2))

= L(F1 ×F2,B)

= L1(F1,B�L1 )+L2(F2,B�L2 )

= [L(F1 ×Ω2,B)−L2(Ω2,B�L2 )]+ [L(Ω1 ×F2,B)−L1(Ω1,B�L1 )]

= L(F1 ×Ω2,B)+L(Ω1 ×F2,B)

= fL (x)+ fL (y).

The negative logarithm on (0,1] is characterisable up to a multiplicative constant
kL in terms of this additivity, together with the condition that fL (x)≥0 which is
implied by L1–2 (see, e.g., Aczél and Daróczy, 1975, Theorem 0.2.5). L2 ensures that
fL is not zero everywhere, so kL > 0.

We thus know that fL (x)=−kL log x for x ∈ (0,1]. Now note that for all y ∈ (0,1]
it needs to be the case that fL (0) = fL (0 · y) = fL (0)+ fL (y), if fL is to satisfy
fL (x · y) = fL (x)+ fL (y) for all x, y ∈ [0,1]. Since fL takes values in (−∞,+∞] it
follows that fL (0)=+∞.

Thus far we have shown that for a fixed language L with at least two proposi-
tional variables, L(F,B)=−kL logB(F) on [0,1].

Now consider an arbitrary language L1 and a loss function L1 on L1 which
satisfies L1 – L4. There exists some other language L2 and a belief function B on
L = L1 ∪L2 such that L1⊥⊥BL2. By the above, for the loss function L on L it
holds that L(F,B)=−kL logB(F) on [0,1]. By reasoning analogous to that above,

L1(F1,B�L1 )= L(F1 ×Ω2,B)= fL (B(F1 ×Ω2))= fL (B�L1 (F1)).

So the loss function for L1 is L1(F1,B�L1 ) = −kL logB�L1 (F1). Thus the con-
stant kL does not depend on the particular language L after all.



In general, then, L(F,B)=−k logB(F) for some positive k. 2

Since multiplication by a constant is equivalent to change of base, we can take
log to be the natural logarithm. Since we will be interested in the belief functions
that minimise loss, rather than in the absolute value of any particular losses, we can
take k = 1 without loss of generality. Theorem 12 thus allows us to focus on the
logarithmic loss function:

Llog(F,B) :=− logB(F).

§2.4. Score

In this paper we are concerned with showing that the norms of objective Bayesianism
must hold if an agent is to control her worst-case expected loss. Now an expected
loss function or scoring rule is standardly defined as SL

Ω :P×P−→ [−∞,∞] such that
SL
Ω(P,Q) = ∑

ω∈ΩP(ω)LΩ(ω,Q). This is interpretable as the expected loss incurred
by adopting probability function Q as one’s belief function, when the probabilities
are actually determined by P .5 While this standard definition of scoring rule is
entirely appropriate when belief is assumed to be probabilistic, we make no such
assumption here and need to consider scoring rules that evaluate all the agent’s
beliefs, not just those concerning the states. In line with our discussion of entropy in
§2.2, we shall consider the following generalisation:

Definition 13 (g-score). Given a loss function L and an inclusive weighting function
g :Π −→ R≥0, the g-expected loss function or g-scoring rule or simply g-score is SL

g :
P×〈B〉 −→ [−∞,∞] such that

SL
g (P,B)= ∑

π∈Π
g(π)

∑
F∈π

P(F)L(F,B).

Clearly SL
Ω corresponds to SL

gΩ where gΩ, which is not inclusive, is defined as
in §2.2. We require that g be inclusive in Definition 13, since only in that case does
the g-score genuinely evaluate all the agent’s beliefs. We will focus on Slog

g (P∗,B),
i.e., the case in which the loss function is logarithmic and the expectation is taken
with respect to the chance function P∗, in order to show that an agent should satisfy
the norms of objective Bayesianism if she is to control her worst-case g-expected
logarithmic loss when her evidence determines that the chance function P∗ is in E.

For example, with the logarithmic loss function, the partition Π-score is defined
by setting g = gΠ:

Slog
Π (P,B)=− ∑

π∈Π

∑
F∈π

P(F) logB(F).

5This is the standard statistical notion of a scoring rule as defined in Dawid (1986). More recently
a different, ‘epistemic’ notion of scoring rule has been considered in the literature on non-pragmatic
justifications of Bayesian norms; see, e.g., Joyce (2009); Pettigrew (2011), and also a forthcoming paper
by Landes where similarities and differences of these two notions of a scoring rule are discussed. One
difference which is significant to our purposes is that Predd et al.’s result in Predd et al. (2009)—that
for every epistemic scoring rule which is continuous and strictly proper, the set of non-dominated belief
functions is the set P of probability functions—does not apply to statistical scoring rules. Also, Predd et
al. are only interested in justifying the Probability norm by appealing to dominance as a decision theoretic
norm. We are concerned with justifying three norms (all at once) using worst-case loss avoidance as a
desideratum. The epistemic approach is considered further in §5.4.



Similarly, the proposition PΩ-score is defined by setting g = gPΩ:

Slog
PΩ

(P,B)=− ∑
F⊆Ω

P(F) logB(F).

It turns out that the various logarithmic scoring rules have the following useful
property:6

Definition 14 (Strictly proper g-score). A scoring rule SL
g :P×〈B〉 −→ [−∞,∞] is strictly

proper if for all P ∈ P, the function SL
g (P, ·) : 〈B〉 −→ [−∞,∞] has a unique global

minimum at B = P .

On the way to showing that logarithmic g-scores are strictly proper, it will be
useful to consider the following natural generalisation of Kullback-Leibler divergence
to our framework:

Definition 15 (g-divergence). For a weighting function g :Π−→R≥0, the g-divergence
is the function dg :P×〈B〉 −→ [−∞,∞] defined by

dg(P,B)= ∑
π∈Π

g(π)
∑
F∈π

P(F) log
P(F)
B(F)

.

Here we adopt the usual convention that 0log 0
0 = 0 and x log x

0 =+∞ for x ∈ (0,1].

We shall see that dg(P,B) is a sensible notion of the divergence of P from B
by appealing to the following useful inequality (see, e.g., Cover and Thomas, 1991,
Theorem 2.7.1):

Lemma 16 (Log sum inequality). For xi, yi ∈R≥0, i, j = 1, . . . ,k,

(
n∑

i=1
xi) log

∑n
i=1 xi∑n
i=1 yi

≤
n∑

i=1
xi log

xi

yi

with equality iff xi = cyi for some constant c and i = 1, . . . ,k.

Proposition 17. The following are equivalent:

◦ dg(P,B)≥ 0 with equality iff B = P .

◦ g is inclusive.

6Definition 14 can be generalised: a scoring rule is strictly X-proper if it is strictly proper for belief
functions taken to be from a set X. In Definition 14, X = 〈B〉. The logarithmic scoring rule in the
standard sense, i.e.,

∑
ω∈ΩP(ω)L(ω,Q), is well known to be the only strictly P-proper local scoring

rule—see McCarthy (1956, p. 654) who credits Andrew Gleason for the uniqueness result; Shuford et al.
(1966, p. 136) for the case of continuous scoring rules; Aczel and Pfanzagl (1967, Theorem 3, p. 101)
for the case of differentiable scoring rules; and Savage (1971, §9.4). Logarithmic score in our sense, i.e.,∑

F⊆ΩP(F)L(F,B), is not strictly Y-proper when Y is the set of non-normalised belief functions: S(P,bel)
is a global minimum, where bel is the belief function such that bel(F) = 1 for all F . (While Joyce (2009,
p. 276) suggests that logarithmic score is strictly Y-proper for Y a set of non-normalised belief functions,
he is referring to a logarithmic scoring rule that is different to the usual one considered above and that
does not satisfy the locality condition L3.)



Proof: First we shall see that if g is inclusive then dg(P,B) ≥ 0 with equality iff
B = P .

dg(P,B) = ∑
π∈Π

g(π)
∑
F∈π

P(F) log
P(F)
B(F)

≥ ∑
π∈Π

g(π)

[( ∑
F∈π

P(F)

)
log

∑
F∈πP(F)∑
F∈πB(F)

]

≥ ∑
π∈Π

g(π)
[
1log

1
1

]
= 0,

where the first inequality is an application of the log-sum inequality and the second
inequality is a consequence of B being in 〈B〉. There is equality at the first inequality
iff for all F ⊆Ω and all π such that F ∈π and g(π)> 0, P(F ′)= cπB(F ′) for all F ′ ∈π,
and equality at the second inequality iff for all π such that g(π)> 0,

∑
F∈πB(F)= 1.

Clearly if B(F)= P(F) for all F then these two equalities obtain. Conversely, sup-
pose the two equalities obtain. Then for each F there is some π= {F = F1,F2, . . . ,Fk}
such that g(π) > 0, because g is inclusive. The first equality condition implies that
P(Fi) = cπB(Fi) for i = 1, . . . ,k. The second equality implies that

∑k
i=1 B(Fi) = 1.

Hence, 1 =∑k
i=1 P(Fi) = cπ

∑k
i=1 B(Fi) = cπ, and so P(Fi) = B(Fi) for i = 1, . . . ,k. In

particular, B(F)= P(F).
Next we shall see that the condition that g is inclusive is essential.
If g were not inclusive then there would be some F ⊆Ω such that g(π)= 0 for all

π ∈Π such that F ∈π. There are two cases.
(i) ; ⊂ F ⊂Ω. Take some P ∈ P such that P(F) > 0. Now define B(F) := 0, and

B(F ′) := P(F ′) for all other F ′. Then B(Ω)= 1 and
∑

G∈πB(G)≤ 1 for all other π ∈Π,
so B ∈B⊆ 〈B〉. Furthermore, dg(P,P)= dg(P,B)= 0.

(ii) F =; or F =Ω. Define B(;) := B(Ω) := 0.5 and B(F) := P(F) for all ;⊂ F ⊂
PΩ. Then B(;)+B(Ω) = 1 and

∑
G∈πB(G) ≤ 1 for all other π ∈Π, so B ∈ B ⊆ 〈B〉.

Furthermore, dg(P,P)= dg(P,B)= 0.
In either case, then, dg(P,B) is not uniquely minimised by B = P . 2

Corollary 18. The logarithmic g-score is strictly proper.

Proof: Recall that in the context of a g-score, g is inclusive.

Slog
g (P,B)−Slog

g (P,P) = − ∑
π∈Π

g(π)
∑
F∈π

P(F) log
B(F)
P(F)

= ∑
π∈Π

g(π)
∑
F∈π

P(F) log
P(F)
B(F)

= dg(P,B).

Proposition 17 then implies that Slog
g (P,B)−Slog

g (P,P) ≥ 0 with equality iff B = P,

i.e., Slog
g is strictly proper. 2

Finally, logarithmic g-scores are non-negative strictly convex functions in the
following qualified sense:



Proposition 19. Logarithmic g-score Slog
g (P,B) is non-negative and convex as a func-

tion of B ∈ 〈B〉. Convexity is strict, i.e., Slog
g (P,λB1 + (1−λ)B2) < λSlog

g (P,B1)+ (1−
λ)Slog

g (P,B2) for λ ∈ (0,1), unless B1 and B2 agree everywhere except where P(F)= 0.

Proof: Logarithmic g-score is non-negative because B(F),P(F) ∈ [0,1] for all F so
logB(F)≤0, P(F) logB(F)≤0, and g(π)> 0.

That Slog
g (P,B) is strictly convex as a function of 〈B〉 follows from the strict

concavity of log x. Take distinct B1,B2 ∈ 〈B〉 and λ ∈ (0,1) and let B =λB1+(1−λ)B2.
Now,

P(F) logB(F)= P(F) log(λ ·B1(F)+ (1−λ)B2(F))

≥ P(F)
(
λ logB1(F)+ (1−λ) logB2(F)

)
=λP(F) logB1(F)+ (1−λ)P(F) logB2(F)

with equality iff either P(F)= 0 or B1(F)= B2(F).
Hence,

Slog
g (P,B) = − ∑

π∈Π
g(π)

∑
F∈π

P(F) logB(F)

≤ λSlog
g (P,B1)+ (1−λ)Slog

g (P,B2),

with equality iff B1 and B2 agree everywhere except possibly where P(F)= 0. 2

§2.5. Minimising worst-case logarithmic g-score

In this section we shall show that the g-entropy maximiser minimises worst-case
logarithmic g-score.

In order to prove our main result (Theorem 24) we would like to apply a game-
theoretic minimax theorem which will allow us to conclude that

inf
B∈B

sup
P∈E

Slog
g (P,B)= sup

P∈E
inf
B∈B

Slog
g (P,B).

Note that the expression on the left-hand side describes minimising worst-case g-
score, where the worst case refers to P ranging in E. Speaking in game-theoretic
lingo: the player playing first on the left-hand side aims to find the belief function(s)
which minimises worst-case g-expected loss; again the worst case is taken with
respect to varying P.

For this approach to work, we would normally need B to be some set of mixed
strategies. It is not obvious how B could be represented as a mixing of finitely
many pure strategies. However, there exists a broad literature on minimax theorems
(Ricceri, 2008) and we shall apply a theorem proved in König (1992). This theorem
requires that certain level sets, in the set of functions in which the player aiming to
minimise may chose his functions, are connected. To apply König’s result we will
thus allow the belief functions B to range in 〈B〉, which has this property. It will
follow that the B ∈ 〈B〉\B are never good choices for the minimising player playing
first: the best choice is in E which is a subset of B.

Having established that the inf and the sup commute, the rest is straightforward.
Since the scoring rule we employ, Slog

g , is strictly proper, we have that the best
strategy for the minimising player, answering a move by the maximising player, is to



select the same function as the maximising player. Thus, it is best for the maximising
player playing first to choose a/the function which maximises Slog

g (P,P). We will thus
find that

sup
P∈E

inf
B∈〈B〉

Slog
g (P,B)= sup

P∈E
inf

B∈{P}
Slog

g (P,B)= sup
P∈E

Slog
g (P,P)= sup

P∈E
Hg(P).

Thus, worst-case g-expected loss and g-entropy have the same value. In game-
theoretic terms: we find that our zero-sum g-log-loss game has a value. It remains
to be shown that both players, when playing first, have a unique best choice P†.

First, then, we shall apply König’s result.

Definition 20 (König (1992, p. 56)). For F :X×Y→ [−∞,∞] we call I ⊂R a border in-
terval of F, if and only if I is an interval of the form I = (supx∈X infy∈YF(x, y),+∞).
Λ⊂R is called a border set of F, if and only if infΛ= supx∈X infy∈YF(x, y).

For λ ∈R and ;⊂ K ⊆Y define sλ and σλ to consist of X and of subsets of X of
the form ⋂

y∈K
[F(·, y)>λ] respectively

⋂
y∈K

[F(·, y)≥λ] .

For λ ∈R and finite ;⊂ H ⊆X define tλ and τλ to consist of subsets of Y of the form⋂
x∈H

[F(x, ·)<λ] respectively
⋂

x∈H
[F(x, ·)≤λ] .

The following may be found in König (1992, Theorem 1.3, p. 57):

Lemma 21 (König’s Minimax). Let X,Y be topological spaces, Y be compact and Hausdorff
and let F :X×Y→ [−∞,∞] be lower semicontinuous. Then, if Λ is some border set and
I some border interval of F and if at least one of the following conditions holds:

◦ for all λ ∈Λ all members of sλ and τλ are connected;

◦ for all λ ∈Λ all members of sλ are connected and all λ ∈ I all tλ are connected;

◦ for all λ ∈Λ all members of σλ and tλ are connected;

◦ for all λ ∈Λ all members of σλ are connected and all λ ∈ I all τλ are connected;

then,

inf
y∈Y

sup
x∈X

F(x, y)= sup
x∈X

inf
y∈Y

F(x, y) .

Lemma 22. Slog
g : E×〈B〉→ [0,∞] is lower semicontinuous.

Proof: It suffices to show that {(P,B) ∈ E×〈B〉|Slog
g (P,B) ≤ r} is closed for all r ∈ R.

For r ∈ R consider a sequence (Pt,Bt)t∈N with limt→∞(Pt,Bt) = (P,B) such that
Slog

g (Pt,Bt)≤ r for all t. Then,

Slog
g (P,B)=− ∑

π∈Π
g(π)

∑
F∈π

P(F) logB(F)

= ∑
π∈Π

∑
F∈π

g(π)P(F)>0

−g(π)P(F) logB(F).



If g(π)P(F) > 0 and Bt(F) converges to zero, then there is an T ∈ N such that
for all t ≥ T, −g(π)Pt(F) logBt(F) > r+1. Thus, Bt(F) cannot converge to zero, if
P(F) > 0. Since (Bt) converges, it has to converge to some B(F) > 0. Thus, when
g(π)P(F) > 0 we have that −g(π)P(F) logB(F) = limt→∞−g(π)Pt(F) logBt(F) ≤ r.
From Slog

g (Pt,Bt)≤ r we conclude that∑
π∈Π

∑
F∈π

g(π)P(F)>0

−g(π)P(F) logB(F)= lim
t→∞

∑
π∈Π

∑
F∈π

g(π)P(F)>0

−g(π)Pt(F) logBt(F)

≤ r

2

Proposition 23. For all E,

inf
B∈〈B〉

sup
P∈E

Slog
g (P,B)= sup

P∈E
inf

B∈〈B〉
Slog

g (P,B) .

Proof: It suffices to verify that the conditions of Lemma 21 are satisfied.
E,〈B〉 are subsets of R|Ω|, R|PΩ| respectively, thus naturally equipped with the

induced topology. 〈B〉 is compact and Hausdorff (see Lemma 2). Slog
g : E×〈B〉 →

[0,∞] is lower semicontinuous (see Lemma 22).
We need to show that one of the connectivity conditions holds. In fact they all

hold, as we shall see.
Note that E,〈B〉 are connected since they are convex.
For the sλ and σλ consider any B ∈ 〈B〉 and suppose that P,P ′ ∈ E are such that

Slog
g (P,B)

≥>λ and Slog
g (P ′,B)

≥>λ. Then for η ∈ (0,1) we have:

Slog
g (ηP + (1−η)P ′,B)=− ∑

π∈Π
g(π)

∑
F∈π

(ηP + (1−η)P ′)(F) logB(F)

= ηSlog
g (P,B)+ (1−η)Slog

g (P ′,B)
≥>λ (2)

Thus,

{P ∈ E | Slog
g (P,B)

≥>λ}

is convex for all B ∈ 〈B〉.
Thus, every intersection of such sets is convex. Hence these intersections are

connected. (If any such intersection is empty, then it is trivially connected.)
For the tλ and τλ note that for every P ∈P we have that

{B ∈ 〈B〉 | Slog
g (P,B)

≤<λ}

is convex, which follows from Proposition 19 by noting that for a convex function
(here Slog

g (P, ·)) on a convex set (here 〈B〉), the set of elements in the domain which
are mapped to a number (strictly) less than λ is convex for all λ ∈R.

Thus, every intersection of such sets is convex. Hence these intersections are
connected. 2



The suprema and infima referred to in Proposition 23 may not be achieved at
points of E. If not, they will be achieved instead at points in the closure [E] of E.
We shall use argsupP∈E (and arginfP∈E) to refer to the points in [E] that achieve the
supremum (respectively infimum) whether or not these points are in E.

Theorem 24. As usual, E is taken to be convex and g inclusive. We have that:

argsup
P∈E

Hg(P)= arg inf
B∈B

sup
P∈E

Slog
g (P,B). (3)

Proof: We shall prove the following slightly stronger equality allowing B to range in
〈B〉 instead of B:

argsup
P∈E

Hg(P)= arg inf
B∈〈B〉

sup
P∈E

Slog
g (P,B). (4)

The theorem then follows from the following fact. The right hand side of (4) is
an optimization problem where the optimum (here we look for the infimum of
supP∈ESlog

g (P, ·)) uniquely obtains for a certain value (here P†). Restricting the
domain of the variables (here from 〈B〉 to B) in the optimization problem, to a
subdomain which contains optimum P† ∈ [E] ⊆ B ⊆ 〈B〉, does not change where the
optimum obtains nor the value of the optimum.

Note that,

sup
P∈E

Hg(P)= sup
P∈E

Slog
g (P,P)

= sup
P∈E

inf
B∈〈B〉

Slog
g (P,B)

= inf
B∈〈B〉

sup
P∈E

Slog
g (P,B).

The first equality is simply the definition of Hg. The second equality follows directly
from strict propriety (Corollary 18). To obtain the third line we apply Proposition 23.

It remains to show that we can introduce arg on both sides of (3).
The following sort of argument seems to be folklore in game theory; we here

adapt Grünwald and Dawid (2004, Lemma 4.1, p. 1384) for our purposes. We have

P† := argsup
P∈E

Slog
g (P,P) (5)

= argsup
P∈E

inf
B∈〈B〉

Slog
g (P,B) . (6)

The argsup in (5) is unique (Corollary 10). (6) follows from strict propriety of Slog
g

(Corollary 18). Now let

B† ∈ arg inf
B∈〈B〉

sup
P∈E

Slog
g (P,B) .

Then

Slog
g (P†,P†)= sup

P∈E
inf

B∈〈B〉
Slog

g (P,B) (7)

= inf
B∈〈B〉

Slog
g (P†,B)

≤ Slog
g (P†,B†)

≤ sup
P∈E

Slog
g (P,B†)

= inf
B∈〈B〉

sup
P∈E

Slog
g (P,B). (8)



The first equality follows from the definition of P†; see (5) and (6). That we
may drop the sup again follows from the definition of P†, since P† maximises
infB∈〈B〉 Slog

g (·,B). The inequalities hold since dropping a minimisation and introduc-
ing a maximisation can only lead to an increase. The final inequality is immediate
from the definition of B† minimising supP∈ESlog

g (P, ·).
By Proposition 23 all inequalities above are in fact equalities. From Slog

g (P†,P†)=
Slog

g (P†,B†) and strict propriety we may now infer that B† = P†. 2

In sum, then: if an agent is to minimise her worst-case g-score, then her belief
function needs to be the probability function in E that maximises g-entropy, as long
as this entropy maximiser is in E. That the belief function is to be a probability
function is the content of the Probability norm; that it is to be in E is the content of
the Calibration norm; that it is to maximise g-entropy is related to the Equivocation
norm. We shall defer a full discussion of the Equivocation norm to §4. In the next
section we shall show that the arguments of this section generalise to belief as defined
over sentences rather than propositions. This will imply that logically equivalent
sentences should be believed to the same extent—an important component of the
Probability norm in the sentential framework.

We shall conclude this section by providing a slight generalisation of the previous
result. Note that thus far when considering worst-case g-score, this worst case is with
respect to a chance function taken to be in E = 〈P∗〉. But the evidence determines
something more precise, namely that the chance function is in P∗, which is not
assumed to be convex. The following result indicates that our main argument will
carry over to this more precise setting.

Theorem 25. Suppose P∗ ⊆ P is such that the unique g-entropy maximiser P† for [E] =
[〈P∗〉] is in [P∗]. Then,

P† = argsup
P∈E

Hg(P)= arg inf
B∈B

sup
P∈P∗

Slog
g (P,B).

Proof: As in the previous proof we shall prove a slightly stronger equality:

P† = argsup
P∈E

Hg(P)= arg inf
B∈〈B〉

sup
P∈P∗

Slog
g (P,B).

The result follows for the same reasons given in the proof of Theorem 24.
From the strict propriety of Slog

g we have

Slog
g (P†,P†)= inf

B∈〈B〉
Slog

g (P†,B)

≤ inf
B∈〈B〉

sup
P∈P∗

Slog
g (P,B)

≤ inf
B∈〈B〉

sup
P∈〈P∗〉

Slog
g (P,B)

= sup
P∈〈P∗〉

Slog
g (P,P†)

= Slog
g (P†,P†)

where the last two equalities are simply Theorem 24. Hence,

inf
B∈〈B〉

sup
P∈P∗

Slog
g (P,B)= Slog

g (P†,P†)= sup
P∈E

Hg(P)= sup
P∈P∗

Hg(P).



That is, the lowest worst case expected loss is the same for P ∈ [P∗] and P ∈ [〈P∗〉].
Furthermore, since Slog

g (P†,P†) = supP∈[〈P∗〉] Slog
g (P,P†) and since P† ∈ [P∗] we

have Slog
g (P†,P†)= supP∈P∗ Slog

g (P,P†). Thus, B = P† minimises supP∈P∗ Slog
g (P,B).

Now suppose that B′ ∈ 〈B〉 is different from P†. Then

sup
P∈P∗

Slog
g (P,B′)≥ Slog

g (P†,B′)> Slog
g (P†,P†),

where the strict inequality follows from strict propriety. This shows that adopting
B′ 6= P† leads to an avoidably bad score.

Hence B = P† is the unique function in 〈B〉 which minimises supP∈P∗ Slog
g (P,B).

2

§3
Belief over sentences

Armed with our results for beliefs defined over propositions we now tackle the case
of beliefs defined over sentences SL of a propositional language L . The plan is as
follows. First we normalise the belief functions in §3.1. In §3.2 we motivate the use
of logarithmic loss as a default loss function. We are able to define our logarithmic
scoring rule in §3.3, and we show there that, with respect to our scoring rule, the
generalised entropy maximiser is the unique belief function that minimises worst-
case expected loss.

Again, we shall not impose any restriction—such as additivity—on the agent’s
belief function, now defined on the sentences of the propositional language L . In
particular, we do not assume that the agent’s belief function assigns logically equiv-
alent sentences the same degree of belief. We shall show that any belief function
violating this property incurs an avoidable loss. Thus the results of this section
allow us to show more than we could in the case of belief functions defined over
propositions.

Several of the proofs in this section are analogous to the proofs of corresponding
results presented in §2. They are included here in full for the sake of completeness;
the reader may wish to skim over those details which are already familiar.

§3.1. Normalisation

SL is the set of sentences of propositional language L , formed as usual by recur-
sively applying the connectives ¬,∨,∧,→,↔ to the propositional variables A1, . . . , An.
A non-normalised belief function bel : SL −→R≥0 is thus a function that maps any
sentence of the language to a non-negative real number. As in §2.1, for technical
convenience we shall focus our attention on normalised belief functions.

Definition 26 (Representation). A sentence θ ∈ SL represents the proposition F = {ω :
ω |= θ}. Let F be a set of pairwise distinct propositions. We say that Θ ⊆ SL

is a set of representatives of F , if and only if each sentence in Θ represents some
proposition in F and each proposition in F is represented by a unique sentence in
Θ. A set ρ of representatives of PΩ will be called a representation. We denote by
% the set of all representations. For a set of pairwise distinct propositions F and
a representation ρ ∈ % we denote by ρ(F ) ⊂ SL the set of sentences in ρ which
represents the propositions in F .



We call πL ⊆ SL a partition of SL , if and only if it is a set of representatives
of some partition π ∈Π of propositions. We denote by ΠL the set of these πL .

Definition 27 (Normalised belief function on sentences). Define the set of normalized
belief functions on SL as

BL := {BL : SL −→ [0,1] :
∑

ϕ∈πL

BL (ϕ)≤1 for all πL ∈ΠL and
∑

ϕ∈πL

BL (ϕ)= 1 for some πL ∈ΠL }.

The set of probability functions is defined as

PL := {PL : SL −→ [0,1] :
∑

ϕ∈πL

PL (ϕ)=1 for all πL ∈ΠL }.

As in the proposition case we have:

Proposition 28. PL ∈PL iff PL : SL −→ [0,1] satisfies the axioms of probability:

P1 : PL (τ)= 1 for all tautologies τ.

P2: If Í¬(ϕ∧ψ) then PL (ϕ∨ψ)= PL (ϕ)+PL (ψ).

Proof: Suppose PL ∈ PL . For any tautology τ ∈ SL it holds that PL (τ) = 1
because {τ} is a partition in ΠL . PL (¬τ) = 0 because {τ,¬τ} is a partition in ΠL

and PL (τ)= 1.
Suppose that ϕ,ψ ∈ SL are such that Í¬(ϕ∧ψ). We shall proceed by cases to

show that PL (ϕ∨ψ)= PL (ϕ)+PL (ψ). In the first three cases one of the sentences
is a contradiction, in the last two cases there are no contradictions.
(i) Í ϕ and Í ¬ψ, then Í ϕ∨ψ. Thus by the above PL (ϕ) = 1 and PL (ψ) = 0 and
hence PL (ϕ∨ψ)= 1= PL (ϕ)+PL (ψ).
(ii) Í¬ϕ and Í¬ψ, then Í¬ϕ∨¬ψ. Thus PL (ϕ∨ψ)= 0= PL (ϕ)+PL (ψ).
(iii) 6Í ¬ϕ, 6Í ϕ, and Í ¬ψ, then {ϕ∨ψ,¬ϕ∨ψ} and {ϕ,¬ϕ∨ψ} are both partitions
in ΠL . Thus PL (ϕ∨ψ)+ PL (¬ϕ∨ψ) = 1 = PL (ϕ)+ PL (¬ϕ∨ψ). Putting these
observations together we now find PL (ϕ∨ψ)= PL (ϕ)= PL (ϕ)+PL (ψ).
(iv) 6Í ¬ϕ, 6Í ¬ψ and Í ϕ↔¬ψ, then {ϕ,ψ} is a partition and ϕ∨ψ is a tautology.
Hence, PL (ϕ)+PL (ψ) = 1 and PL (ϕ∨ψ) = 1. This now yields PL (ϕ)+PL (ψ) =
PL (ϕ∨ψ).
(v) 6Í ¬ϕ, 6Í ¬ψ and 6Í ϕ↔¬ψ, then none of the following sentences is a tautology
or a contradiction: ϕ,ψ,ϕ∨ψ,¬(ϕ∨ψ). Since {ϕ,ψ,¬(ϕ∨ψ)} and {ϕ∨ψ,¬(ϕ∨ψ)}
are both partitions in ΠL we obtain PL (ϕ)+PL (ψ)= 1−PL (¬(ϕ∨ψ))= PL (ϕ∨ψ).
So PL (ϕ)+PL (ψ)= PL (ϕ∨ψ).

On the other hand, suppose P1 and P2 hold. That
∑
ϕ∈πL

PL (ϕ)= 1 holds for all
πL ∈ΠL can be seen by induction on the size of πL . If |πL | = 1 then π = {τ} for
some tautology τ ∈ SL and PL (τ)= 1 by P1. Suppose then that πL = {ϕ1, . . . ,ϕk+1}
for k≥1. Now

∑k−1
i=1 PL (ϕi)+PL (ϕk ∨ϕk+1) = 1 by the induction hypothesis. Fur-

thermore, PL (ϕk ∨ϕk+1) = PL (ϕk)+PL (ϕk+1) by P2, so
∑
ϕ∈πL

PL (ϕ) = 1 as re-
quired. 2

Definition 29 (Respects logical equivalence). We say that a belief function BL ∈ 〈BL 〉
respects logical equivalence if and only if Íϕ↔ψ implies BL (ϕ)= BL (ψ).

Proposition 30. The probability functions PL ∈PL respect logical equivalence.



Proof: Suppose PL ∈ PL and assume that ϕ,ψ ∈ SL are logically equivalent.
Note that ψ∧¬ϕÍ A1 ∧¬A1, ψ∨¬ϕÍ A1 ∨¬A1 and that {ϕ,¬ϕ} and {ψ,¬ϕ} are
partitions in ΠL . Hence,

PL (ϕ)+PL (¬ϕ)= 1= PL (ψ)+PL (¬ϕ).

Therefore, PL (ϕ)= PL (ψ).
Thus, the PL ∈PL assign logically equivalent formulae the same probability. 2

§3.2. Loss

By analogy with the line of argument of §2.3, we shall suppose that a default loss
function L : SL ×〈BL 〉→ (−∞,∞] satisfies the following requirements:

L1. L(ϕ,BL )= 0, if BL (ϕ)= 1.

L2. L(ϕ,BL ) strictly increases as BL (ϕ) decreases from 1 towards 0.

L3. L(ϕ,BL ) only depends on BL (ϕ).

Suppose we have a fixed belief function BL ∈ 〈BL 〉 such that BL (τ) = 1 for any
tautology τ, and L = L1 ∪L2 where L1 and L2 are independent sublanguages,
written L1⊥⊥BL

L2, i.e., BL (φ1 ∧φ2) = BL (φ1) ·BL (φ2) for all φ1 ∈ SL1 and φ2 ∈
SL2. Let B�L1 (φ1) := BL (φ1), B�L2 (φ2) := BL (φ2).

L4. Losses are additive when the language is composed of independent sublan-
guages: if L =L1 ∪L2 for L1⊥⊥BL

L2 then L(φ1 ∧φ2,BL )= L1(φ1,B�L1 )+
L2(φ2,B�L2 ), where L1,L2 are loss functions defined on L1,L2 respectively.

Theorem 31. If a loss function L on SL×〈BL 〉 satisfies L1–4, then L(ϕ,BL )=−k logBL (ϕ),
where the constant k > 0 does not depend on the language L .

Proof: We shall first focus on a loss function L defined with respect to a language
L that contains at least two propositional variables.

L3 implies that L(ϕ,BL )= fL (BL (ϕ)) for some function fL : [0,1]−→ (−∞,∞].
For our fixed L and all x, y ∈ [0,1] choose some BL ∈ 〈BL 〉 such that L =L1∪L2,
L1⊥⊥BL

,L2BL (φ1) = x, and BL (φ2) = y for some φ1 ∈ SL1, φ2 ∈ SL2. This is
possible because L contains at least two propositional variables.

Note that since L1 and L2 are independent sublanguages, given some specific
tautology τ1 of L1,

1= BL (τ1)= B�L1 (τ1). (9)

BL (τ1) is well defined since τ1 is a tautology of SL1 and every sentence in SL1 is a
sentence in SL . Similarly, B�L2 (τ2)= 1 for some specific tautology τ2 of L2. By L1,
then, L1(τ1,B�L1 ) = L2(τ2,B�L2 ) = 0, where L1, respectively L2, are loss functions



with respect to SL1 and SL2 satisfying L1–4. Thus,

fL (x · y) = fL (BL (φ1) ·BL (φ2))
L3= L(φ1 ∧φ2,BL )
L4= L1(φ1,B�L1 )+L2(φ2,B�L2 )
L4= [L(φ1 ∧τ2,BL )−L2(τ2,B�L2 )]

+ [L(τ1 ∧φ2,BL )−L1(τ1,B�L1 )]
L1= L(φ1 ∧τ2,BL )+L(τ1 ∧φ2,BL )
L3= fL (BL (φ1 ∧τ2))+ fL (BL (φ2 ∧τ1))

= fL (B�L1 (φ1) ·B�L2 (τ2))+ fL (B�L1 (τ1) ·B�L2 (φ2))
(9)= fL (B�L1 (φ1))+ fL (B�L2 (φ2))

= fL (BL (φ1))+ fL (BL (φ2))

= fL (x)+ fL (y).

The negative logarithm on (0,1] is characterisable up to a multiplicative constant
kL in terms of this additivity, together with the condition that fL (x)≥0 which is
implied by L1–2 (see, e.g., Aczél and Daróczy, 1975, Theorem 0.2.5). L2 ensures
that fL is not zero everywhere, so kL > 0. As in the corresponding proof for
propositions, it follows that fL (0)=+∞.

Thus far we have shown that for a fixed language L with at least two proposi-
tional variables, L(F,BL )=−kL logBL (F) on [0,1].

Now focus on an arbitrary language L1 and a corresponding loss function L1.
We can choose L2,L ,BL such that L is composed of independent sublanguages
L1 and L2. By reasoning analogous to that above,

fL1 (B�L1 (φ1)) = L1(φ1,B�L1 )

= L(φ1 ∧τ2,BL )

= fL (BL (φ1 ∧τ2))

= fL (BL (φ1) ·1)

= −kL logB�L1 (φ1).

So the loss function for L1 is L1(φ1,B�L1 ) = −kL logB�L1 (φ1). Thus the con-
stant kL does not depend on L after all.

In general, then, L(F,BL )=−k logBL (F) for some positive k. 2

Since multiplication by a constant is equivalent to change of base, we can take
log to be the natural logarithm. Since we will be interested in the belief functions
that minimise loss, rather than in the absolute value of any particular losses, we can
take k = 1 without loss of generality. Theorem 31 thus allows us to focus on the
logarithmic loss function:

Llog(F,BL ) :=− logBL (F).

§3.3. Score, entropy and their connection

In the case of belief over sentences, the expected loss varies according to which
sentences are used to represent the various partitions of propositions. We can define



the g-score to be the worst-case expected loss, where this worst case is taken over
all possible representations:

Definition 32 (g-score). Given a loss function L, an inclusive weighting function g :
Π −→ R≥0 and a representation ρ ∈ % we define the representation-relative g-score
SL

g,ρ :PL ×〈BL 〉 −→ [−∞,∞] by

SL
g,ρ(PL ,BL ) := ∑

π∈Π
g(π)

∑
ϕ∈ρ(π)

PL (ϕ)L(ϕ,BL ),

and the (representation-independent) g-score SL
g,L :PL ×〈BL 〉 −→ [−∞,∞] by

SL
g,L (PL ,BL ) := sup

ρ∈%
SL

g,ρ(PL ,BL ).

In particular, for the logarithmic loss function under consideration here, we have,

Slog
g,ρ(PL ,BL ) :=− ∑

π∈Π
g(π)

∑
ϕ∈ρ(π)

PL (ϕ) logBL (ϕ),

and
Slog

g,L (PL ,BL ) := sup
ρ∈%

Slog
g,ρ(PL ,BL ).

We can thus define the g-entropy of a belief function on SL as

Hg,L (BL ) := Slog
g,L (BL ,BL ).

There is a canonical one-to-one correspondence between the BL ∈ 〈BL 〉 which
respect logical equivalence and the B ∈ 〈B〉. In particular, PL can be identified
with P. Moreover, any convex E⊆ P is in one-to-one correspondence with a convex
EL ⊆ PL . In the following we shall make frequent use of this correspondence. For
a BL ∈ 〈BL 〉 which respects logical equivalence we denote by B the function in 〈B〉
with which it stands in one-to-one correspondence.

Lemma 33. If BL ∈ 〈BL 〉 respects logical equivalence, then for all ρ ∈ % we have
Slog

g,L (PL ,BL )= supρ∈%Slog
g,ρ(PL ,BL )= Slog

g (P,B).

Proof: Simply note that Slog
g,ρ(PL ,BL ) does not depend on ρ. 2

Lemma 34. For all convex EL ⊆PL ,

B†
L

∈ arg inf
BL ∈〈BL 〉

sup
PL ∈EL

sup
ρ∈%

Slog
g,ρ(PL ,BL )

respects logical equivalence.

Proof: Suppose that

B†
L

∈ arg inf
BL ∈〈BL 〉

sup
PL ∈EL

sup
ρ∈%

Slog
g,ρ(PL ,BL ) (10)

and assume that B†
L

does not respect logical equivalence. Then define

Binf
L (ϕ) := inf

θ∈SL
Íθ↔ϕ

B†
L

(θ) . (11)



Since B†
L

does not respect logical equivalence, there are logically equivalent ϕ,ψ
such that B†

L
(ϕ) 6= B†

L
(ψ). Hence, Binf

L
(ϕ) < max{B†

L
(ϕ),B†

L
(ψ)}. Thus, for every

πL ∈ ΠL with ϕ ∈ πL we have
∑
χ∈πL

Binf
L

(χ) < 1. Thus, Binf
L

∉ PL . Binf
L

respects
logical equivalence by definition.

Now consider the function Binf : PΩ −→ [0,1] which is determined by Binf
L

.
Clearly, Binf ∉P. There are two cases to consider.

(a) Binf ∈ 〈B〉\P. Since Binf ∉P, by Theorem 24 we have that

sup
P∈E

Slog
g (P,Binf)> inf

B∈〈B〉
sup
P∈E

Slog
g (P,B). (12)

(b) Binf ∉ 〈B〉. Then define B′ by B′(F) := Binf(F)+ δ for all F ⊆ Ω, where
δ ∈ (0,1] is minimal such that B′ ∈ 〈B〉. In particular B′(;)≥ δ> 0, thus B′ ∉P. More-
over, whenever P(F) > 0 it holds that −P(F) logBinf(F) > −P(F) logB′(F) < +∞.
For the remainder of this proof we shall extend the definition of the logarith-
mic g-score Slog

g (P,B) by allowing the belief function B to be any non-negative
function defined on PΩ, rather than just B ∈ 〈B〉—if B 6∈ 〈B〉 we shall be care-
ful not to appeal to results that assume B ∈ 〈B〉. We thus find for all P ∈ P that
Slog

g (P,Binf)> Slog
g (P,B′)<+∞. Thus, by Theorem 24 we obtain the sharp inequal-

ity in the following

sup
P∈E

Slog
g (P,Binf)≥ sup

P∈E
Slog

g (P,B′)

> inf
B∈〈B〉

sup
P∈E

Slog
g (P,B). (13)

For both cases we will obtain a contradiction:

Slog
g (P†,P†)= sup

P∈E
Slog

g (P,P†) (14)

= sup
PL ∈EL

sup
ρ∈%

Slog
g,ρ(PL ,P†

L
) (15)

≥ inf
BL ∈〈BL 〉

sup
PL ∈EL

sup
ρ∈%

Slog
g,ρ(PL ,BL ) (16)

(10)= sup
PL ∈EL

sup
ρ∈%

Slog
g,ρ(PL ,B†

L
) (17)

= sup
PL ∈EL

− ∑
π∈Π

g(π)
∑

ϕ∈ρ(π)
PL (ϕ) inf

θ∈SL
Íθ↔ϕ

logB†
L

(θ) for all ρ ∈ % (18)

= sup
PL ∈EL

Slog
g,ρ(PL ,Binf

L ) for all ρ ∈ % (19)

=sup
P∈E

Slog
g (P,Binf) (20)

> inf
B∈〈B〉

sup
P∈E

Slog
g (P,B) (21)

= Slog
g (P†,P†). (22)

We obtain (14) by noticing that P† is the unique function minimising worst-case
g-expected loss (Theorem 24) and recalling that (7)=(8).

(15) is immediate as the probability functions respect logical equivalence. For
(18) note that PL respects logical equivalence. Furthermore, since − log(·) is strictly
decreasing, a smaller value of BL (ϕ) leads to a greater score.



(19) follows from (11) and Lemma 33 since Binf
L

respects logical equivalence.

Hence Slog
g,ρ(P,Binf

L
) does not depend on the partition ρ.

The inequality (21) we have seen above in the two cases (12) and (13). (22) is again
implied by Theorem 24.

We have thus found a contradiction. Hence, the

B†
L

∈ arg inf
BL ∈〈BL 〉

sup
PL ∈EL

sup
ρ∈%

Slog
g,ρ(PL ,BL )

have to respect logical equivalence. 2

Theorem 24, the key result in the case of belief over propositions, generalises to
the case of belief over sentences:

Theorem 35. As usual, EL ⊆PL is taken to be convex and g inclusive. We have that:

arg sup
PL ∈EL

Hg,L (PL )= arg inf
BL ∈BL

sup
PL ∈EL

Slog
g,L (PL ,BL ).

Proof: As in the corresponding theorem for proposition (Theorem 24) we shall prove
a slightly stronger equality:

arg sup
PL ∈EL

Hg,L (PL )= arg inf
BL ∈〈BL 〉

sup
PL ∈EL

Slog
g,L (PL ,BL ).

Theorem 35 then follows for the same reasons given in the previous section.
Denote by 〈Ble

L
〉 ⊂ 〈BL 〉 the convex hull of functions BL ∈ BL which respect

logical equivalence. Let Rep : 〈B〉 −→ 〈Ble
L
〉 be the bijective map which assigns to

any B ∈ 〈B〉 the unique BL ∈ 〈BL 〉 which represents it (i.e., B(F)= BL (ϕ), whenever
F ⊆Ω is represented by ϕ ∈ SL ).

arg inf
BL ∈〈BL 〉

sup
PL ∈EL

Slog
g,L (PL ,BL )= arg inf

BL ∈〈Ble
L
〉

sup
PL ∈EL

Slog
g,L (PL ,BL ) (23)

= Rep(arg inf
B∈B

sup
P∈E

Slog
g (P,B)) (24)

= Rep(P†) (25)

= P†
L

. (26)

(23) is simply Lemma 34. (24) follows directly from applying Lemma 33 and (25)
is simply Theorem 24. 2

In the above we used P†
L

to denote the probability function in EL which repre-

sents the g-entropy maximiser P† ∈ E. Now note that Hg,L (PL )= Hg(P). Thus P†
L

is not only the function representing P†, it is also the unique function in EL which
maximises g-entropy Hg,L .

Theorem 25 also extends to the sentence framework. As we shall now see, the
worst case g-score can be taken with respect to a chance function in P∗

L
, rather than

EL = 〈P∗
L
〉.

Theorem 36. If P∗
L

⊆ PL is such that the unique g-entropy maximiser P†
L
of [EL ] =

[〈P∗
L
〉] is in [P∗

L
], then

P†
L

= arg sup
PL ∈EL

Hg,L (PL )= arg inf
B∈BL

sup
PL ∈P∗

L

Slog
g,L (PL ,BL ).



Proof: Again, we shall prove a slightly stronger statement with BL ranging in 〈BL 〉.
Since g is inclusive, we have that Slog

g is a strictly proper scoring rule. Hence,

for a fixed ρ ∈ %, Slog
g,ρ(PL , ·) is minimal if and only if PL (ϕ)= BL (ϕ) for all ϕ ∈ ρ.

Now suppose BL ∈ 〈BL 〉 is different from a fixed PL ∈PL . Then there is some
ϕ ∈ SL such that BL (ϕ) 6= PL (ϕ). Now pick some ρ′ ∈ % such that ϕ ∈ ρ′. Then
strict propriety implies the sharp inequality below

Slog
g,L (PL ,BL )= sup

ρ∈%
Slog

g,ρ(PL ,BL )

≥ Slog
g,ρ′ (PL ,BL )

> Slog
g,ρ′ (PL ,PL )

= sup
ρ∈%

Slog
g,ρ(PL ,PL )

= Slog
g,L (PL ,PL ).

The second equality follows since the PL ∈PL respect logical equivalence and hence
SL

g,ρ(PL ,PL ) does not depend on ρ. Thus, for all PL ∈PL we find arginfBL ∈〈BL 〉 Slog
g (PL ,BL )=

PL . Hence for PL = P†
L

we obtain

Slog
g,L (P†

L
,P†

L
)= inf

BL ∈〈BL 〉
Slog

g,L (P†
L

,BL )

≤ inf
BL ∈〈BL 〉

sup
PL ∈P∗

L

Slog
g,L (PL ,BL )

≤ inf
BL ∈〈BL 〉

sup
PL ∈〈P∗

L
〉
Slog

g,L (PL ,BL )

= sup
PL ∈〈P∗

L
〉
Slog

g,L (PL ,P†
L

)

= Slog
g,L (P†

L
,P†

L
)

where the last two equalities are simply Theorem 35. Hence,

inf
BL ∈〈BL 〉

sup
PL ∈P∗

L

Slog
g,L (PL ,BL )= Slog

g,L (P†
L

,P†
L

)= sup
PL ∈〈P∗

L
〉
Hg,L (P).

That is, the lowest worst-case expected loss is the same for PL ∈ [P∗
L

] and PL ∈
[〈P∗

L
〉].

Furthermore, since Slog
g,L (P†

L
,P†

L
) = supPL ∈〈P∗

L
〉 Slog

g,L (PL ,P†
L

) and since P†
L

∈
[P∗

L
] we have Slog

g,L (P†
L

,P†
L

) = supPL ∈P∗
L

Slog
g,L (PL ,P†

L
). Thus, BL = P†

L
min-

imises supPL ∈P∗
L

Slog
g,L (PL ,BL ).

Now suppose that B′
L

∈ 〈BL 〉 is different from P†
L

. Then

sup
PL ∈P∗

L

Slog
g,L (PL ,B′

L )≥ Slog
g,L (P†

L
,B′

L )> Slog
g,L (P†

L
,P†

L
),

where the strict inequality follows as seen above. This now shows, that adopting
B′

L
6= P†

L
leads to an avoidably bad score.



Hence BL = P†
L

is the unique function in 〈BL 〉 which minimises supPL ∈P∗
L

Slog
g,L (PL ,BL ).

2

We see, then, that the results of §2 concerning beliefs defined on propositions
extend naturally to beliefs defined on the sentences of a propositional language. In
light of these findings, our subsequent discussions will, for ease of exposition, solely
focus on propositions. It should be clear how our remarks generalise to sentences.

§4
Relationship to standard entropy maximisation

We have seen so far that there is a sense in which our notions of entropy and expected
loss depend on the weight given to each partition under consideration—i.e., on the
weighting function g. It is natural to demand that no proposition should be entirely
dismissed from consideration by being given zero weight—that g be inclusive. In
which case, the belief function that minimises worst-case g-expected loss is just the
probability function in E that maximises g-entropy, if there is such a function. This
result provides a single justification of the three norms of objective Bayesianism: the
belief function should be a probability function, it should be in E, i.e., calibrated
to evidence of physical probability, and it should otherwise be equivocal, where the
degree to which a belief function is equivocal can be measured by its g-entropy.

This line of argument gives rise to two questions. Which g-entropy should be
maximised? Does the standard entropy maximiser count as a rational belief func-
tion?

¶ On the former question, the task is to isolate some set G of appropriate weighting
functions. Thus far, the only restriction imposed on a weighting function g has been
that it should be inclusive; this is required in order that scoring rules evaluate all
beliefs, rather than just a select few. We shall put forward two further conditions
which can help to narrow down a proper subclass G of weighting functions.

A second natural desideratum is the following:

Definition 37 (Symmetric weighting function). A weighting function g is symmetric if
and only if whenever π′ can be obtained from π by permuting the ωi in π, then
g(π′)= g(π).

For example, for |Ω| = 4 and symmetric g we have that g({{ω1,ω2}, {ω3}, {ω4}})=
g({{ω1,ω4}, {ω2}, {ω3}}). Note that gΩ, gPΩ and gΠ are all symmetric. The symmetry
condition can also be stated as follows: g(π) is only a function of the spectrum of π,
i.e., of the multi-set of sizes of the members of π. In the above example the spectrum
of both partitions is {2,1,1}.

It turns out that inclusive and symmetric weighting functions lead to g-entropy
maximisers that satisfy a variety of intuitive and plausible properties—see Ap-
pendix B.

In addition, it is natural to suppose that if π′ is a refinement of partition π then
g should not give any less weight to π′ than it does to π—there are no grounds
to favour coarser partitions over more fine-grained partitions, although, as Keynes
(1921, Chapter 4) argued, there may be grounds to prefer finer-grained partitions
over coarser partitions.



Definition 38 (Refined weighting function). A weighting function g is refined if and
only if whenever π′ refines π then g(π′)≥ g(π).

gΠ and gΩ are refined, but gPΩ is not.
Let G0 be the set of weighting functions that are inclusive, symmetric and refined.

One might plausibly set G = G0. We would at least suggest that all the weighting
functions in G0 are appropriate weighting functions for scoring rules; we shall leave
it open as to whether G should contain some weighting functions—such as the
proposition weighting gPΩ—that lie outside G0. We shall thus suppose in what
follows that the set G of appropriate weighting functions is such that G0 ⊆G ⊆Ginc,
where Ginc is the set of inclusive weighting functions.

¶ One might think that the second question posed above—does the standard en-
tropy maximiser count as a rational belief function?—should be answered in the
negative. We saw in §2.2 that the standard entropy, gΩ-entropy, has a weighting
function gΩ that is not inclusive. So there is no guarantee that the standard en-
tropy maximiser minimises worst-case g-expected loss for some g ∈G . Indeed, Fig. 1
showed that the standard entropy maximiser need neither coincide with the partition
entropy maximiser nor the proposition entropy maximiser.

However, it would be too hasty to conclude that the standard entropy maximiser
fails to qualify as a rational belief function. Recall that the Equivocation norm says
that an agent’s belief function should be sufficiently equivocal, rather than maximally
equivocal. This qualification is essential to cope with the situation in which there is
no maximally equivocal function in E, i.e., the situation in which for any function in E
there is another function in E that is more equivocal. This arises, for instance, when
one has evidence that a coin is biased in favour of tails, E = P∗ = {P : P(Tails) >
1/2}. In this case supP∈EHg(P) is achieved by the probability function which gives
probability 1/2 to tails, which is outside E. This situation also arises in certain cases
when evidence is determined by quantified propositions (Williamson, 2013, §2). The
best one can do in such a situation is adopt a probability function in E that is
sufficiently equivocal, where what counts as sufficiently equivocal may depend on
pragmatic factors such as the required numerical accuracy of predictions and the
computational resources available to isolate a suitable function.

Let ⇓E be the set of belief functions that are sufficiently equivocal. Plausibly,7

E1 : ⇓E 6= ;. An agent is always entitled to hold some beliefs.

E2: ⇓E⊆ E. Sufficiently equivocal belief functions are calibrated with evidence.

E3 : For all g ∈ G there is some ε > infB∈B supP∈ESlog
g (P,B) such that if R ∈ E

and supP∈ESg(P,R) < ε then R ∈ ⇓E. I.e., if R has sufficiently low worst-case
g-expected loss for some appropriate g, then R is sufficiently equivocal.

E4: ⇓⇓E = ⇓E. Any function, from those that are calibrated with evidence, that
is sufficiently equivocal, is a function, from those that are calibrated with
evidence and are sufficiently equivocal, that is sufficiently equivocal.

E5 : If P is a limit point of ⇓E and P ∈ E then P ∈ ⇓E.
7A closely related set of conditions was put forward in Williamson (2013). Note that we will not need

to appeal to E4 in this paper. E1 is a consequence of the other principles together with the fact that E 6= ;.



Conditions E2, E3 and E5 allow us to answer our two questions. Which g-entropy
should be maximised? By E3, it is rational to adopt any g-entropy maximiser that is
in E, for g ∈G ⊇G0. Does the standard entropy maximiser count as a rational belief
function? Yes, if it is in E (which is the case, for instance, if E is closed):

Theorem 39 (Justification of maxent). If E contains its standard entropy maximiser,
P†
Ω

:=argsupEHΩ, then P†
Ω
∈ ⇓E.

Proof: We shall first see that there is a sequence of (gt)t∈N in G such that the gt-
entropy maximisers P†

t ∈ [E] converge to P†
Ω
. All respective entropy maximisers are

unique due to Corollary 10.
Let gt({{ω} : ω ∈Ω}) = 1, and put gt(π) := 1

t for all other π ∈ Π. The gt are in
G because they are inclusive, symmetric and refined. gt-entropy has the following
form:

Ht :=sup
P∈E

Hgt (P)= sup
P∈E

∑
π∈Π

−gt(π)
∑
F∈π

P(F) logP(F).

Now note that gt(π) converges to gΩ(π) and that P(F) logP(F) is finite for all F ⊆Ω.
Thus, for all P ∈ P Ht(P) converges to HΩ(P) as t approaches infinity. Hence,
supP∈EHgt (P)= Ht tends to supP∈EHΩ(P)= HΩ.

Let us now compute

|HΩ(P†
t )−HΩ(P†

Ω
)| = |HΩ(P†

t )−Hgt (P
†
t )+Hgt (P

†
t )−HΩ(P†

Ω
)|

≤ |HΩ(P†
t )−Hgt (P

†
t )|+ |Hgt (P

†
t )−HΩ(P†

Ω
)|

= |HΩ(P†
t )−Hgt (P

†
t )|+ |Ht −HΩ|.

As we noted above, gt converges to gΩ. Furthermore, (P†
t )t∈N is a bounded sequence.

Hence, Hgt (P
†
t ) converges to HΩ(P†

t ). Also recall that Ht tends to HΩ. Overall, we
find that limt→∞ HΩ(P†

t )= HΩ(P†
Ω

).
Since HΩ(·) is a strictly concave function on [E] and [E] is convex, it follows that

P†
t converges to P†

Ω
.

Note that the P†
t are not necessarily in E. But they are in [E] and there will be

some sequence of P‡
t ∈ ⇓E close to P†

t such that limt→∞ P‡
t = P†

Ω
, as we shall now

see.
If P†

t ∈ E, then simply let P‡
t = P†

t , which is in ⇓E by E3.
If P†

t ∉ E, then there exists a P ′ ∈ E which is different from P†
t such that all the

points on the line segment between P†
t and P ′ are in E; with the exception of P†

t .
Now define P‡

t,δt
(ω) = (1−δt)P

†
t (ω)+δtP ′(ω) = P†

t (ω)+δt(P ′(ω)−P†
t (ω)). Note that

for 0< δt < 1, we have, for all ω ∈Ω, that P†
t (ω)> 0 implies P‡

t,δt
(ω)> 0.

Then with

mt := min
ω∈Ω

P†
t (ω)>0

{P†
t (ω)}

and 0 < δt < mt it follows from Proposition 70 that for all F ⊆ Ω and all P ∈ E,
P(F)> 0 implies P†

t (F)> 0. Thus, for such an F we have P†
t (F)≥ mt > δt > 0.



We find for P ∈ [E] and mt > δt that,8

|Slog
gt (P,P‡

t,δt
)−Slog

gt (P,P†
t )| ≤ ∑

π∈Π
gt(π)| ∑

F∈π
P(F)

(
logP‡

t,δt
(F)− logP†

t (F)
)
|

≤ ∑
π∈Π

gt(π)
∑
F∈π

P(F)>0

P(F)| logP‡
t,δt

(F)− logP†
t (F)|

≤ ∑
π∈Π

gt(π)
∑
F∈π

P(F)>0

P(F)| log
P†

t (F)−δt · |P ′(F)−P†
t (F)|

P†
t (F)

|

≤ ∑
π∈Π

gt(π)
∑
F∈π

P(F)>0

P(F)| log
P†

t (F)−δt

P†
t (F)

|

≤ ∑
π∈Π

gt(π)
∑
F∈π

P(F)>0

P(F)| log
mt −δt

mt
|

= | log
mt −δt

mt
| ∑
π∈Π

gt(π).

For fixed gt and all P ∈ [E], |Slog
gt (P,P‡

t,δt
)−Slog

gt (P,P†
t )| becomes arbitrarily small

for small δt, moreover the upper bound we established does not depend on P. In
particular, for all χt > 0 there exists a T ∈N such that for all Ut > T and all P ∈ [E]
it holds that |Slog

gt (P,P‡
t, 1

Ut

)−Slog
gt (P,P†

t )| < χt.

Now let εt > infB∈B supP∈ESlog
gt (P,B)= Ht. Then with χt = εt−Ht

2 > 0 we have for
big enough Ut that

sup
P∈E

Slog
gt (P,P‡

t, 1
Ut

)−sup
P∈E

Slog
gt (P,P†

t )≤ χt.

Thus,

sup
P∈E

Slog
gt (P,P‡

t, 1
Ut

)≤ χt +sup
P∈E

Slog
gt (P,P†

t )

= εt −Ht

2
+Ht

< εt.

Hence, P‡
t,δt

∈ ⇓E by E3 for small enough δt. since the worst-case gt-expected loss

of P‡
t,δt

becomes arbitrarily close to Ht.
Now pick a sequence δt ↘ 0 such that δt is small enough to ensure that for every

t it holds that P‡
t,δt

∈ ⇓E. Clearly, the sequence (P‡
t,δt

)t∈N converges to the limit of the

sequence P†
t , and this limit is P†

Ω
. So, the sequence P‡

t,δt
converges to P†

Ω
which is,

by our assumption, in E.
By E5 we have P†

Ω
∈ ⇓E. 2

So far we have seen that, as long as the standard entropy maximiser is not ruled
out by the available evidence, it is sufficiently equivocal and hence it is rational

8We shall make the purely notational but very helpful convention that 0(log0− log0)= 0.



for an agent to adopt this function as her belief function. On the other hand, the
above considerations also imply that if the entropy maximiser P†

Ω
is ruled out by

the available evidence (i.e., P†
Ω
∈ [E]\E), it is rational to adopt some function P close

enough to P†
Ω

, because such a function will be sufficiently equivocal:

Corollary 40. For all ε > 0 there exists a P ∈ ⇓E such that |P(ω)−P†
Ω

(ω)| < ε for all
ω ∈Ω.

Proof: Consider the same sequence gt as in the above proof. Recall that P†
t

converges to P†
Ω

. Now pick a t such that |P†
t (ω)− P†

Ω
(ω)| < ε

2 for all ω ∈ Ω. For

this t it holds that P‡
t,δt

∈ ⇓E for small enough δt and that P‡
t,δt

converges to

P†
t . Thus, for small enough δt we have |P†

t (ω)−P‡
t,δt

(ω)| < ε
2 for all ω ∈ Ω. Thus,

|P‡
t,δt

(ω)−P†
Ω

(ω)| < ε for all ω ∈Ω. 2

¶ Is there anything that makes the standard entropy maximiser stand out among
all those functions that are sufficiently equivocal? One consideration is language
invariance. Suppose gL is a family of weighting functions, defined for each L . gL

is language invariant as long as merely adding new propositional variables to the
language does not undermine the gL -entropy maximiser:

Definition 41 (Language invariant family of weighting functions). Suppose we are given
as usual a set E of probability functions on a fixed language L . For any L ′ extend-
ing L , let E′ = E×PL ′\L be the translation of E into the richer language L ′.
A family of weighting functions is language invariant if for any such E,L , any
P† ∈ argsupP∈EHgL (P) on L and any language L ′ extending L , there is some

P‡ ∈ argsupP∈E′ HgL ′ (P) on L ′ such that P‡
�L = P†, i.e., P‡(ω) = P†(ω) for each

state ω of L .

It turns out that many families of weighting functions—including the partition
weightings and the proposition weightings—are not language invariant:

Proposition 42. The family of partition weightings gΠ and the family of proposition
weightings gPΩ are not language invariant.

Proof: Let L = {A1, A2} and E= {P ∈ P : P(ω1)+2P(ω2)+3P(ω3)+4P(ω4) = 1.7}.
The partition entropy maximiser P†

Π and the proposition entropy maximiser P†
PΩ

for this language and this set E of calibrated functions are given in the first two rows
of the table below.

ω1 ω2 ω3 ω4

P†
Π 0.5331 0.2841 0.1324 0.0504

P†
PΩ

0.5192 0.3008 0.1408 0.0392
χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

P‡
Π 0.2649 0.2649 0.1441 0.1441 0.0671 0.0671 0.0239 0.0239

P‡
PΩ

0.2510 0.2510 0.1594 0.1594 0.0783 0.0783 0.0113 0.0113

We now add one propositional variable, A3, to L and, thus, obtain L ′. De-
note the states of L ′ by χ1 = ω1 ∧¬A3, χ2 = ω1 ∧ A3, and so on. Assuming



that we have no information at all concerning A3, the set of calibrated probabil-
ity functions is given by the solutions of the constraint, (P ′(χ1)+P ′(χ2))+2(P ′(χ3)+
P ′(χ4))+3(P ′(χ5)+P ′(χ6))+4(P ′(χ7)+P ′(χ8))= 1.7. Language invariance would now
entail that P†(ω1) = P‡(χ1)+P‡(χ2), P†(ω2) = P‡(χ3)+P‡(χ4), P†(ω3) = P‡(χ5)+
P‡(χ6), P†(ω4) = P‡(χ7)+P‡(χ8). However, neither the partition entropy maximis-
ers nor the proposition entropy maximisers form a language invariant family, as can
be seen from the last two rows of the above table. 2

On the other hand, it is well known that standard entropy maximisation is lan-
guage invariant (p. 76 in (Paris, 1994)). This can be seen to follow from the fact that
certain families of weighting functions that only assign positive weight to a single
partition are language invariant:

Lemma 43. Suppose a function f picks out a partition π for any language L , in such
a way that if L ′ ⊇ L then f (L ′) is a refinement of f (L ), with each F ∈ f (L ) being
refined into the same number k of members F1, . . . ,Fk ∈ f (L ′), for k ≥ 1. Suppose gL is
such that for any L , gL ( f (L )) = c > 0 but gL (π) = 0 for all other partitions π. Then
gL is language invariant.

Proof: Let P† denote a gL -entropy maximiser (in [E]), and let P‡ denote a gL ′
-

entropy maximiser in [E]×PL ′\L . Since gL and gL ′
need not be inclusive, Hg,L

and Hg,L ′ need not be strictly concave. Thus, there need not be unique entropy
maximisers. Given F ⊆Ω refined into subsets F1, . . . ,Fk of Ω′, F ′ ⊆Ω′ is defined by
F ′ := F1 ∪ . . .∪Fk. One can restrict P‡ to L by setting P‡(ω) = ∑

ω′∈Ω′,ω′|=ωP‡(ω′)
for ω ∈Ω, so in particular, P‡(F)= P‡(F ′)= P‡(F1)+ . . .+P‡(Fk) for F ∈Ω.

The gL -entropy of P† is closely related to the gL ′
-entropy of P‡:

−c
∑

F∈ f (L )
P†(F) logP†(F)

≥−c
∑

F∈ f (L )
P‡(F) logP‡(F)

=−c
∑

F∈ f (L )
(P‡(F1)+ . . .+P‡(Fk)) log(P‡(F1)+ . . .+P‡(Fk))

=−c
∑

F∈ f (L )
(P‡(F1)+ . . .+P‡(Fk))

(
logk+ log

P‡(F1)+ . . .+P‡(Fk)
k

)
LSI≥ −c logk− c

∑
F∈ f (L )

P‡(F1) logP‡(F1)+ . . .+P‡(Fk) logP‡(Fk)

=−c logk− c
∑

G∈ f (L ′)
P‡(G) logP‡(G)

=−c logk− c
∑

F∈ f (L )
P‡(F1) logP‡(F1)+ . . .+P‡(Fk) logP‡(Fk)

≥−c logk− c
∑

F∈ f (L )

P†(F)
k

log
P†(F)

k
+ . . .+ P†(F)

k
log

P†(F)
k

=−c logk− c
∑

F∈ f (L )
P†(F) log

P†(F)
k

=−c
∑

F∈ f (L )
P†(F) logP†(F).



LSI refers to the log sum inequality introduced in Lemma 16. The first and last
inequality above follow from the fact that P† and P‡ are entropy maximisers over
L , L ′ respectively. Hence, all inequalities are indeed equalities. These entropy
maximisers are unique on f (L ), f (L ′), so P†(F) = k · P‡(F1) = . . . = k · P‡(Fk) =
P‡(F) for F ∈ f (L ).

Now take an arbitrary P† ∈ argsupP∈EHgL (P) and suppose ω ∈ Ω. Any P‡

such that P‡(ω) = P†(ω) and P‡(F1) = . . . = P‡(Fk) = P†(F)/k will be a gL ′
-entropy

maximiser on L ′. Thus gL is language invariant.
Note that if, for some L , f (L ) = {ΩL ,;}, where ΩL denotes the set of states

of L , then HgL (P) = −P(ΩL ) logP(ΩL )− P(;) logP(;) = 0− 0 = 0. Likewise, if

f (L ′)= {ΩL ′
}, then HgL ′ (P)= 0. For such g-entropies, every probability maximises

g-entropy trivially since all probability functions have the same g-entropy. 2

Taking f (L ) = {{ω} : ω ∈Ω} and c = 1 we have the language invariance of stan-
dard entropy maximisation:

Corollary 44. The family of weighting functions gΩ is language invariant.

While giving weight in this way to just one partition is sufficient for language in-
variance, it is not necessary, as we shall now see. Define a family of weighting func-
tions, the substate weighting functions, by giving weight to just those partitions that
are partitions of states of sublanguages. For any sublanguage L − ⊆L = {A1, . . . , An},
let Ω− be the set of states of L − and let π− be the partition of propositions of L

that represents the partition of states of the sublanguage L −, i.e., π− = {{ω ∈Ω :ω |=
ω−} :ω− ∈Ω−}. Then,

gL
⊆ (π)=

{
1 : π=π− for some L − ⊆L

0 : otherwise
.

Example 45. For L = {A1, A2} there are three sublanguages: L itself and the two
proper sublanguages: {A1}, {A2}. Then gL⊆ assigns the following three partitions of
Ω the same positive weight: {{A1 ∧ A2, A1 ∧¬A2}, {¬A1 ∧ A2,¬A1 ∧¬A2}}, {{A1 ∧
A2,¬A1 ∧ A2}, {A1 ∧¬A2,¬A1 ∧¬A2}}, {{A1 ∧ A2}, {A1 ∧¬A2}, {¬A1 ∧ A2}, {¬A1 ∧
¬A2}}. gL⊆ assigns all other π ∈Π weight zero.

Note that there are 2n −1 non-empty sublanguages of L , so gL⊆ gives positive
weight to 2n −1 partitions.

Proposition 46. The family of substate weighting functions is language invariant.

Proof: Consider an extension L ′ = {A1, . . . , An, An+1} of L . Let P†,P‡ be g⊆-
entropy maximisers on L ,L ′ respectively. For simplicity of exposition we shall view
these functions as defined over sentences so that we can talk of P‡(An+1 ∧ω−) etc.
For the purposes of the following calculation we shall consider the empty language to
be a language. Entropies over the empty language vanish. Summing over the empty
language ensures, for example, that the expression P‡(An+1) logP‡(An+1) appears



in Equation 27.

2HgL⊆
(P†) = −2

∑
L −⊆L

∑
ω−∈Ω−

P†(ω−) logP†(ω−)

≥ −2
∑

L −⊆L

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

= − ∑
L −⊆L

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

− ∑
L −⊆L

∑
ω−∈Ω−

[
P‡(An+1 ∧ω−)+P‡(¬An+1 ∧ω−)

]
× log

[
P‡(An+1 ∧ω−)+P‡(¬An+1 ∧ω−)

]
= − ∑

L −⊆L

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

− ∑
L −⊆L

∑
ω−∈Ω−

[
P‡(An+1 ∧ω−)+P‡(¬An+1 ∧ω−)

]
× log

[
2 · P‡(An+1 ∧ω−)+P‡(¬An+1 ∧ω−)

1+1

]
≥ − ∑

L −⊆L

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

− ∑
L −⊆L

∑
ω−∈Ω−

[log2+P‡(An+1 ∧ω−) logP‡(An+1 ∧ω−)

+P‡(¬An+1 ∧ω−) logP‡(¬An+1 ∧ω−)] (27)

= −c log2− ∑
L −⊆L ′

{An+1}6∈L ′

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

− ∑
L −⊆L ′

{An+1}∈L ′

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

= −c log2− ∑
L −⊆L ′

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

= −c log2+HgL ′
⊆

(P‡)

= −c log2− ∑
L −⊆L

∑
ω−∈Ω−

P‡(ω−) logP‡(ω−)

− ∑
L −⊆L

∑
ω−∈Ω−

[P‡(An+1 ∧ω−) logP‡(An+1 ∧ω−)

+P‡(¬An+1 ∧ω−) logP‡(¬An+1 ∧ω−)]

≥ −c log2− ∑
L −⊆L

∑
ω−∈Ω−

P†(ω−) logP†(ω−)− ∑
L −⊆L

∑
ω−∈Ω−

P†(ω−) log
P†(ω−)

2

= −2
∑

L −⊆L

∑
ω−∈Ω−

P†(ω−) logP†(ω−)

= 2HgL⊆
(P†),

where c is some constant and where the second inequality is an application of the
log-sum inequality. As in the previous proof, all inequalities are thus equalities,
P‡(±An+1 ∧ω)= P†(ω)/2 and P‡ extends P†, as required. 2

In general the substate entropy maximisers differ from the standard entropy
maximisers as well as the partition entropy maximisers and the proposition entropy



maximisers:

Example 47. For L = {A1, A2} and the substate weighting function gL⊆ on L (see
Example 45) we find for E= {P ∈P : P(A1∧A2)+2P(A1∧¬A2)= 0.1} that the stan-
dard entropy maximiser, the partition entropy maximiser, the proposition entropy
maximiser and the substate weighting entropy maximiser are pairwise different.

A1 ∧ A2 A1 ∧¬A2 ¬A1 ∧ A2 ¬A1 ∧¬A2

P†
Ω

0.0752 0.0124 0.4562 0.4562
P†
Π 0.0856 0.0072 0.4536 0.4536

P†
PΩ

0.0950 0.0025 0.4513 0.4513
P†

gL⊆
0.0950 0.0025 0.4293 0.4732

Observe that the standard entropy maximiser, the partition entropy maximiser and
the proposition entropy maximiser are all symmetric in ¬A1 ∧ A2 and ¬A1 ∧¬A2,
while the substate weighting entropy maximiser is not. This break of symmetry is
caused by the fact that gL⊆ is not symmetric in ¬A1 ∧ A2 and ¬A1 ∧¬A2.

We have seen that the substate weighting functions are not symmetric. Neither
are they inclusive nor refined. We conjecture that, if G = G0, the set of inclusive,
symmetric and refined g, then the only language invariant family gL that gives rise
to entropy maximisers that are sufficiently equivocal is the family that underwrites
standard entropy maximisation: if gL is language invariant and the gL -entropy
maximiser is in ⇓E then gL = gΩ.

In sum, there is a compelling reason prefer the standard entropy maximiser over
other g-entropy maximisers: the standard entropy maximiser is language invari-
ant while other—perhaps, all other—appropriate g-entropy maximisers are not. In
Appendix B.3 we show that there are three further ways in which the standard en-
tropy maximiser differs from other g-entropy maximisers: it satisfies the principles
of Irrelevance, Relativisation, and Independence.

§5
Discussion

§5.1. Summary

In this paper we have seen how the standard concept of entropy generalises rather
naturally to the notion of g-entropy, where g is a function that weights the parti-
tions that contribute to the entropy sum. If loss is taken to be logarithmic, as is
forced by desiderata L1–4 for a default loss function, then the belief function that
minimises worst-case g-expected loss, where the expectation is taken with respect
to a chance function known to lie in a convex set E, is the probability function in
E that maximises g-entropy, if there is such a function. This applies whether belief
functions are thought of as defined over the sentences of an agent’s language or over
the propositions picked out by those sentences.

This fact suggests a justification of the three norms of objective Bayesianism: a
belief function should be a probability function, it should lie in the set E of poten-
tial chance functions, and it should otherwise be equivocal in that it should have
maximum g-entropy.

But the probability function with maximum g-entropy may lie outside E, on its
boundary, in which case that function is ruled out of contention by available evi-
dence. So objective Bayesianism only requires that a belief function be sufficiently



equivocal—not that it be maximally equivocal. Principles E1–5 can be used to con-
strain the set ⇓E of sufficiently equivocal functions. Arguably, if the standard entropy
maximiser is in E then it is also in ⇓E. Moreover, the standard entropy maximiser
stands out as being language invariant. This then provides a qualified justification
of the standard maximum entropy principle: while an agent is rationally entitled to
adopt any sufficiently equivocal probability function in E as her belief function, if
the standard entropy maximiser is in E then that function is a natural choice.

Some questions arise. First, what are the consequences of this sort of account
for conditionalisation and Bayes’ theorem? Second, how does this account relate
to imprecise probability, advocates of which reject our starting assumption that the
strengths of an agent’s beliefs are representable by a single belief function? Third,
the arguments of this paper are overtly pragmatic; can they be reformulated in a
non-pragmatic way? We shall tackle these questions in turn.

§5.2. Conditionalisation, conditional probabilities and Bayes’ theorem

Subjective Bayesians endorse the Probability norm and often also some sort of Cal-
ibration norm, but do not go so far as to insist on Equivocation. This leads to
relatively weak constraints on degrees of belief, so subjective Bayesians typically ap-
peal to Bayesian conditionalisation as a means to tightly constrain the way in which
degrees of belief change in the light of new evidence. Objective Bayesians do not
need to invoke Bayesian conditionalisation as a norm of belief change because the
three norms of objective Bayesianism already tightly constrain any new belief func-
tion that an agent can adopt. In fact, if the objective Bayesian adopts the policy
of adopting the standard entropy maximiser as her belief function then objective
Bayesian updating often agrees with updating by conditionalisation, as shown by
Seidenfeld (1986, Result 1):

Theorem 48. Suppose that E is the set of probability functions calibrated with evidence E
and that E can be written as the set of probability functions which satisfy finitely many
constraints of the form ci =∑

ω∈Ω di,ωP(ω). Suppose E′ is the set of probability functions
calibrated with evidence E∪ {G}, and that P†

E ,P†
E∪{G} are functions in E,E′ respectively

that maximise standard entropy. If
(i) G ⊆Ω,
(ii) the only constraints imposed by E∪ {G} are the constraints ci = ∑

ω∈Ω di,ωP(ω)
imposed by E together with the constraint P(G)= 1,

(iii) the constraints in (ii) are consistent, and
(iv) P†

E(·|G) ∈ E,
then P†

E∪{G}(F)= P†
E(F|G) for all F ⊆Ω.

This fact has various consequences. First, it provides a qualified justification of
Bayesian conditionalisation: a standard entropy maximiser can be thought of as ap-
plying Bayesian conditionalisation in many natural situations. Second, if conditions
(i)-(iv) of Theorem 48 hold then there is no need to maximise standard entropy to
compute the agent’s new degrees of belief—instead, Bayesian conditionalisation can
be used to calculate these degrees of belief. Third, conditions (i)-(iv) of Theorem 48
can each fail, so the two forms of updating do not always agree and Bayesian condi-
tionalisation is less central to an objective Bayesian who maximises standard entropy
than it is to a subjective Bayesian. As pointed out in Williamson (2010, Chapter 4)
and Williamson (2011, §§8,9), standard entropy maximisation is to be preferred over
Bayesian conditionalisation where any of these conditions fail. Fourth, conditional



probabilities, which are crucial to subjective Bayesianism on account of their use
in Bayesian conditionalisation, are less central to the objective Bayesian, because
conditionalisation is only employed in a qualified way. For the objective Bayesian,
conditional probabilities are merely ratios of unconditional probabilities—they are
not generally interpretable as conditional degrees of belief (Williamson, 2010, §4.4.1).
Fifth, Bayes’ theorem, which is an important tool for calculating conditional proba-
bilities, used routinely in Bayesian statistics, for example, is less central to objective
Bayesianism because of the less significant role played by conditional probabilities.

Interestingly, while Theorem 48 appeals to standard entropy maximisation, an
analogous result holds for g-entropy maximisation, for any inclusive g, as we show
in Appendix B.2:

Theorem 49. Suppose that convex and closed E is the set of probability functions calibrated
with evidence E, and E′ is the set of probability functions calibrated with evidence E∪{G}.
Also suppose that P†

E ,P†
E∪{G} are functions in E,E′ respectively that maximise g-entropy

for some fixed g ∈Ginc ∪ {gΩ}. If
(i) G ⊆Ω,
(ii) the only constraints imposed by E∪ {G} are the constraints imposed by E together

with the constraint P(G)= 1,
(iii) the constraints in (ii) are consistent, and
(iv) P†

E(·|G) ∈ E,
then P†

E∪{G}(F)= P†
E(F|G) for all F ⊆Ω.

Thus the preceding comments apply equally in the more general context of this
paper.

§5.3. Imprecise probability

Advocates of imprecise probability argue that an agent’s belief state is better rep-
resented by a set of probability functions—for example by the set E of probabil-
ity functions calibrated with evidence—than by a single belief function (Kyburg Jr,
2003). This makes decision making harder. An agent whose degrees of belief are
represented by a single probability function can use that probability function to
determine which of the available acts maximises expected utility. However, an im-
precise agent will typically find that the acts that maximise expected utility vary
according to which probability function in her imprecise belief state is used to de-
termine the expectation. The question then arises, with respect to which probability
function in her belief state should such expectations be taken?

This question motivates a two-step procedure for imprecise probability: first
isolate a set of probability functions as one’s belief state; then choose a probability
function from within this set for decision making—this might be done in advance of
any particular decision problem arising—, and use that function to make decisions
by maximising expected utility. While this sort of procedure is not the only way of
thinking about imprecise probability, it does have some adherents. It is a component
of the transferrable belief model of Smets and Kennes (1994), for instance, and
Keynes advocated a similar sort of view:9

the prospect of a European war is uncertain, or the price of copper
and the rate of interest twenty years hence, or the obsolescence of a

9We are very grateful to an anonymous referee and Hykel Hosni respectively for alerting us to these
two views.



new invention, or the position of private wealth-owners in the social
system in 1970. About these matters there is no scientific basis on which
to form any calculable probability whatever. We simply do not know.
Nevertheless, the necessity for action and for decision compels us as
practical men to do our best to overlook this awkward fact and to behave
exactly as we should if we had behind us a good Benthamite calculation
of a series of prospective advantages and disadvantages, each multiplied
by its appropriate probability, waiting to be summed. (Keynes, 1937,
p.214.)

The results of this paper can be applied at the second step of this two-step
procedure. If one wants a probability function for decision making that controls
worst-case g-expected default loss, then one should choose a function in one’s belief
state with sufficiently high g-entropy (or a limit point of such functions), where
g is in G , the set of appropriate weighting functions. The resulting approach to
imprecise probability is conceptually different to objective Bayesian epistemology, but
the two approaches are formally equivalent, with the decision function for imprecise
probability corresponding to the belief function for objective Bayesian epistemology.

§5.4. A non-pragmatic justification

The line of argument in this paper is thoroughly pragmatic: one ought to satisfy
the norms of objective Bayesianism in order to control worst-case expected loss.
However, the question has recently arisen as to whether one can adapt arguments
that appeal to scoring rules to provide a non-pragmatic justification of the norms
of rational belief—see, e.g., Joyce (2009). There appears to be some scope for rein-
terpreting the arguments of this paper in non-pragmatic terms, along the following
lines. Instead of viewing L1–4 as isolating an appropriate default loss function, one
can view them as postulates on a measure of the inaccuracy of one’s belief in a
true proposition: believing a true proposition does not expose one to inaccuracy;
inaccuracy strictly increases as degree of belief in the true proposition decreases;
inaccuracy with respect to a proposition only depends on the degree of belief in that
proposition; inaccuracy is additive over independent sublanguages.10 A g-scoring
rule then measures expected inaccuracy. Strict propriety implies that the physical
probability function has minimum expected inaccuracy. (If P∗ is deterministic, i.e.,
P∗(ω) = 1 for some ω ∈Ω, then the unique probability function which puts all mass
on ω has minimum expected inaccuracy. In this sense we can say that strictly proper
scoring rules are truth-tracking, which is an important epistemic good.) In order
to minimise worst-case g-expected inaccuracy, one would need degrees of belief
that are probabilities, that are calibrated to phyisical probability, and that maximise
g-entropy.

The main difference between the pragmatic and the non-pragmatic interpre-
tations of the arguments of this paper appears to lie in the default nature of the
conclusions under a pragmatic interpretation. It is argued here that loss should be
taken to be logarithmic in the absence of knowledge of the true loss function. If
one does know the true loss function L∗ and this loss function turns out not to be
logarithmic then one should arguably do something other than minimising worst-
case expected logarithmic loss—one should minimise worst-case expected L∗-loss.

10L4 would need to be changed insofar as that it would need to be physical probability P∗ rather than
the agent’s belief function B that determines whether sublanguages are independent. This change does
not affect the formal results.



Under a non-pragmatic interpretation, on the other hand, one might argue that L1-4
characterises the correct measure of the inaccuracy of a belief in a true proposition,
not a measure that is provisional in the sense that logarithmic loss is. Thus the con-
clusions of this paper are arguably firmer—less provisional—under a non-pragmatic
construal.

§5.5. Questions for further research

We noted above that if one knows the true loss function L∗ then one should arguably
minimise worst-case expected L∗-loss. Grünwald and Dawid (2004) generalise stan-
dard entropy in a different direction to that pursued in this paper, in order to argue
that minimising worst-case expected L∗-loss requires maximising entropy in their
generalised sense. One interesting question for further research is whether one can
generalise the notion of g-entropy in an analogous way, to try to show that min-
imising worst-case g-expected L∗-loss requires maximising g-entropy in this further
generalised sense.

A second question concerns whether one can extend the discussion of belief over
sentences in §3 to predicate, rather than propositional, languages. A third question
is whether other justifications of logarithmic score can be used to justify logarithmic
g-score—for example, is logarithmic g-score the only local strictly proper g-score?
Fourth, we suspect that Theorem 25 can be further generalised. Finally, it would
be interesting to investigate language invariance in more detail in order to test the
conjecture at the end of §4.
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A
Entropy of belief functions

Axiomatic characterizations of standard entropy on probability functions have fea-
tured heavily in the literature—see Csiszàr (2008). In this appendix we provide two
characterizations of g-entropy on belief functions which closely resemble the original
axiomatisation provided by Shannon (1948, §6). (We appeal to these characterisa-
tions in the proof of Proposition 55 in B.2.)

We shall need some new notation. Let k ∈N and x ∈R, then denote by x@k the
tuple 〈x, x, . . . , x〉 ∈Rk. For x ∈R and ~y ∈Rl we denote by x ·~y the vector 〈x · y1, . . . , x ·
yl〉 ∈Rl . For a vector~x ∈Rk let |~x|1 = x1+ . . .+xk. Assume in the following that all xi
and all yi j are in [0,1]. Also, let k, l henceforth denote the number of components
in ~x respectively ~y.

Proposition 50 (First characterisation). Let H(B) = ∑
π∈Π g(π) f (π,B) where f (π,B) :=

h(B(F1), ...,B(Fk)) for π= {F1, ...,Fk} and

h :
⋃
k≥1

{〈x1, . . . , xk〉 : xi ≥ 0 &
k∑

i=1
xi ≤ 1}−→ [0,∞).

Suppose also that the following conditions hold:



H1 : h is continuous;

H2: if 1≤ t1 < t2 ∈N then h( 1
t1

@t1)< h( 1
t2

@t2);

H3 : if 0< |~x|1 ≤ 1 and if |~yi|1 = 1 for 1≤ i ≤ k, then

h(x1 · ~y1, . . . , xk · ~yk)= h(x1, . . . , xk)+
k∑

i=1
xih(~yi);

H4: qh( 1
t )= h( 1

t @q) for 1≤ q ≤ t ∈N;
then H(B)=−∑

π∈Π g(π)
∑

F∈πB(F) logB(F).

Proof: We first apply the proof of Paris (1994, pp. 77–78), which implies (using only
H1, H2 and H3) that

h(~x)=−c
k∑

i=1
xi log xi (28)

for all ~x with |~x|1 = 1, where c ∈R>0 is some constant.
Now suppose 0 < |~x|1 < 1. Then with yi := xi

|~x|1 we have ~x = |~x|1 ·~y and |~y|1 = 1.
Thus

h(~x)= h(|~x|1 ·~y) H3= h(|~x|1)+|~x|1h(~y)
(28)= h(|~x|1)−|~x|1c

l∑
i=1

yi log yi.

We will next show that h(x) = −cx log x for x ∈ [0,1). Thus, note that h( 1
t ) H4=

1
t h( 1

t @t)
(28)= 1

t (−ct 1
t log 1

t )=−c 1
t log 1

t . For 1≤ q ≤ t ∈N we now find

−c
1
t

log
1
t
= h(

1
t

) H4= 1
q

h(
1
t

@q)= 1
q

h(
q
t
· 1

q
@q) H3= 1

q

(
h(

q
t

)+ q
t

h(
1
q

@q)
)

(28)= 1
q

(
h(

q
t

)+ q
t

(−cq
1
q

log
1
q

)
)
.

Thus

h(
q
t

)=−c
q
t

(
log(

1
t

)− log(
1
q

)
)

=−c
q
t

log
q
t

.

Hence, h is of the claimed form for rational numbers in (0,1]. The continuity axiom
H1 now guarantees that h(x) = −cx log x for all x ∈ [0,1] ⊂ R. Putting our results
together we obtain

h(~x)=−c|~x|1 log |~x|1 − c|~x|1
l∑

i=1
yi log yi =−c|~x|1(

l∑
i=1

yi log |~x|1 +
l∑

i=1
yi log yi)

=−c|~x|1
l∑

i=1
yi log(|~x|1 · yi)

=−c
l∑

i=1
xi log xi.



Finally, note that h does satisfy all the axioms. The constant c can then be ab-
sorbed into the weighting function g to give H(B)=−∑

π∈Π g(π)
∑

F∈πB(F) logB(F),
as required. 2

A tighter analysis reveals that the axiomatic characterization above may be weak-
ened. We may replace H3 by the following two instances of H3:
A: If |~x|1 = 1 and if |~yi|1 = 1 for 1≤ i ≤ k, then

h(x1 · ~y1, . . . , xk · ~yk)= h(x1, . . . , xk)+
k∑

i=1
xih(~yi).

B : If 0< x < 1 and if |~y|1 = 1, then

h(x ·~y)= h(x)+ xh(~y).

Property A is of course Shannon’s original axiom H3. The axiom H3 used above
is the straightforward generalization of Shannon’s H3 to vectors ~x summing to less
than one.

Proposition 51 (Second characterisation). Let H(B)=∑
π∈Π g(π) f (π,B) where f (π,B) :=

h(B(F1), ...,B(Fk)) for π= {F1, ...,Fk} and

h :
⋃
k≥1

{〈x1, . . . , xk〉 : xi ≥ 0 &
k∑

i=1
xi ≤ 1}−→ [0,∞).

Suppose also that the following conditions hold:

H1 : h is continuous;

H2: if 1≤ t1 < t2 ∈N then h( 1
t1

@t1)< h( 1
t2

@t2);

A: if |~x|1 = 1 and if |~yi|1 = 1 for 1≤ i ≤ k, then

h(x1 · ~y1, . . . , xk · ~yk)= h(x1, . . . , xk)+
k∑

i=1
xih(~yi).

B : if 0< x < 1 and if |~y|1 = 1, then

h(x ·~y)= h(x)+ xh(~y);

C : for 0< x, y< 1, it holds that h(x · y)= xh(y)+ yh(x);

D: for 0< x < 1, it holds that h(x)= h(x,1− x)−h(1− x);

then H(B)=−∑
π∈Π g(π)

∑
F∈πB(F) logB(F).

Proof: We shall again invoke the proof in Paris (1994, pp. 77–78) to show (using only
H1, H2 and A) that

h(~x)=−c
k∑

i=1
xi log xi (29)

for all ~x with |~x|1 = 1 and some constant c ∈R>0.



Now suppose 0 < |~x|1 < 1. Then with yi := xi
|~x|1 we have ~x = |~x|1 ·~y and |~y|1 = 1.

Thus

h(~x)= h(|~x|1 ·~y) H3= h(|~x|1)+|~x|1h(~y)
(29)= h(|~x|1)−|~x|1c

l∑
i=1

yi log yi.

As we have seen in the previous proof, it now only remains to show that h(x) =
−cx log x for x ∈ [0,1]⊂R.

We next show by induction that for all non-zero t ∈N, h( 1
2t )=−c 1

2t log 1
2t .

The base case is immediate, observe that

h(
1
2

) D= 1
2

h(
1
2

,
1
2

)
(29)= −c

1
2

log
1
2

.

Using the induction hypothesis (IH), the inductive step is straightforward too:

h(
1
2t ) C= 1

2t−1 h(
1
2

)+ 1
2

h(
1

2t−1 )

IH= −c
( 1
2t log(

1
2

)+ 1
2t log(

1
2t−1 )

)
=−c

1
2t log

1
2t .

We next show by induction on t ≥ 1 that for all non-zero natural numbers m < 2t,
h( m

2t )=−c m
2t log m

2t .
For the base case simply note that t = m = 1 and thus

h(
1
21 )=− c

1
2

log
1
2

.

The inductive step follows for m < 2t−1:

h(
m
2t ) C= m

2t−1 h(
1
2

)+ 1
2

h(
m

2t−1 )

IH= −c
m

2t−1
1
2

log(
1
2

)− c
1
2

m
2t−1 log(

m
2t−1 )

=−c
m
2t log

m
2t .

For 2t−1 < m < 2t we find

h(
m
2t ) D= h(

m
2t ,

2t −m
2t )−h(

2t −m
2t )

(29)= −c
( m
2t log(

m
2t )+ 2t −m

2t log(
2t −m

2t )
)
−h(

2t −m
2t )

IH= −c
( m
2t log(

m
2t )+ 2t −m

2t log(
2t −m

2t )
)
+ c

2t −m
2t log(

2t −m
2t )

=−c
m
2t log

m
2t .

Since rational numbers of the form m
2t are dense in [0,1] ⊂ R we can use the conti-

nuity axiom H1 to conclude that h has to be of the desired form.
Finally, note that h does satisfy all the axioms. The constant c can then be ab-

sorbed into the weighting function g to give the required form of H(B). 2



We can combine B and C to form one single axiom H5 which implies B and C:
H5 : if 0< x < 1 and if |~y|1 ≤ 1, then

h(x ·~y)= |~y|1h(x)+ xh(~y).

Clearly, H5 is a natural way to generalize A to belief functions. It now follows easily
that H1, H2, A, H5 and D jointly constrain h to h(~x)=−c

∑k
i=1 xi log xi.

Although it is certainly possible to consider the g-entropy of a belief function,
maximising standard entropy over B—as opposed to E ⊆ P—has bizarre conse-
quences. For |Ω| = 2 we have that {Bz ∈ B : z ∈ [0,1], Bz(Ω) = z, Bz(;) = 1−
z, Bz(ω1) = Bz(ω2) = 1

e } is the set of entropy maximizers. This follows from con-
sidering the following optimization problem:

maximize −B(ω1) logB(ω1)−B(ω2) logB(ω2)

subject to 0≤ B(;),B(Ω),B(ω1),B(ω2)

B(ω1)+B(ω2)≤ 1

B(;)+B(Ω)≤ 1

B(;)+B(Ω)= 1 or B(ω1)+B(ω2)= 1.

Putting B(;)+B(Ω)= 1 ensures that the last two constraints are satisfied and permits
the choice of B(ω1), B(ω2) such that B(ω1)+B(ω2) < 1. For non-negative B(ω) we
have that −B(ω) logB(ω) obtains the unique maximum at B(ω) = 1

e . The claimed
optimality result follows.

It is worth pointing out that this phenomenon does not depend on the base
of the logarithm. For |Ω| ≥ 3, however, intuition honed by considering entropy of
probability functions does not lead one astray. For |Ω| ≥ 3, any belief function B
with B(ω)= 1

|Ω| for ω ∈Ω does maximize standard entropy.
Similarly bizarre consequences also obtain in the case of other g-entropies. For

|Ω| = 2 and g({Ω})+ g({Ω,;})¿ g({ω1}, {ω2}), belief functions maximizing g-entropy
satisfy B(ω1) = B(ω2) = 1

e . To see this, simply note that for such g the optimum
obtains for B(Ω)+B(;)= 1.

For the proposition entropy for |Ω| = 2, there are two entropy maximizers in B.
They are B†

1(;)= B†
1(Ω)= 1

2 , B†
1(ω1)= B†

1(ω2)= 1
e and B†

2(;)= B†
2(Ω)= 1

e , B†
2(ω1)=

B†
2(ω2)= 1

2 .
Thus, an agent adopting a belief function maximizing g-entropy over B may vi-

olate the probability norm. Furthermore, the agent may have to choose a belief func-
tion from finitely or infinitely many such non-probabilistic functions. For an agent
minimizing worst-case g-expected loss these bizarre situations do not arise. From
Theorem 24 and we know that for inclusive g, minimizing worst-case g-expected
loss forces the agent to adopt a probability function which maximizes g-entropy
over the set E of calibrated probability functions. By Corollary 10 this probability
function is unique.

B
Properties of g-entropy maximisation

General properties of standard entropy (defined on probability functions) have been
widely studied in the literature. Here we examine general properties of the g-
entropy of a probability function, for g ∈ G . We have already seen one difference



between standard and g-entropy in Section §4: standard entropy satisfies language
invariance; g-entropy in general need not. Surprisingly, language invariance seems
to be an exception. Standard entropy and g-entropy behave in many respects in the
same way.

B.1. Preserving the equivocator

For example, as we shall see now, if g is inclusive and symmetric then the probability
function that is deemed most equivocal—i.e., the function, out of all probability
functions, with maximum g-entropy—is the equivocator function P=, which gives
each state the same probability.

Definition 52 (Equivocator-Preserving ). A weighting function g is called equivocator-
preserving, if and only if argsupP∈PHg(P)= P=.

That symmetry and inclusiveness are sufficient for g to be equivocator-preserving
will follow from the following lemma:

Lemma 53. For inclusive g, g is equivocator-preserving if and only if

z(ω) := ∑
F⊆Ω
ω∈F

∑
π∈Π
F∈π

−g(π)(1− log |Ω|+ log |F|)= c,

for some constant c.

Proof: Recall from Proposition 8 that g-entropy is strictly concave on P. Thus, every
critical point in the interior of P is the unique maximiser of Hg(·) on P.

Now consider the Lagrange function Lag:

Lag(P)=λ(−1+ ∑
ω∈Ω

P(ω))+Hg(P)

=λ(−1+ ∑
ω∈Ω

P(ω))+ ∑
π∈Π

−g(π)
∑
F∈π

( ∑
ω∈F

P(ω)
)(

log
∑
ω∈F

P(ω)
)
.

For fixed ω ∈Ω and π ∈Π, denote by Fω,π the unique F ⊆Ω such that ω ∈ F and
F ∈π. Taking derivatives we obtain:

∂

∂P(ω)
Lag(P)=λ+ ∑

π∈Π
−g(π)(1+ log

∑
ν∈Fω,π

P(ν)) for all ω ∈Ω.

Now, if P= maximises g-entropy, then for all ω ∈Ω the following must vanish:

∂

∂P(ω)
Lag(P=)=λ+ ∑

π∈Π
−g(π)(1+ logP=(Fω,π))

=λ+ ∑
π∈Π

−g(π)(1+ log
|Fω,π|
|Ω| )

=λ+ ∑
π∈Π

−g(π)(1− log |Ω|+ log |Fω,π|)

=λ+ ∑
F⊆Ω
ω∈F

∑
π∈Π
F∈π

−g(π)(1− log |Ω|+ log |F|).

Since this expression has to vanish for all ω ∈Ω, it does not depend on ω.



On the other hand, if g is such that∑
F⊆Ω
ω∈F

∑
π∈Π
F∈π

−g(π)(1− log |Ω|+ log |F|)

does not depend on ω, then P= is a critical point of Lag(P) and thus the entropy
maximiser. 2

Corollary 54. If g is symmetric and inclusive then it is equivocator-preserving.

Proof: By Lemma 53 we only need to show that∑
F⊆Ω
ω∈F

∑
π∈Π
F∈π

−g(π)(1− log |Ω|+ log |F|)

does not depend on ω.
Denote by πi j respectively Fi j the result of replacing ωi by ω j and vice versa

in π ∈ Π, respectively F ⊆ Ω. By the symmetry of g we have g(π) = g(πi j). Since
|F| = |Fi j| we then find for all ωi,ω j ∈Ω,∑

F⊆Ω
ωi∈F

∑
π∈Π
F∈π

−g(π)(1− log |Ω|+ log |F|)= ∑
F⊆Ω
ωi∈F

∑
π∈Π
F∈π

−g(πi j)(1− log |Ω|+ log |Fi j|)

= ∑
F⊆Ω
ωi∈F

∑
π∈Π

Fi j∈π

−g(π)(1− log |Ω|+ log |Fi j|)

= ∑
F⊆Ω
ω j∈F

∑
π∈Π
F∈π

−g(π)(1− log |Ω|+ log |F|).

2

Are there are any non-symmetric, inclusive g that are equivocator preserving?
We pose this as an interesting question for further research.

B.2. Updating

Next we show that there is widespread agreement between updating by condition-
alisation and updating by g-entropy maximisation, a result to which we alluded in
§5.

Proposition 55. Suppose that E is the set of probability functions calibrated with evidence
E. Let g be inclusive and G ⊆ Ω such that E′ = {P ∈ E : P(G) = 1} 6= ;, where E′ is
the set of probability functions calibrated with evidence E∪ {G}. Then the following are
equivalent:

◦ P†
E(·|G) ∈ [E]

◦ P†
E∪{G}(·)= P†

E(·|G),

where P†
E ,P†

E∪{G} are functions in E,E′ respectively that maximise g-entropy.



Proof: First suppose that P†
E(·|G) ∈ [E].

Observe that if E′ = E, then there is nothing to prove. Thus suppose that E′ ⊂ E.
Hence, there exists a function P ∈ E with P(Ḡ)> 0. By Proposition 70 inclusive g are
open-minded, hence P†

E(Ḡ)> 0.11 So, P†
E(·|Ḡ) is well-defined.

Now let P†
1 := P†

E∪{G} and P† := P†
E . Then assume for contradiction that P†

1(F) 6=
P†(F|G) for some F ⊆ Ω. By Corollary 10 the g-entropy maximiser P†

1 in [E′] is
unique, furthermore P†(·|G) ∈ [E′]. It follows that:

∑
π∈Π

−g(π)
∑

F ′∈π
P†

1(F ′) logP†
1(F ′)= Hg(P†

1)

> Hg(P†(·|G))

= ∑
π∈Π

−g(π)
∑

F ′∈π
P†(F ′|G) logP†(F ′|G).

Now define P ′(·)= P†(G)P†
1(·|G)+P†(Ḡ)P†(·|Ḡ). Since [E] is convex, P†

1,P†(·|G) ∈
[E] and since P†

1(·|G)= P†
1 we have that P ′ ∈ [E].

Using the above inequality we observe, using axiom A of Appendix A with
~x = 〈P†(G),P†(Ḡ)〉, ~y1 = 〈P†

1(F ′|G) : F ′ ∈π〉 and ~y2 = 〈P†(F ′|G) : F ′ ∈π〉 that
Hg(P ′)= ∑

π∈Π
−g(π)

∑
F ′∈π

P ′(F ′) logP ′(F ′)

= ∑
π∈Π

−g(π)
∑

F ′∈π
(P†(G)P†

1(F ′|G) + P†(Ḡ)P†(F ′|Ḡ)) log(P†(G)P†
1(F ′|G) + P†(Ḡ)P†(F ′|Ḡ))

A= ∑
π∈Π

−g(π)
(
P†(G) logP†(G)+P†(Ḡ) logP†(Ḡ)

)
+ ∑
π∈Π

−g(π)
(
P†(G)

∑
F ′∈π

P†
1(F ′|G) logP†

1(F ′|G)+P†(Ḡ)
∑

F ′∈π
P†(F ′|Ḡ) logP†(F ′|Ḡ)

)
= ∑
π∈Π

−g(π)
(
P†(G) logP†(G)+P†(Ḡ) logP†(Ḡ)

)
+ ∑
π∈Π

−g(π)
(
P†(G)

∑
F ′∈π

P†
1(F ′) logP†

1(F ′)+P†(Ḡ)
∑

F ′∈π
P†(F ′|Ḡ) logP†(F ′|Ḡ)

)
> ∑
π∈Π

−g(π)
(
P†(G) logP†(G)+P†(Ḡ) logP†(Ḡ)

)
+ ∑
π∈Π

−g(π)
(
P†(G)

∑
F ′∈π

P†(F ′|G) logP†(F ′|G)+P†(Ḡ)
∑

F ′∈π
P†(F ′|Ḡ) logP†(F ′|Ḡ)

)
=Hg(P†).

Our above calculation contradicts that P† maximises g-entropy over [E]. Thus,
P†

1(·)= P†(·|G).
Conversely, suppose that P†

E(·|G) = P†
E∪{G}(·). Now simply observe P†

E(·|G) ∈
[E′]⊆ [E]. 2

Theorem 49. Suppose that convex and closed E is the set of probability functions cali-
brated with evidence E, and E′ is the set of probability functions calibrated with evidence
E∪ {G}. Also suppose that P†

E ,P†
E∪{G} are functions in E,E′ respectively that maximise

g-entropy for some fixed g ∈Ginc ∪ {gΩ}. If

11Note that the proof of Proposition 70 does not itself depend on Proposition 55.



(i) G ⊆Ω,
(ii) the only constraints imposed by E∪ {G} are the constraints imposed by E together

with the constraint P(G)= 1,

(iii) the constraints in (ii) are consistent, and

(iv) P†
E(·|G) ∈ E,

then P†
E∪{G}(F)= P†

E(F|G) for all F ⊆Ω.
Proof: For g ∈Ginc this follows directly from Proposition 55. Simply note that E= [E]
and thus P†

E(·|G) ∈ [E].
The proof of Proposition 55 also goes through for g = gΩ. This follows from

the fact that all the ingredients in the proof—open-mindedness, uniqueness of the
g-entropy maximiser on a convex set E and the axiomatic characterizations in Ap-
pendix A—also hold for standard entropy. 2

This extends Seidenfeld’s result for standard entropy, Theorem 48, to arbitrary
convex sets E⊆P and also to inclusive weighting functions.

B.3. Paris-Vencovská Properties

The following eight principles have played a central role in axiomatic characteri-
zations of the maximum entropy principle by Paris and Vencovská—c.f., Paris and
Vencovská (1990); Paris (1994); Paris and Vencovská (1997); Paris (1998). The first
seven principles were first put forward in Paris and Vencovská (1990). Paris (1998)
views all eight principles as following from the following single common-sense prin-
ciple: “Essentially similar problems should have essentially similar solutions.”

While Paris and Vencovská mainly considered linear constraints, we shall con-
sider arbitrary convex sets E,E1. Adopting their definitions and using our notation
we investigate the following properties:

Definition 56 (1: Equivalence). P† only depends on E and not on the constraints that
give rise to E.

This clearly holds for every weighting function g.

Definition 57 (2: Renaming ). Let per be an element of the permutation group
on {1, . . . , |Ω|}. For a proposition F ⊆ Ω with F = {ωi1 , . . . ,ωik } define per(F) =
{ωper(i1), . . . ,ωper(ik)}. Next let per(B(F))= B(per(F)) and per(E)= {per(P) : P ∈ E}.
Then g satisfies renaming if and only if P†

E
(F)= P†

per(E)(per(F)).

Proposition 58. If g is inclusive and symmetric then g satisfies renaming.

Proof: For π ∈ Π with π = {Fi1 , . . . ,Fi f } define per(π) = {per(Fi1 ), . . . , per(Fi f )}.



Using that g is symmetric for the second equality we find

Hg(P)=− ∑
π∈Π

g(π)
∑
F∈π

P(F) logP(F)

=− ∑
π∈Π

g(per−1(π))
∑
F∈π

P(F) logP(F)

=− ∑
π∈Π

g(π)
∑

F∈per(π)
P(F) logP(F)

=− ∑
π∈Π

g(π)
∑
F∈π

P(per(F)) logP(per(F))

= Hg(per(P)).

Thus P†
per(E) = per(P†) and hence P†

per(E)(per(F)) = per(P†)(per(F)) = P†(F).
2

Weighting functions g satisfying the renaming property satisfy a further symme-
try condition, as we shall see now.

Definition 59 (Symmetric complement). For P ∈ P define the symmetric complement of
P with respect to A i, denoted by σi(P), as follows:

σi(P)(±A1 ∧ . . .∧±A i−1 ∧±A i ∧±A i+1 ∧ . . .∧±An)

:= P(±A1 ∧ . . .∧±A i−1 ∧∓A i ∧±A i+1 ∧ . . .∧±An),

i.e., σi(P)(ω) = P(ω′) where ω′ is ω but with A i negated. A function P ∈ P is called
symmetric with respect to A i if and only if P =σi(P).

We call E ⊆ P symmetric with respect to A i just when the following condition
holds: P ∈ [E] if and only if σi(P) ∈ [E].

Corollary 60. For all symmetric and inclusive g and all E that are symmetric with respect
to A i it holds that

P† =σi(P†).

Thus, if E is symmetric with respect to A i , so is P†.
Proof: Since g is symmetric and inclusive there is some function γ :N→ R>0 such
that Hg(P)=∑

F⊆Ω−γ(|F|)P(F) logP(F) for all P ∈P. Hence,

Hg(P†)= ∑
F⊆Ω

−γ(|F|)P†(F) logP†(F)

= ∑
F⊆Ω

−γ(|F|) ·σi(P†)(F) · log(σi(P†)(F))

= Hg(σi(P†)).

Since E is symmetric with respect to A i we have that σi(P†) ∈ [E]. So, if P† 6=σi(P†),
then there are two different probability functions in [E] which both have maximum
entropy. This contradicts the uniqueness of the g-entropy maximiser (Corollary 10).
2

This Corollary explains the symmetries exhibited in the tables in the proof of
Proposition 42. Since in that proof E is symmetric with respect to A3, the proposition
entropy and the partition entropy maximisers are symmetric with respect to A3.
Thus, P†

PΩ,L ′ (ω∧ A3) = P†
PΩ,L ′ (ω∧¬A3) and P†

Π,L ′ (ω∧ A3) = P†
Π,L ′ (ω∧¬A3) for

all ω ∈Ω.



Definition 61 (3: Irrelevance). Let P1,P2 be the sets of probability functions on disjoint
L1,L2 respectively. Then Irrelevance holds if, for E1 ⊆P1 and E2 ⊆P2, we have that
P†
E1

(F×Ω2)= P†
E1×E2

(F×Ω2) for all propositions F of L1, where P†
E1

, P†
E1×E2

are the
g-entropy maximisers on L1 ∪L2 with respect to E1 ×P2, respectively E1 ×E2.

Proposition 62. Neither the partition nor the proposition weighting satisfy irrelevance.

Proof: Let L1 = {A1, A2}, L2 = {A3}, E1 = {P ∈P1 : P(A1 ∧ A2)+2P(¬A1 ∧¬A2)=
0.2} and E2 = {P ∈ P2 : P(A3) = 0.1}. Then with ω1 = ¬A1 ∧¬A2 ∧¬A3, ω2 =
¬A1 ∧¬A2 ∧ A3 and so on we find:

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

P†
Π,E1

0.0142 0.0142 0.2071 0.2071 0.2071 0.2071 0.0715 0.0715

P†
Π,E1×E2

0.0312 0.0004 0.3692 0.0466 0.3692 0.0466 0.1304 0.0064

P†
PΩ,E1

0.0050 0.0050 0.2025 0.2025 0.2025 0.2025 0.0901 0.0901

P†
PΩ,E1×E2

0.0211 6.2 ·10−9 0.3606 0.0500 0.3606 0.0500 0.1577 2.3 ·10−6

Now simply note that for instance

P†
Π,E1

(¬A1 ∧¬A2)= P†
Π,E1

(ω1)+P†
Π,E1

(ω2)

6= P†
Π,E1×E2

(ω1)+P†
Π,E1×E2

(ω2)= P†
Π,E1×E2

(¬A1 ∧¬A2).

(As we are going to see in Proposition 70 none of the values in the table can
be zero. So the small numerical values found by computer approximation are not
artifacts of the approximations involved.) 2

Definition 63 (4: Relativisation). Let ;⊂ F ⊂Ω and E = {P ∈ P : P(F) = z}∩E1 ∩E2
and E′ = {P ∈ P : P(F) = z}∩E1 ∩E′2 where E1 is determined by a set of constraints
on the P(G) with G ⊆ F and the E2,E′2 are determined by a set of constraints on the
P(G) with G ⊆ F̄. Then P†

E
(G)= P†

E′ (G) for all G ⊆ F.

Proposition 64. Neither the partition not the proposition weighting satisfy relativisation.

Proof: Let |Ω| = 8, F = {ω1,ω2,ω3,ω4,ω5}, P(F)= 0.5 and put E1 = {P ∈P : P(ω1)+
2P(ω2)+3P(ω3)+4P(ω4)= 0.2},E2 =P, E′2 = {P ∈P : P(ω6)+2P(ω7)+3P(ω8)= 0.7}.
Then P†

Π,E and P†
Π,E′ differ substantially on three out of five ω ∈ F, as do P†

PΩ,E and

P†
PΩ,E′ , as can be seen from the following table:

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

P†
Π,E 0.1251 0.0308 0.0041 0.0003 0.3398 0.1667 0.1667 0.1667

P†
Π,E′ 0.1242 0.0312 0.0041 0.0003 0.3402 0.3356 0.1288 0.0356

P†
PΩ,E 0.1523 0.0239 5.5 ·10−7 6.8 ·10−9 0.3239 0.1667 0.1667 0.1667

P†
PΩ,E′ 0.1495 0.0252 7.0 ·10−7 7.6 ·10−9 0.3252 0.3252 0.1495 0.0252

2



Definition 65 (5: Obstinacy). If E1 is a subset of E such that P†
E
∈ [E1], then P†

E
= P†

E1
.

Proposition 66. If g is inclusive then it satisfies the obstinacy principle.

Proof: This follows directly from the definition of P†
E
. 2

Definition 67 (6: Independence). If E= {P ∈P | P(A1∧A3)=α, P(A2∧A3)=β, P(A3)=
γ}, then for γ> 0 it holds that P†(A1 ∧ A2 ∧ A3)= αβ

γ
.

Proposition 68. Neither the partition entropy nor the proposition weighting satisfy inde-
pendence.

Proof: Let L = {A1, A2, A3}, α= 0.2, β= 0.35, γ= 0.6, then

P†
Π(A1 ∧ A2 ∧ A3)= 0.1197 6= 0.1167= 0.2 ·0.35

0.6

and

P†
PΩ

(A1 ∧ A2 ∧ A3)= 0.1237 6= 0.1167= 0.2 ·0.35
0.6

.

2

Definition 69 (7: Open-mindedness). A weighting function g is open-minded, if and
only if for all E and all ;⊆ F ⊆Ω it holds that P†(F)= 0 if and only if P(F)= 0 for
all P ∈ E.

Proposition 70. Any inclusive g is open-minded.

Proof: First, observe that P(F)= 0 for all P ∈ E, if and only if P(F)= 0 for all P ∈ [E].
Now note that if P(F) = 0 for all P ∈ [E], then P†

g(F) = 0, since P†
g ∈ [E]. On the

other hand, if there exists an F ⊆Ω such that P†
g(F) = 0 < P(F) for some P ∈ [E],

then Slog
g (P,P†

g) =∞> Hg(P†
g). Thus, adopting P†

g exposes one to an infinite loss
and by Theorem 24 adopting the g-entropy maximiser exposes one to the finite loss
Hg(P†

g). Contradiction. Thus, P†
g(F)> 0.

Overall, P†
g(F)= 0 if and only if P(F)= 0 for all P ∈ [E]. 2

Definition 71 (8: Continuity). Let us recall the definition of the Blaschke metric ∆
between two convex sets E,E1 ⊆P:

∆(E,E1)= inf{δ | ∀P ∈ E∃P1 ∈ E1 : |P,P1| ≤ δ
& ∀P1 ∈ E1∃P ∈ E : |P,P1| ≤ δ},

where |·, ·| is the usual Euclidean metric between elements of R|Ω|. g satisfies con-
tinuity if and only if the function argsupP∈EHg(P) is continuous in the Blaschke
metric.

Proposition 72. Any inclusive g satisfies the continuity property.



Proof: Since the g-entropy is strictly concave, see Proposition 8, we may apply
Theorem 7.5 in (Paris, 1994, p. 91). Thus if E is determined by finitely many linear
constraints then g satisfies continuity. Paris (1994) credits I. Maung for the proof of
the theorem.

Now let E ⊆ P be an arbitrary convex set. Note that we can approximate E
arbitrarily closely by two sequences Et,Et where each member of the sequences
is determined by finitely many linear constraints such that Et ⊆ Et+1 ⊆ E ⊆ Et+1 ⊆
Et. By this subset relation we have supP∈Et Hg(P) ≤ supP∈EHg(P) ≤ supP∈Et Hg(P).
With P†t := argsupP∈Et Hg(P) and P†t

:= argsupP∈Et Hg(P) we have limt→∞ P†t =
limt→∞ P†t

by Maung’s theorem.
Since Et converges to Et in the Blaschke metric we have by Maung’s theo-

rem that limt→∞ supP∈Et Hg(P) = limt→∞ supP∈Et Hg(P) = supP∈EHg(P). Note that
limt→∞ P†t ∈ [E]. Moreover, since E is convex, Hg is strictly concave and since
Et converges to E we have limt→∞ Hg(P†t ) = supP∈EHg(P). By the uniqueness of
the g-entropy maximiser on E we thus find limt→∞ P†t = P†, limt→∞ P†t = P† and
limt→∞ P†t = limt→∞ P†t

.
Since the sets determined by finitely many linear constraints are dense in the

set of convex E ⊆ P we can use a standard approximation argument yielding that
argsupP∈EHg(P) is continuous in the Blaschke metric on the set of convex E ⊆ P.
2

B.4. The topology of g-entropy

We have so far investigated g-entropy for fixed g ∈ G . We now briefly consider
location and shape of the set of g-entropy maximisers.

For standard entropy maximisation and g-entropy maximisation with inclusive
and symmetric g the respective maximisers all obtain at P=, if P= ∈ [E]; cf Corol-
lary 54.

If P= ∉ [E], then the maxima all obtain at the boundary of E “facing” P=. To
make this latter observation precise we denote for P,P ′ ∈ P the line segment in P
which connects P with P ′, end points included, by PP ′.

Proposition 73 (g-entropy is maximised at the boundary). For inclusive and symmetric g,
P=P† ∩ [E]= {P†}.

Proof: If P= ∈ [E], then P† = P=, by Corollary 54.

If P= ∉ [E], suppose that there exists a P ′ ∈ P=P† ∩ [E] different from P†. Then
by the concavity of g-entropy on P (Proposition 8) and the equivocator-preserving
property (Corollary 54) we have Hg(P=) > Hg(P ′) > Hg(P†). By the convexity of [E]
and Proposition 8 we have Hg(P†)> Hg(P) for all P ∈ [E]\{P†}. Contradiction. 2

We saw in Theorem 39 that for a particular sequence gt converging to gΩ, P†
gt

converges to P†
Ω

. We shall now show that this is an instance of a more general phe-

nomenon. We will demonstrate that P†
g varies continuously for continuous changes

in g for g ∈G .

Proposition 74 (Continuity of g-entropy maximisation). For all E, the function

argsup
P∈E

H(·)(P) : G −→ [E], g 7→ P†
g



is continuous on G .

Proof: Consider a sequence (gt)t∈N ⊆G converging to some g ∈G . We need to show
that P†

gt converges to P†
g.

From gt converging to g it easily follows that Hgt (P) converges to Hg(P) for all
P ∈P.

Since g-entropy is strictly concave we have that for every P ′ ∈ [E] \ {P†
g} there

exists some ε> 0 such that Hg(P ′)+ ε= Hg(P†
g). By the fact that Hgt (P) converges

to Hg(P) for all P we find that Hgt (P
′)+ ε

2 < Hgt (P
†
g) for all t which are greater than

some T ∈N.
Since Hgt (P

†
g) ≤ Hgt (P

†
gt ) it follows that P ′ cannot be a point of accumulation

of the sequence (P†
gt )t∈N.

The sequence P†
gt takes values in the compact set [E], so it has at least one point

of accumulation. We have demonstrated above that P†
g is the only possible point of

accumulation. Hence, P†
g is the only point of accumulation and therefore the limit

of this sequence. 2

The continuity of g-entropy maximisation will be instrumental in proving the
next proposition which asserts that the g-entropy maximisers are clustered together.

Proposition 75. For any E, if G ⊆ Ginc is path-connected then the set {P†
g : g ∈ G } is

path-connected.

Proof: By Proposition 74 the map argsupP∈EH(·)(P) is continuous. The image of a
path-connected set under a continuous map is path-connected. 2

Corollary 76. For all E, the sets {P†
g : g ∈Ginc} and {P†

g : g ∈G0} are path-connected.

Proof: Ginc and G0 are convex, thus they are path-connected. Now apply Proposi-
tion 75. 2

It is in general not the case that a convex combination of weighting functions
generates a convex combination of the corresponding g-entropy maximisers:

Proposition 77. For a convex combination of weighting functions g = λg1 + (1−λ)g2 in

general it fails to hold that P†
g =λP†

g1 + (1−λ)P†
g2 . Moreover, in general P†

g ∉ P†
g1 P†

g2 .

Proof: Let g1 = gΠ, g2 = gPΩ and λ = 0.3. Then for a language L with two
propositional variables and E= {P ∈P : P(ω1)+2P(ω2)+3P(ω3)+4P(ω4)= 1.7} we
can see from the following table thatP†

0.3gΠ+0.7gPΩ
6= 0.3P†

Π+0.7P†
PΩ

.
ω1 ω2 ω3 ω4

P†
Π 0.5331 0.2841 0.1324 0.0504

P†
PΩ

0.5192 0.3008 0.1408 0.0392
0.3P†

Π+0.7P†
PΩ

0.5234 0.2958 0.1383 0.0426
P†

0.3gΠ+0.7gPΩ
0.5272 0.2915 0.1353 0.0459

P†
PΩ

−P†
0.3gΠ+0.7gPΩ

P†
PΩ

−P†
Π

0.5755 0.5569 0.6429 0.6036

If P†
0.3gΠ+0.7gPΩ

were in P†
Π P†

PΩ
, then the last line of the above table would be

constant for all ω ∈Ω. As we can see, the values in the last line do vary. 2



C
Level of generalisation

In this section we shall show that the generalisation of entropy and score used in the
text above is essentially the right one. We shall do this by defining broader notions of
entropy and score of which the g-entropy and g-score are special cases, and showing
that entropy maximisation only coincides with minimisation of worst-case score in
the special case of g-entropy and g-score as they are defined above.

We will focus on the case of belief over propositions; belief over sentences
behaves similarly. Our broader notions will be defined relative to a weighting
γ : PΩ−→R≥0 of propositions rather than a weighting g :Π−→R≥0 of partitions.

Definition 78 (γ-entropy). Given a function γ : PΩ −→ R≥0, the γ-entropy of a nor-
malised belief function is defined as

Hγ(B) :=− ∑
F⊆Ω

γ(F)B(F) logB(F).

Definition 79 (γ-score). Given a loss function L and a function γ : PΩ−→R≥0 , the γ-
expected loss function or γ-scoring rule or simply γ-score is SL

γ :P×〈B〉 −→ [−∞,∞]
such that SL

γ (P,B)=∑
F⊆Ωγ(F)P(F)L(F,B).

Definition 80 (Equivalent to a weighting of partitions). A weighting of propositions
γ : PΩ −→ R≥0 is equivalent to a weighting of partitions if there exists a function
g :Π−→R≥0 such that for all F ⊆Ω,

γ(F)= ∑
π∈Π
F∈π

g(π).

We see then that the notions of g-entropy and g-score coincide with those of
γ-entropy and γ-score just when the weightings of propositions γ are equivalent to
weightings of partitions. Next we extend the notion of inclusivity to our more general
weighting functions:

Definition 81 (Inclusive weighting of propositions). A weighting of propositions γ :
PΩ−→R≥0 is inclusive if γ(F)> 0 for all F ⊆Ω.

We shall also consider a slight generalisation of strict propriety (cf., footnote 6):

Definition 82 (Strictly X-proper γ-score). For P ⊆ X ⊆ 〈B〉, a γ-score SL
γ : P×〈B〉 −→

[−∞,∞] is strictly X-proper if for all P ∈ P, the restricted function SL
γ (P, ·) : X −→

[−∞,∞] has a unique global minimum at B = P . A γ-score is strictly proper if it is
strictly 〈B〉-proper. A γ-score is merely X-proper if for some P this minimum at B = P
is not the only minimum.

Note that if a γ-score is strictly X-proper then it is strictly Y-proper for P⊆Y⊆X.
Thus if it is strictly proper it is also strictly B-proper and strictly P-proper.

Proposition 83. Logarithmic γ-score Slog
γ (P,B) is non-negative and convex as a func-

tion of B ∈ 〈B〉. For inclusive γ, convexity is strict, i.e., Slog
γ (P,λB1 + (1−λ)B2) <

λSlog
γ (P,B1)+(1−λ)Slog

γ (P,B2) for λ ∈ (0,1), unless B1 and B2 agree everywhere except
where P(F)= 0.



Proof: Logarithmic γ-score is non-negative because B(F),P(F) ∈ [0,1] for all F so
logB(F)≤0,γ(F)P(F)≥0, and γ(F)P(F) logB(F)≤0.

That Slog
γ (P,B) is strictly convex as a function of 〈B〉 follows from the strict

concavity of log x. Take distinct B1,B2 ∈ 〈B〉 and λ ∈ (0,1) and let B =λB1+(1−λ)B2.
Now,

γ(F)P(F) log(B(F))= γ(F)P(F) log(λ ·B1(F)+ (1−λ)B2(F))

≥ γ(F)P(F)
(
λ logB1(F)+ (1−λ) logB2(F)

)
=λγ(F)P(F) logB1(F)+ (1−λ)γ(F)P(F) logB2(F)

with equality iff either P(F)= 0 or B1(F)= B2(F) (since in the latter case γ(F)P(F)>
0).

Hence,

Slog
γ (P,B) = − ∑

F⊆Ω
γ(F)P(F) logB(F)

≤ λSlog
γ (P,B1)+ (1−λ)Slog

γ (P,B2),

with equality if and only if B1 and B2 agree everywhere except possibly where
P(F)= 0. 2

Corollary 84. For inclusive γ and fixed P ∈ P, arginfB∈〈B〉 Slog
γ (P,B) is unique. For

B′ := arginfB∈〈B〉 Slog
γ (P,B) and for all F ⊆Ω, we have B′(F)> 0 if and only if P(F)>

0. Moreover, B′(Ω)= 1 and B′ ∈B.

Proof: First of all suppose that there is an F ⊆Ω such that P(F) > 0 and B(F) = 0.
Then Slog

γ (P,B) = ∞. Furthermore, Slog
γ (P,P) < ∞ for all P ∈ P. Hence, for B′ ∈

arginfB∈〈B〉 Slog
γ (P,B) it holds that P(F)> 0 implies B′(F)> 0.

Now note that for P ∈P we have P(Ω)= 1−P(;)= 1. Furthermore, there are only
two partitions {Ω} and {Ω,;} which containΩ or ;. Minimising −γ(;)P(;) logB′(;)−
γ(Ω)P(Ω) logB′(Ω), i.e., −γ(Ω) logB′(Ω), subject to the constraint B′(;)+B′(Ω) ≤ 1
is uniquely solved by taking B′(Ω) = 1 and hence B′(;) = 0. Thus, for any B′ min-
imising Slog

γ (P, ·) it holds that B′(;)= 0 and B′(Ω)= 1. Hence, B′ ∈ 〈B〉 is in B.
Now consider a P ∈ P such that there is at least one ; ⊂ F ⊂Ω with P(F) = 0.

We will show that B′(F)= 0 for all B′ ∈ arginfB∈〈B〉 Slog
γ (P,B). In the second step we

will show that there is a unique infimum B′.
So suppose that the there is a B′ ∈ arginfB∈〈B〉 Slog

γ (P,B) such that B′(F) > 0 =
P(F). Assume that ; ⊂ H ⊂Ω is for this B′, with respect to subset inclusion, one
such largest subset of Ω.

Now define B′′ : PΩ→ [0,1] by B′′(G) := 0 for all G ⊆ H and B′′(F) := B′(F)
otherwise. From B′′(Ω) = 1,B′′(;) = 0 we see that B′′ ∈ B; thus Slog

γ (P,B′′) is well-
defined. Since P ∈P we have for all G ⊆ H that P(H)= P(G)= 0. Thus, Slog

γ (P,B′)=
Slog
γ (P,B′′).
Note that since B′ ∈ 〈B〉 we have 1≥ B′(H̄)+B′(H)> B′(H̄)= B′′(H̄). Now define

a function B′′′ ∈ 〈B〉 by
B′′′(H̄) := 1

B′′′(F) := B′′(F) for all F 6= H̄.



Since for all F ⊆ Ω, B′′(F) ≤ B′′′(F) and B′′(H̄) < B′′′(H̄) = 1 and P(H̄) · γ(H̄) =
1 ·γ(H̄)> 0, we have

Slog
γ (P,B′)= Slog

γ (P,B′′)

> Slog
γ (P,B′′′).

We assumed that B′ minimises Slog
γ (P, ·) over 〈B〉. Hence, we have a contradiction.

We have thus proved that for every B ∈ arginfB∈〈B〉 Slog
γ (P,B), B(F) = 0 if and only

if P(F)= 0. Hence for all P ∈P,

arg inf
B∈〈B〉

Slog
γ (P,B)= arg inf

{B∈〈B〉:P(F)=0↔B(F)=0}
Slog
γ (P,B). (30)

By Proposition 83 we can assume that the right hand side of (30) is a strictly convex
optimisation problem on a convex set, which has hence a unique infimum. 2

Corollary 85. Slog
γ is strictly 〈B〉-proper if and only if Slog

γ is strictly B-proper.

Proof: Assume that Slog
γ is strictly 〈B〉-proper. Then for all P ∈ P we have P =

arginfB∈〈B〉 Slog
γ (P,B). Since P⊂B⊂ 〈B〉 we hence have P = arginfB∈BSlog

γ (P,B).

For the converse suppose that Slog
γ is strictly B-proper, i.e., for all P ∈P we have

P = arginfB∈BSlog
γ (P,B). Note that strict propriety implies that γ is inclusive. Corol-

lary 84 implies then that no B ∈ 〈B〉\B can minimise Slog
γ (P,B). 2

Definition 86 (Symmetric weighting of propositions). A weighting of propositions γ is
symmetric if and only if whenever F ′ can be obtained from F by permuting the ωi
in F, then γ(F ′)= γ(F).

Note that γ is symmetric if and only if |F| = |F ′| entails γ(F) = γ(F ′). For
symmetric γ we will sometimes write γ(n) for γ(F), if |F| = n.

Proposition 87. For inclusive and symmetric γ, Slog
γ is strictly P-proper.

Proof: We have that for all ω ∈Ω, |{F ⊆Ω : |F| = n, ω ∈ F}| = |{G ⊆ {ω} : |G| = n−1}| =(|Ω|−1
n−1

)
.

We recall from Example 4 that with νn := (|Ω|−1
n−1

)
we have∑

F⊆Ω|F|=n

P(F)= νn ·
∑
ω∈Ω

P(ω)= νn.

Multiplying the objective function in an optimisation problem by some positive



constant does not change where optima obtain. Thus

arg inf
Q∈P

− ∑
F⊆Ω|F|=n

γ(n)P(F) logQ(F)= arg inf
Q∈P

− ∑
F⊆Ω|F|=n

P(F)
νn

logQ(F)

= arg inf
Q∈P

− ∑
F⊆Ω|F|=n

P(F)
νn

log(
Q(F)
νn

·νn)

= arg inf
Q∈P

− ∑
F⊆Ω|F|=n

P(F)
νn

(
log

Q(F)
νn

+ logνn

)

= arg inf
Q∈P

− ∑
F⊆Ω|F|=n

P(F)
νn

log
Q(F)
νn

.

Now note that since Q,P ∈ P, we have that
∑

F⊆Ω|F|=n
P(F) = νn = ∑

F⊆Ω|F|=n
Q(F) and

hence
∑

F⊆Ω|F|=n

P(F)
νn

= 1 = ∑
F⊆Ω|F|=n

Q(F)
νn

. Put Ψ := {F ⊆ Ω : |F| = n} and let us under-

stand P(·)
νn

, Q(·)
νn

as functions P(·)
νn

, Q(·)
νn

:Ψ −→ [0,1] with
∑

G∈Ψ P(G)
νn

= 1 = ∑
G∈Ψ

Q(G)
νn

.

It follows that P(·)
νn

, Q(·)
νn

are formally probability functions on Ψ, satisfying certain
further conditions which are not relevant in the following. Let PΨ denote the set of
probability functions on Ψ and let PΩ ⊆PΨ be the set of probability functions of the
above form P(·)

νn
, Q(·)
νn

, where P,Q ∈P.
Consider a scoring rule S(P,B) in the standard sense, i.e., expectations over

losses are taken with respect to members x of some set X . (At the beginning of §2.4
we considered states ω ∈Ω.) Let X denote the set of probability functions on the set
X . Suppose that S is strictly X-proper. Then for any fixed set Y ⊆ X it holds that
arginfB∈YS(P,B) = P for all P ∈Y. It is well-known that the standard logarithmic
scoring rule on a given universal set is strictly X-proper. Taking X =Ψ, X=PΨ and
Y=PΩ we obtain for all P(·)

νn
∈PΩ that

P(·)
νn

= arg inf
Q(·)
νn ∈PΩ

− ∑
G∈Ψ

P(G)
νn

log
Q(G)
νn

= arg inf
Q∈P

− ∑
G∈Ψ

P(G)
νn

log
Q(G)
νn

.

We thus find:

P = arg inf
Q∈P

− ∑
F⊆Ω|F|=n

γ(n)P(F) logQ(F). (31)

Since P minimises (31) for every n it also the minimises the sum over all n, and
hence

P = arg inf
Q∈P

− ∑
1≤n≤|Ω|

∑
F⊆Ω|F|=n

γ(F)P(F) logQ(F)= arg inf
Q∈P

Sg(P,Q).

2

Lemma 88. If γ is an inclusive weighting of propositions that is equivalent to a weighting
of partitions, then Slog

γ is strictly B-proper.



Proof: While this result follows directly from Corollary 18, we shall give another
proof which will provide the groundwork for the proof of the next result, Theorem 89.

First we shall fix a P ∈ P and observe that the first part of Corollary 84 up to
and including (30) still holds with B substituted for 〈B〉. We shall thus concentrate on
propositions F ⊂Ω with P(F) > 0, since it follows from Corollary 84 that whenever
P(F)= 0, we must have B(F)= 0 and B(Ω)= 1, if Slog

γ (P,B) is to be minimised. We
thus let P +Ω := {;⊂ F ⊂Ω : P(F)> 0} and

B+ := {B ∈B : 0< B(F)≤ 1 for all F ∈P +Ω,

B(Ω)= 1 and B(F)= 0 for all other F ∈PΩ\P +Ω}.

In the following optimisation problem we will thus only consider B(F) to be a vari-
able if F ∈P +Ω.

We now investigate

arg inf
B∈B+

Slog
γ (P,B). (32)

To this end we shall first find for all fixed t ≥ 2

arg inf
B∈B+

B(F)≥ P(F)
t for all F∈P +Ω

Slog
γ (P,B). (33)

Making this restriction on B(F) allows us to evade any problems which arise from
taking the derivative of logB(F) at B(F)= 0 which inevitably arise when we directly
apply Karush-Kuhn-Tucker techniques to (32).

With Π′ := {π ∈ Π : π 6= {Ω}, π 6= {Ω,;}} we thus need to solve the following
optimisation problem:

minimize Slog
γ (P,B)

subject to B(F)≥ P(F)
t

> 0 for t ≥ 2 and all F ∈P +Ω∑
G∈π

G∈P +Ω

B(G)≤ 1 for all π ∈Π′

B(Ω)= 1 and B(F)= 0 for all other F ∈PΩ\P +Ω.

Note that the first and second constraints imply that 0< B(F)≤ 1 for all F ∈P +Ω.
Observe that for π ∈ Π′ with G ∈ π, |G| ≥ 2 and P(G) = 0, there is another

partition in Π′ which subdivides G and agrees with π everywhere else. These two
partitions π,π′ will give rise to the exact same constraint on the F ∈P +Ω. Including
the same constraint multiple times does not affect the applicability of the Karush-
Kuhn-Tucker techniques. Thus, the solutions of this optimisation problem are the
solutions of (33).

With Karush-Kuhn-Tucker techniques in mind we shall define the following func-
tion for B ∈B+:

Lag(B)=
Slog
γ (P,B)︷ ︸︸ ︷

− ∑
F⊆Ω

γ(F)P(F) logB(F)+

constraints︷ ︸︸ ︷∑
π∈Π′

λπ · (−1+ ∑
G∈π

G∈P +Ω

B(G))+ ∑
F∈P +Ω

µF (
P(F)

t
−BF )

=− ∑
F∈P +Ω

γ(F)P(F) logB(F)+ ∑
π∈Π′

λπ · (−1+ ∑
G∈π

G∈P +Ω

B(G))+ ∑
F∈P +Ω

µF (
P(F)

t
−BF ).



First recall that B(F) = 0 iff P(F) = 0, thus the first sum is always finite here. Since
B(F)> 0 for all F ∈P +Ω we can take derivatives with respect to the variables B(F).
Recalling that γ(F)> 0 for all F ⊆Ω we now find

∂

∂B(F)
Lag(B)=−γ(F)

P(F)
B(F)

+ ∑
π∈Π′
F∈π

λπ−µF for all F ∈P +Ω.

Equating these derivatives with zero we obtain

γ(F)
P(F)
B(F)

= ∑
π∈Π′
F∈π

λπ−µF for all F ∈P +Ω. (34)

Since γ is by our assumption equivalent to a weighting of partitions, γ(F)=∑
π∈Π′
F∈π

g(π).

Letting λπ := g(π),µF := 0 and B(F)= P(F) for F ∈P +Ω solves the set of equations
in (34). For B(F) = P(F) when F ∈ P +Ω, we trivially have

∑
G∈π

G∈P +Ω
B(G) = 1 and

hence λπ(
∑

G∈π
G∈P +Ω

B(G)−1)= 0. Furthermore, µF ( P(F)
t −B(F))= 0 for F ∈P +Ω.

Thus by the Karush-Kuhn-Tucker Theorem, B(F)= P(F) for F ∈P +Ω is a criti-
cal point of the optimisation problem (33) for all t and all P ∈P since all constraints
are linear.

Note that the constraints B(Ω) = 1, B(;) = 0 and 0 ≤ ∑
F∈πB(F) ≤ 1 for π ∈Π′

ensure that B is a member of B regardless of the actual value of B(F) for ; 6= F 6=Ω.
Thus, B ∈ B+ if and only if B(Ω) = 1, B(;) = 0, 0 ≤ ∑

F∈πB(F) ≤ 1 for π ∈ Π′ and
B(F) = 0 iff P(F) = 0. Thus, B+ is convex. It follows that B+

t := {B ∈ B+ : B(F) ≥
P(F)

t for all F ∈ P +Ω} is convex for all t ≥ 2. Since B+ is the feasible region of (33)
the critical point of the convex minimisation problem is the unique minimum.

Letting t > 0 tend to 0 we see that B(F) = P(F) for F ∈ P +Ω is the unique
solution of (32).

Thus, any function B ∈ B minimizing Slog
γ (P, ·) has to agree with P on the F ∈

P +Ω. By our introductory remarks it has to hold that B(Ω)= 1 and B(G)= 0 for all
other G ⊆Ω. Thus, B(F)= P(F) for all F ⊆Ω.

We have thus shown that Slog
γ is strictly proper. 2

Theorem 89. For inclusive γ with γ(Ω) ≥ γ(;), Slog
γ is strictly proper if and only if γ is

equivalent to a weighting of partitions.

Proof: From Lemma 88 we have that the existence of the λπ ensures propriety.
For the converse suppose that Slog

γ is strictly B-proper (equivalently, by Corol-
lary 85, strictly proper). By our assumptions we have γ(Ω) ≥ γ(;) > 0. We can thus
put g({Ω,;}) := γ(;) and g(Ω) := γ(Ω)−γ(;). Then γ(Ω) = g({Ω,;})+ g(Ω) > 0 and
γ(;)= g({Ω,;})> 0.

Observe that for all P ∈P, for any infimum of the minimisation problem arginfB∈BSlog
γ (P,B)

there have to exist multipliers λπ ≥ 0 and µF ≥ 0 which solve (34) and µF ( P(F)
t −

B(F)) = 0. Now fix a P ∈ P such that P(F) > 0 for all ; ⊂ F ⊆Ω. If Slog
γ is strictly

B-proper, then the minimisation problem arginfB∈BSlog
γ (P,B) for this P has to be

solved uniquely by B = P . Thus, strict B-propriety implies that:



0< γ(F)= ∑
π∈Π
F∈π

λπ−µF for all ;⊂ F ⊂Ω and µF
1− t

t
P(F)= 0 for all F ∈P +Ω.

The latter conditions can only be satisfied if all µF vanish. Hence, we obtain the
following conditions which necessary have to hold if Slog

γ (P, ·) is to be uniquely
minimised by B = P :

0< γ(F)= ∑
π∈Π
F∈π

λπ for all ;⊂ F ⊂Ω.

Since all the constraints are inequalities, the corresponding multipliers λπ have to
be greater or equal than zero.

Thus, strict propriety of Slog
γ implies the existence of these λπ ≥ 0. This in turn

implies that γ is equivalent to a weighting of partitions.
Note that for the purposes of this proof we do not need to investigate what hap-

pens if P ∈P is such that there exists a proposition ;⊂ F ⊆Ω with P(F)= 0. 2

Note that γ(Ω)≥ γ(;) is not a real restriction. The first component in Slog
γ (·, ·) is a

probability function in the above proof. Thus, P(;)= 0. Hence, γ(;)P(;) logB(;)=
0, regardless of γ(;). The particular value of γ(;) is thus irrelevant for strict pro-
priety. So, setting γ(;) = γ(Ω) fulfills the conditions of the Theorem but does not
change the value of the γ-score. (The condition is required because if γ(;) > γ(Ω)
then, while Slog

γ may be strictly proper, it cannot be a weighting of partitions.)
The importance of the condition in Theorem 89 that γ should be equivalent to

a weighting of partitions is highlighted in the following:

Example 90. Let Ω = {ω1,ω2,ω3} and γ(1) = γ(3) = 1, and γ(2) = 10. Now consider
B ∈B defined as B(;) := 0, B(F) := 0.2 if |F| = 1, B(F) := 0.8 if |F| = 2, and B(Ω) :=
1. Then

Slog
γ (P=,P=)=− ∑

ω∈Ω
P=(ω) logP=(ω)

−10 ·
( ∑

F⊆Ω|F|=2

P=(F) logP=(F)
)
−P=(Ω) · logP=(Ω)

=−3 · 1
3

log
1
3
−3 ·10 · 2

3
log

2
3
≈ 9.2079

Slog
γ (P=,B)=− ∑

ω∈Ω
P=(ω) logB(ω)

−10 ·
( ∑

F⊆Ω|F|=2

P=(F) logB(F)
)
−P=(Ω) · logB(Ω)

=−3 · 1
3

log0.2−3 ·10 · 2
3

log0.8≈ 6.0723

Thus Slog
γ (P=,B) < Slog

γ (P=,P=). Hence Slog
γ is not strictly B-proper, even though γ

is inclusive and symmetric. Compare this with Proposition 87, where we proved that
positivity and symmetry γ were enough to ensure that Slog

γ is strictly P-proper.



Note that strict propriety is exactly what is needed in order to derive Theorem 24,
as is apparent from its proof (see also the discussion at the start of Section §2.5). By
Theorem 89, only a weighting of propositions that is equivalent to a weighting of
partitions can be strictly proper (up to an inconsequential value for γ(;)), hence the
generalisation of standard entropy and score in the main text, which focusses on
weightings of partitions, is essentially the right one for our purposes.

Indeed, adopting a non-strictly proper scoring rule Slog
γ may result in Theo-

rem 24 not holding:

Proposition 91. If Slog
γ is not strictly X-proper (with P⊆X), then worst case γ-expected loss

minimisation and γ-entropy maximisation are in general achieved by different functions.

Proof: If Sg is not merely proper, then there is a P ′ ∈ P such that Slog
γ (P ′, ·) is not

minimised over X by P ′. In particular there is some Q ∈ X such that Slog
γ (P ′,Q) <

Slog
γ (P ′,P ′). Suppose that E= {P ′}. Trivially,

argsup
P∈E

Slog
γ (P,P)= P ′.

By construction,

arg inf
Q∈X

sup
P∈E

Slog
γ (P,Q)=arg inf

Q∈X
sup

P∈{P ′}
Slog
γ (P,Q)

=arg inf
Q∈X

Slog
γ (P ′,Q)

63P ′.

Thus, the γ-entropy maximiser in E (here P ′) is not a function in X which min-
imises worst case γ-expected loss.

Finally, consider the case in which Slog
γ is merely proper, i.e., there exists a P ′ ∈P

such that Slog
γ (P ′, ·) is minimised by both P ′ and members of a non-empty subset,

Q⊆B\{P ′}. Then, with E= {P ′}:

arg inf
Q∈X

sup
P∈E

Slog
γ (P,Q)=arg inf

Q∈X
sup

P∈{P ′}
Slog
γ (P,Q)= arg inf

Q∈X
Slog
γ (P ′,Q)=Q∪ {P ′}.

Thus there is some function other than the γ-entropy maximiser that also minimises
γ-score. 2
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