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Summary. Cancer treatment decisions should be based on all available evidence. But
this evidence is complex and varied: it includes not only the patient’s symptoms and
expert knowledge of the relevant causal processes, but also clinical databases relating
to past patients, databases of observations made at the molecular level, and evidence
encapsulated in scientific papers and medical informatics systems. Objective Bayesian
nets offer a principled path to knowledge integration, and we show in this chapter how
they can be applied to integrate various kinds of evidence in the cancer domain. This
is important from the systems biology perspective, which needs to integrate data that
concern different levels of analysis, and is also important from the point of view of
medical informatics.

In this chapter we propose the use of objective Bayesian nets for knowledge
integration in the context of cancer systems biology. In Part I we discuss this
context in some detail. Part IT introduces the machinery that is to be applied,
objective Bayesian nets. Then a proof-of-principle application is presented in
Part III. Finally, in Part IV, we discuss avenues for further research.

Part I: Cancer Systems Biology and Knowledge
Integration

6.1 Cancer Systems Biology

Cancer systems biology seeks to elucidate complex cell and tumour behaviour
through the integration of many different types of knowledge. Information is
obtained from scientific and clinical measurements made across biological scale,
ranging from molecular components to systems, and from the genome to the
whole patient. Integration of this information into predictive computational mod-
els, and their use in research and clinical settings, is expected to improve pre-
vention, diagnostic and prognostic prediction, and treatment of cancer.
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Systems biology addresses the complexity of cancer by drawing on a concep-
tual framework based on the current understanding of complex adaptive sys-
tems.! Complex systems are composed of a huge number of components that
can interact simultaneously in a sufficiently rich number of parallel ways so
that the system shows spontaneous self-organisation and produces global, emer-
gent structures and behaviours.? Self-organisation concerns the emergence of
higher-level order from the local interactions of system components in the ab-
sence of external forces or a pre-programmed plan embedded in any individual
component.3

The challenges posed by the complex-systems properties of cancer are several-
fold and can be thought about in terms of a taxonomy of complexity put forward
by Mitchell:*

Structural complexity;

Dynamic complexity—complexity in functional processes;

Evolved complexity—complex systems can generate alternative evolutionary
solutions to adaptive problems; these are historically contingent.

Decisions need to be made in the face of great uncertainty regarding all three
aspects of the complexity that is exhibited by the cancer systems in which one
seeks to intervene.’” This is true both for therapeutic decisions for individual
patients and also for design strategies leading to new anti-cancer therapies. Al-
though our ability to collect ever more detailed quantitative molecular data on
cells and cell populations in tumours is growing exponentially, and clinical in-
vestigations are becoming more and more sophisticated, our understanding of
system complexity advances more slowly for the following reasons.

It is very difficult to directly observe and measure dynamic processes in com-
plex systems, and this is particularly challenging in biomedicine where human
subjects are involved. Research relies on data generated from tissue samples by
high throughput technologies mainly directed at the ‘omic’ levels of the genome,
transcriptome (gene transcripts) and proteome (proteins).® However, data sam-
pling is highly uneven and incomplete, and the data themselves are noisy and
often hard to replicate. The molecular data that are being gathered typically only
illuminate ‘single-plane’ omic slices ‘dissected’ out of entire systems which are
characterized by highly integrated multi-scale organization and non-linear be-
haviour (Fig. 6.1). Furthermore, due to technological and economic constraints,
current techniques can only capture a few time points out of the continuous
systems dynamics, and are not yet able to address the ‘complexity explosion’ of
control at the proteomic level. This situation is likely to persist for some time
to come.

! (Nagl, 2006.)

2 (Holland, 1995; Depew and Weber, 1996.)
% (Holland, 1995, 1998; Mitchell, 2003.)

4 (Mitchell, 2003, pp. 4-7.)

5 (Nagl, 2005).
¢ (Abramovitz and Leyland-Jones, 2006).
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Fig. 6.1. Multi-scale integrated cell systems

A further challenge is posed by the need to relate molecular data to clin-
ical measurements, notably those obtained in clinical trials, for identification
of molecular parameters underlying physiological (dys)function. This integra-
tion task spans spatial and temporal scales of several orders of magnitude and
complexity. Ultimately, cancer systems analysis needs to cut across all biologi-
cal levels—genome, transcriptome, proteome, cell, and beyond to tissue, organ
and patient (and the environment, but this is outside the present discussion).
Toyoda and Wada (2004) have coined the term omic space and presented a hier-
archical conceptual model linking different omic planes. They showed that this
structuring of omic space helps to integrate biological findings and data com-
prehensively into hypotheses or models combining higher-order phenomena and
lower-order mechanisms through a comprehensive ranking of correspondences
among interactions in omic space. The key idea behind the concept of omic
space may also serve as a general organising principle for multi-scale systems,
and may be extended beyond cells to the tissue, organ and patient level. Below,
we discuss how objective Bayesian nets can make significant contributions to the
elucidation of multi-scale relationships in cancer systems (see §56.4, 6.20).

6.2 Unstable Genomes and Complexity in Cancer

Tumours maintain their survival and proliferative potential against a wide range
of anticancer therapies and immunological responses of the patient. Their robust-
ness is seen as an emergent property arising through the interplay of genomic
instability and selective pressure driven by host-tumour dynamics.”

T (Kitano, 2004).
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Progression from normal tissue to malignancy is associated with the evolution
of neoplastic cell lineages with multiple genomic lesions (abnormal karyotypes).®
Most cancer cells do not have a significantly higher mutation rate at the nu-
cleotide level compared to their normal counterparts, whereas extensive gross
chromosomal changes are observed in liquid, and nearly all, solid tumours. The
most common mutation class among the known cancer genes is chromosomal.

In cancer, dynamic large-scale changes of genome structure occur at dramat-
ically increased frequency and tumour cell-microenvironment interactions drive
selection of abnormal karyotypes. Copy-number changes, such as gene amplifica-
tion and deletion, can affect several megabases of DNA and include many genes.
These extensive changes in genome content can be advantageous to the cancer
cell by simultaneous activation of oncogenes and elimination of tumour suppres-
sors. Due to the magnitude of the observed genomic rearrangements, it is not
always clear which gene, or set of genes, is the crucial target of the rearrangement
on the basis of genetic evidence alone.

These changes encompass both directly cancer-causing and epiphenomenal
changes (bystander mutations) which can nevertheless contribute significantly
to the malignant phenotype and can modulate treatment resistance in a com-
plex fashion. The ability of abnormal karyotypes to change autocatalytically
in response to challenge, the masking of specific cancer-promoting constella-
tions by collateral variation (any chromosomal combination that is specific for
a selected function is also specific for many unselected functions), and the com-
mon phenomenon of several alternative cell pathways able to generate the same
phenotype, limits the usefulness of context-independent predictions from kary-
otypic data. Interestingly, several researchers have put forward the theory that
the control of phenotype is distributed to various extents among all the genetic
components of a complex system.?

Mathematical modelling, adapted from Metabolic Control Analysis, suggests
that it may in fact be the large fraction of the genome undergoing differential
expression as a result of changes in gene dose (due to chromosomal rearrange-
ments) that leads to highly non-linear changes in the physiology of cancer cells.

6.3 A Systems View of Cancer Genomes and Bayesian
Networks

Genomes are dynamic molecular systems, and selection acts on cancer karyotypes
as integrated wholes, not just on individual oncogenes or tumour suppressors.
Given the irreversible nature of evolutionary processes, the randomness of mu-
tations and rearrangements relative to those processes, and the modularity and
redundancy of complex systems, there potentially exists a multitude of ways to
‘solve’ the problems of achieving a survival advantage in cancer cells.'” Since each
patient’s cancer cells evolve through an independent set of genomic lesions and

8 (Nygren and Larsson, 2003; Vogelstein and Kinzler, 2004).
° (Rasnick and Duesberg, 1999, and references therein).
10" (Mitchell, 2003, p. 7).
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selective environments, the resulting heterogeneity of cell populations within the
same tumour, and of tumours from different patients, is a fundamental reason
for differences in survival and treatment response.

Since the discovery of oncogenes and tumour suppressors, a reductionist focus
on single, or a small number of, mutations has resulted in cancer being conceptu-
alized as a ‘genetic’ disease. More recently, cancer has been recast as a ‘genomic’
or ‘systems’ disease.!! In the work presented in this chapter, we apply a systems
framework to karyotype evolution and employ Bayesian networks to generate
models of non-independent rearrangements at chromosomal locations from com-
parative genome hybridisation (CGH) data.'? Furthermore, we present a method
for integration of genomic Bayesian network models with nets learnt from clini-
cal data. The method enables the construction of multi-scale nets from Bayesian
nets learnt from independent datasets, with each of the nets representing the
joint probability distributions of parameter values obtained from different levels
of the biological hierarchy, i.e., the genomic and tumour level in the application
presented here (together with treatment and outcome data). Bayesian network
integration allows one to capture ‘more of the physiological system’ and to study
dependency relationships across scales.'3

Some of the questions one may address by application of our approach include

e utilising genomic (karyotype) data from patients:

— Can we identify probabilistic dependency networks in large sample sets of
karyotypes from individual tumours? If so, under which conditions may
these be interpreted as causal networks?

— Can we discover key features of the ‘evolutionary logic’ embodied in gene
copy number changes of individual karyotypes?

— Can we characterise the evolutionary ‘solution space’ explored by unstable
cancer genomes? Is there a discernible dependence on cancer types?

e utilising omic and other molecular data together with clinical measurements:

— Can we identify probabilistic dependency networks involving molecular
and clinical levels?

— How may such probabilistic dependencies aid diagnostic and prognostic
prediction and design of personalised therapies?

6.4 Objective Bayesianism and Knowledge Integration

Bayesian networks are well suited to problems that require integration of data
from various sources or data with different temporal or spatial resolutions. They
can model complex non-linear relationships, and are also very robust to miss-
ing information. Bayesian network learning has already been successfully ap-
plied to data gathered at the transcriptomic and proteomic level for predictions
regarding structure and function of gene regulatory, metabolic and signalling

' (Khalil and Hill, 2005; Lupski and Stankiewicz, 2006).
2 (Reis-Filho et al., 2005).
13 (Nagl et al., 2006).
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networks.' Bulashevska and colleagues have applied Bayesian network analysis
to allelotyping data in urothelial cancer.'® However, these studies also demon-
strate persistent limits—only very partial answers have so far been obtained
concerning the organization and dynamic function of whole biological systems
which are by definition multi-scale and integrated by multiple feedback loops
(see §6.1).

Employing objective Bayesianism as our methodology, we present a multi-
scale approach to knowledge integration which utilises more fully the very con-
siderable scope of available data. Our method enables integration of ‘omic’ data
types and quantitative physiological and clinical measurements. These data com-
bined offer rich, and as yet largely unexplored, opportunities for the discovery of
probabilistic dependencies involving system features situated at multiple levels
of biological organisation.

The technique supports progressive integration of Bayesian networks learnt
from independently conducted studies and diverse data types, e.g., mRNA or
proteomic expression, SNP, epigenetic, tissue microarray, and clinical data. New
knowledge and new data types can be integrated as they become available over
time. The application of our knowledge discovery method is envisaged to be
valuable in the clinical trials arena which is undergoing far-reaching changes
with steadily increasing incorporation of molecular profiling. It is our aim to
assess the potential of our technique for integrating different types of clinical
trial datasets (with and without molecular data). The methods described here
are highly complementary to ongoing research initiatives, such as the Cancergrid
project (www.cancergrid.org) and caBIG (cabig.nci.nih.gov) which are already
addressing pressing informatics requirements that result from these changes in
clinical study design.

6.5 Complementary Data Integration Initiatives

We are currently not in a position to make maximal use of existing data sets for
Bayesian network analysis, since data have not yet been standardised in terms of
experimental and clinical data capture (protocols, annotation, data reproducibil-
ity and quality), and computational data management (data formats, vocabular-
ies, ontologies, metadata, exchange standards). Basic requirements are the
generation of validated high-quality datasets and the existence of the various data
sources in a form that is suitable for computational analysis and data integration.
This has been well recognised, as is amply demonstrated by the aims and activities
of a collaborative network of several large initiatives for data integration within
the cancer domain which work towards shared aims in a coordinated fashion (the
initiatives mentioned below are meant to serve as example projects and do not
represent the sum total of these efforts on an international scale).

The National Cancer Institute Center for Bioinformatics (NCICB) in the
United States has developed caCORE which provides an open-source suite of

1 (Xia et al., 2004).
15 (Bulashevska et al., 2004).
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common resources for cancer vocabulary, metadata and data management needs
(biological and clinical), and, from Version 3.0, achieves semantic interoperabil-
ity across disparate biomedical information systems (for detailed information
and access to the caCORE components, see ncicb.nci.nih.gov/ NCICB/infra-
structure/cacore_overview). caCORE plays an essential integrative role for the
cancer Biomedical Informatics Grid (caBIG), a voluntary network connecting
individuals and institutions to enable the sharing of data and tools, creat-
ing a ‘World Wide Web of cancer research’ whose goal is to speed up the
delivery of innovative approaches for the prevention and treatment of cancer
(cabig.nci.nih.gov/).

In the United Kingdom, the National Cancer Research Institute (NCRI) is
developing the NCRI Strategic Framework for the Development of Cancer Re-
search Informatics in the UK (www.cancerinformatics.org.uk). The ultimate aim
is the creation of an internationally compatible informatics platform that would
facilitate data access and analysis. CancerGRID develops open standards and
information management systems (XML, ontologies and data objects, web ser-
vices, GRID technology) for clinical cancer informatics, clinical trials, integration
of molecular profiles with clinical data, and effective translation of clinical trials
data to bioinformatics and genomics research (www.cancergrid.org).

Part II: Objective Bayesian Nets

6.6 Integrating Evidence Via Belief

In this information-rich age we are bombarded with evidence from a multiplic-
ity of sources. This is evidence in a defeasible sense: items of evidence may not
be true—indeed different items of evidence often contradict each other—but we
take such evidence on trust until we learn that it is flawed or until something
better comes along. In the case of breast cancer prognosis we have databases of
molecular and clinical observations of varying reliability, current causal knowl-
edge about the domain, knowledge encapsulated in medical informatics systems
(e.g. argumentation systems, medical ontologies), and knowledge about the pa-
tient’s symptoms, treatment, and medical history. The key question is how we
represent this eclectic body of evidence and render it coherent.

Knowledge impinges on belief, and one way in which we try to make sense
of conflicting evidence is by finding a coherent set of beliefs that best fits this
knowledge. We try to find beliefs that are consistent with undefeated items
of evidence where we can, and where two items conflict we try to find some
compromise beliefs. But this is vaguely put, and in this Part we shall describe a
way of making this idea more precise.

Objective Bayesianism offers a formalism for determining the beliefs that best
fit evidence; §6.7 offers a brief introduction to this theory. While this provides
a useful theoretical framework, further machinery is required in order to find
these beliefs and reason with them in practice—this is the machinery of objective
Bayesian nets outlined in §6.8. In §6.9 we sketch a general procedure for construct-
ing these nets, then in §6.10 we see how objective Bayesian nets can be used to
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integrate qualitative evidence with quantitative evidence. Finally §6.11 discusses
objective Bayesian nets in the context of the problem at hand, breast cancer.'®

6.7 Objective Bayesianism

According to Bayesian theory, an agent’s degrees of belief should behave like
probabilities. Thus you should believe that a particular patient’s cancer will
recur to some degree representable by a real number x between 0 and 1 inclu-
sive; you should believe that the patient’s cancer will not recur to degree 1 — x.
Many Bayesians go further by adopting empirical constraints on degrees of be-
lief. Arguably, for instance, degrees of belief should be calibrated with known
frequencies: if you know just that 40% of similar patients have cancers that re-
cur then you should believe that this patient’s cancer will recur to degree 0.4.
Objective Bayesians go further still, accepting not only empirical constraints on
degrees of belief but also logical constraints: in the absence of empirical evidence
concerning cancer recurrence you should equivocate on the question of this pa-
tient’s cancer recurring—i.e. you should believe the cancer will recur to the same
degree that you should belief it will not recur, 0.5.17

From a formal point of view the objective Bayesian position can be summed
up as follows.'® Applying Bayesian theory, the agent’s degrees of belief should
be representable by a probability function p. Suppose that the agent has em-
pirical evidence that takes the form of a set of quantitative constraints on p.
Then she should adopt the probability function p, from all those that sat-
isfy these constraints, that is maximally equivocal, i.e. that maximises entropy
H = -3 p(v)logp(v), where the sum is taken over all assignments v = vy - - - vy,
to the variables Vi, ..., V,, in the domain. This is known as the mazimum entropy
principle.”

Note that two items of empirical evidence may conflict—for example, the agent
might be told that the frequency of recurrence is 0.4, but might also be told on
another occasion that the frequency of recurrence is 0.3, with neither of the two
reports known to be more reliable than the other and neither more pertinent to
the patient in question. Arguably, the agent’s degree of belief that the patient’s
cancer will recur will be constrained to lie within the closed interval [0.3,0.4].
More generally, empirical constraints will constrain an agent’s belief function to
lie within a closed convex set of probability functions, and consequently there
will be a unique function p that maximises entropy.2’ Thus the agent’s rational
belief function p is objectively determined by her evidence (hence the name
objective Bayesianism).>!

16 See Williamson (2002); Williamson (2005a, §5.5-5.8) and Williamson (2005b) for
more detailed descriptions of the theory behind objective Bayesian nets.

17 (Russo and Williamson, 2007).

18 (Williamson, 2005a, Chapter 5).

19 (Jaynes, 1957).

20 (Williamson, 2005a, §5.3).

2! See Williamson (2007b) for a general justification of objective Bayesianism, and
Russo and Williamson (2007) for a justification within the cancer context.
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We see then that objective Bayesianism provides a way of integrating evidence.
The maximum entropy probability function p commits to the extent warranted
by evidence: it satisfies constraints imposed by evidence but is non-committal
where there is insufficient evidence. In that respect, objective Bayesian degrees
of belief can be thought of as representative of evidence.

6.8 Obnets

Finding a maximum entropy probability function by searching for the param-
eters p(v) that maximise the entropy equation is a computationally complex
process and impractical for most real applications. This is because for a do-
main of n two-valued variables there are 2" parameters p(v) to calculate; as
n increases the calculation gets out of hand. But more efficient methods are
available. Bayesian nets, in particular, can be used to reduce the complexity of
representing a probability function and drawing inferences from it.

A Bayesian net is a graphical representation of a probability function. The
variables in the domain form the nodes of the graph. The graph also contains
arrows between nodes, but must contain no cycles. Moreover, to each node is
attached a probability table, containing the probability distribution of that vari-
able conditional on its parents in the graph. As long as the Markov condition
holds—i.e. each variable is probabilistically independent of its non-descendants
in the graph conditional on its parents, written V; 1L ND; | Par,—the net suf-
fices to determine a probability function over the whole domain, via the identity

n

p(v) = p(or---v,) = [ [ p(vilpar,).

i=1

Thus the probability of an assignment to all the variables in the domain is the
product of the probabilities of the variables conditional on their parents. These
latter probabilities can be found in the probability tables. Depending on the
sparsity of the graph, a Bayesian net can offer a much smaller representation of
a probability function than that obtained by listing all the 2™ probability values
p(v). Furthermore, the Bayesian net can be used to efficiently draw inferences
from the probability function and there is a wide variety of software available
for handling these nets.?? The other chapters in this volume are testament to
the importance of Bayesian nets for probabilistic reasoning.

An objective Bayesian net, or obnet, is a Bayesian net that represents objec-
tive Bayesian degrees of belief, i.e. that represents an agent’s entropy-maximising
probability function. Because the objective Bayesian belief function is deter-
mined in a special way (via the maximum entropy principle) there are spe-
cial methods for constructing an objective Bayesian net, detailed in §6.9. These
methods are more efficient to carry out than the more direct maximisation of
the parameters p(v) in the entropy equation.

22 (Neapolitan, 1990; Korb and Nicholson, 2003).
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Given an objective Bayesian net, standard Bayesian net algorithms can be
used to calculate probabilities, e.g. the probability of cancer recurrence given
the characteristics of a particular patient. Thus an obnet can help with the task
in hand, breast cancer prognosis. But an obnet can address other tasks too,
for example the problem of knowledge discovery. An objective Bayesian net can
suggest new relationships between variables: for instance if two variables are
found to be strongly dependent in the obnet but there is no known connection
between the variables that accounts for this dependence, then one might posit
a causal connection to explain that link (§§6.16, 6.20). An obnet can also be
used to determine new arguments to add to an argumentation framework: if
one variable significantly raises the probability of another then the former is an
argument for the latter (§6.18). Thus an obnet is a versatile beast that can assist
with a range of tasks.

6.9 Constructing Obnets

One can build an objective Bayesian net by following a 3-step procedure. Given
evidence, first determine conditional independencies that the entropy maximising
probability function will satisfy. With this information about independencies
one can then construct a directed acyclic graph for which the Markov condition
holds. Finally, add the probability tables by finding the probability parameter
p(vi|par;) that maximise entropy.

The first step—finding the conditional independencies that p must satisfy—
can be performed as follows. As before, we suppose that background knowledge
imposes a set of quantitative constraints on p. Build an undirected constraint
graph by taking variables as nodes and linking two variables if they occur to-
gether in some constraint. We can then read off probabilistic independencies
from this graph: for sets of variables X, Y, Z, if Z separates X from Y in the con-
straint graph then X and Y will be probabilistically independent conditional on
Z, X 1LY |Z, for the entropy maximising probability function p (Williamson,
2005a, Theorem 5.1).

The second step—determining the directed acyclic graph to go in the objec-
tive Bayesian net—is equally straightforward. One can transform the constraint
graph into a directed acyclic graph G that satisfies the Markov Condition via
the following algorithm:23

e triangulate the constraint graph,

e re-order V according to maximum cardinality search,

e let Dy,...,D; be the cliques of the triangulated constraint graph ordered
according to highest labelled node,

set Bj = D0 (2 D;) for j =1,...,1,

set F; = D;\E; for j=1,...,1,

take variables in V' as the nodes of G,

See Williamson (2005a, §5.7) for an explanation of the graph-theoretic terminology.
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e add an arrow from each vertex in F; to each vertexin F; (j =1,...,10),
o cnsure that there is an arrow between each pair of verticesin D; (5 = 1,...,1).

The final step—determining the probability tables to go in the objective
Bayesian net—requires some number crunching. One needs to find the pa-
rameters p(v;|par;) that maximise the entropy equation, which can be written

as H = Y | H; where H; = = oo, (HVjeAnci p(vj|parj)) log p(v;|par;),

(Anc; being the set of ancestors of V; in ). This optimisation task can be car-
ried out in a number of ways. For instance, one can use numerical techniques or
Lagrange multiplier methods to find the parameters.

This gives the general method for constructing an obnet. In §6.11 we shall
tailor this method to our particular problem domain, that of breast cancer. But
first we shall see how the method can be extended to handle qualitative evidence.

6.10 Qualitative Evidence

In the breast cancer domain, as elsewhere, evidence can take qualitative form.
As well as quantitative evidence gleaned from clinical and molecular databases,
there is qualitative causal knowledge and also qualitative evidence gleaned from
medical ontologies and argumentation systems. In order to apply the maximum
entropy principle in this type of domain, qualitative evidence must first be con-
verted into a set of quantitative constraints on degrees of belief. Here we shall
describe how this is possible.

Consider the following qualitative relationships: A is a cause of B; A is a
sub-type of B; A is an argument in favour of B. These causal, ontological and
evidential relations are all examples of what might be called influence relations.
Intuitively A influences B if bringing about A brings about B but bringing about
B does not bring about A. More precisely, a relation is an influence relation if
it satisfies the following property: learning of the existence of new variables that
are not influences of the other variables should not change degrees of belief
concerning those other variables.?*

Qualitative knowledge of influence relationships can be converted into quan-
titative constraints on degrees of belief as follows. Suppose V' 2O U is a set of
variables containing variables in U together with other variables that are known
not to be influences of variables in U. As long as any other knowledge concern-
ing variables in V\U does not itself warrant a change in degrees of belief on
U, then p‘ﬁ/LU = pgw i.e., one’s belief function on the whole domain V' formed
on the basis of all one’s background knowledge 3, when restricted to U, should
match the belief function one would have adopted on domain U given just the
part By of one’s knowledge involving U. These equality constraints can be used
to constrain degrees of belief so that the maximum entropy principle can be
applied. The equality constraints can also be fed into the procedure for con-
structing objective Bayesian nets: build the constraint graph as before from the

24 (Williamson, 2005a, §11.4).
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non-qualitative constraints; transform that graph into a directed acyclic graph
as before; but take the qualitative constraints, converted to quantitative equality
constraints, into account when determining the probability tables of the obnet
(Williamson, 2005a, Theorem 5.6).

6.11 Obnets and Cancer

In the context of our project we have several sources of general (i.e., not patient-
specific) evidence: databases of clinical data; databases of molecular data; a med-
ical ontology; arguments from an argumentation framework; evidence of causal
relationships from experts and also from published clinical trials. The study dis-
cussed in Part ITI focusses on databases of clinical and molecular data, but in this
section we shall show how all these varied evidence sources might be integrated.

These sources impose a variety of constraints on a rational belief function p.
Let C' be the set of variables measured in a database of clinical data. Then p|c =
freqo, the rational probability function when restricted to the variables in the
clinical dataset should match the frequency distribution induced by that dataset.
Similarly, if M is the set of variables measured in a molecular dataset, then p| s =
freqar. A medical ontology determines influence relationships amongst variables.
For example, knowledge that assignment a is a type (or sub-classification) of
assignment b imposes the constraint p(bla) = 1, as well as the influence constraint

(§6.10) pfﬁ’B} = pt4}. An argumentation framework also determines influence
relationships. An argument from a to b indicates that a and b are probabilistically
dependent. This yields the constraint p(b|la) > p(b) 4+ where 7 is some threshold
(which measures the minimum strength of arguments within the argumentation

framework), as well as the influence constraint p{ﬁ’B} = pt4}. Finally, causal

evidence yields influence constraints of the form p{ﬁ’B} = pl4} and, if gleaned
from a clinical trial, quantitative constraints of the form p(bla) > p(b) + 7.

In order to construct an objective Bayesian net from these sources, we can
follow the three-step procedure outlined in §6.9.

The first task is to construct an undirected constraint graph. Following the
recipe, we link all the variables in C' (the clinical variables), link all the variables
in M (the molecular / genomic variables), and link pairs of variables that are
connected by an argument or by a clause in the ontology or by a causal rela-
tion. But we can reduce the complexity of the resulting obnet, which is roughly
proportional to the density of the graph, still further as follows. One can use
standard algorithms to induce a Bayesian net that represents the frequency dis-
tribution of the clinical database. Similarly, one can induce a Bayesian net from
the clinical database. Then one can incorporate the independencies of these nets
in the constraint graph, to render the constraint graph more sparse. This can be
done as follows. Rather than linking every pair of variables in C' with an edge
in the constraint graph, include a link only if one is the parent of the other in
frequency net, or if the two have a child in common in that net. Similarly for
the variables in M. This yields a constraint graph with fewer edges, and thus a
smaller obnet as a result.
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The next two steps—converting the constraint graph into a directed acyclic
graph, and adding the probability tables—can be carried out as detailed in §6.9.

Note that there is a particularly simple special case. If the evidence consists
only of two databases which have just one variable in common, then one can
construct the directed acyclic graph of the obnet thus: for each database learn a
frequency net, ensuring that the variable in common is a root variable (i.e. has
no parents); then just join the frequency nets at the root variable.

Having discussed the theoretical aspects of objective Bayesian nets, we now
turn to a detailed description of the breast cancer application.

Part III: The Application

6.12 Obnets and Prediction in the Cancer Domain

We have applied objective Bayesian nets to the domain of breast cancer using
three sources of data: one clinical, and two genomic, as well as a published study.
The use of two genomic data sets was necessary as the more substantial genomic
Bayesian net did not have a node in common with the clinical network, and so we
used a smaller network to link the larger genomic network and the clinical one.
We start by reviewing the data used (§§6.13, 6.14), and then in §6.15 describe
how we constructed and merged the three separate networks. We then present
some initial data on the performance of the network, and conclude the Part with
a discussion of the uses of such networks in §6.16.

6.13 Breast Cancer

Breast Cancer is one of the commonest cancers in the Western World. It is
the commonest non-skin cancer in women in the UK and US, and accounts for
approximately a third of cancers in women, with lifetime rates of 1 in 10. Some
36000 cases are diagnosed each year in the UK, of whom about a third will
die from the disease.?® Consequently there has been a considerable amount of
research focused on breast cancer, and death rates have fallen over the last 10
years.26

The mainstay of treatment for breast cancer remains surgery and radiother-
apy,2” with hormonal and chemotherapeutic agents often used to treat presumed
micro-metastatic disease. One of the advantages of surgery is that, as well as re-
moving any local disease, a sample can also be taken of the axillary lymph nodes.
These are a common site of metastatic spread for the cancer, and their removal
not only removes any spread that may have occurred, but also allows analysis
of the nodes to describe the degree of spread. The two main aims of treatment
are to provide local control of, and to prevent premature death from, disease.

25 (McPherson et al., 2000).
26 (Quinn and Allen, 1995).
7 (Richards et al., 1994).
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Examination of the primary tumour and lymph nodes lets us define certain
characteristics of the disease that make local recurrence and death more likely.
These characteristics are primarily the grade of the tumour, (which represents
the degree of abnormality displayed by the cells, scored 1-3), the size of the
tumour (as its maximum diameter, in mm) and the number of involved nodes.?®
There are also newer tests for the presence or absence of certain proteins on the
cell surface that may predict tumour behaviour or response to certain drugs.?”

The central aim of therapy planning is to match treatment with the risk of
further disease. Thus those at high risk should be treated aggressively while
those at low risk should be treated less aggressively. This allows more efficient
use of resources, and restricts the (often considerable) side effects of intensive
treatment to those patients who would benefit most.

Current Prognostic Techniques

These prognostic characteristics are currently modelled using statistical tech-
niques to provide an estimate of the probability of survival and local recurrence.
Two commonly used systems are the Nottingham Prognostic Index (NPT),3°
which uses data from large UK studies, and results derived from the Ameri-
can Surveillance, Epidemiology and End Results (SEER) database,?" which are
used by systems such as Adjuvant Online.? Both techniques rely on multivari-
ate analyses of large volumes of data (based on over 3 million people for SEER)
to calculate prognostic formulae.

These tools, and others like them, are effective at providing estimates of risk of
death and local recurrence. However, they have two major weaknesses. Whilst
effective, they lack explanatory power in a human-readable form. Therefore,
extra knowledge that has not been captured by the statistical analysis (such
as the presence and impact of other co-existing conditions) cannot be easily
incorporated. Secondly, knowledge that post-dates the formation of the formulae
(such as the discovery of Her-2neu, a cell-surface protein that is a marker for
more aggressive disease) is very difficult to incorporate. Therefore, while they
excel at providing an accurate assessment of population-based risk, they have
weaknesses in the individualisation of that risk.

Humans are often poor at manipulating explicit probabilities;3> however, clin-
icians have the ability to process additional knowledge that statistically-based
systems often either ignore or treat on a perfunctory level. We would like to
support clinical decision making by providing explicit probabilistic estimates of
risk based on an integration of the variety of our knowledge sources.

% (Richards et al., 1994).

29 (Veer et al., 2005; Cristofanilli et al., 2005).

9 (Galea et al., 1992).

31 (Ries et al., 2004).
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32 (Ravdin et al., 2001).
3% (Kahneman and Tversky, 1973; Borak and Veilleux, 1982).
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6.14 Our Knowledge Sources

Clinical Data

We used clinical data from a subset of the American Surveillance, Epidemiology
and End Results (SEER) study. The total study is very large (over 3 million
patients) and presents summary results on cancer diagnosis and survival in the
USA between 1975 and 2003,3* and subsets of the data are available for public
use. We used a subset that initially consisted of 4878 individuals with breast
cancer, which, once cases with incomplete data were removed, was reduced to
4731. The dataset consists of details of patient age (in 5 year bands, from 15-19
to 85+), the tumour size and histological grade, Oestrogen and Progesterone re-
ceptor status, the number of positive lymph nodes (if any), surgical type (mas-
tectomy vs breast conserving), whether radiotherapy was given, the patients’
survival from diagnosis (in months) and whether they had survived up until 5
years post-diagnosis. Patients in this subset were only followed up for 5 years,
and so there is no data available on longer survival times.

Initial inspection of the clinical data was carried out using standard spread-
sheet software (OpenOffice.org 2, 2005). Initial work concentrated on regrouping
some of the data as follows. Oestrogen receptors are produced as part of the same
intra-cellular pathway as Progesterone receptors, and as a result there is a very
close correlation between ER & PR status. Since they are regarded as being
one entity for most clinical purposes, we combined them into a single ‘Hormone
Receptor’ variable. The Lymph Node status was converted from a number of
positive lymph nodes (from 0-15) into a binary variable (True/ False), patient
age was converted from 5 year age bands into 15-50, 50-70, 70-90, and Tumour
size was converted from size in millimetres to sizes 0-20, 20-50, and 50-150
(these corresponding to clinical T' Stages 1, 2, and 3+4). Patients with incom-
plete data (for example missing number of involved lymph nodes) were deleted
from the dataset. A sample of the dataset is depicted in Table 6.1.

Table 6.1. A sample of the clinical dataset

Age |T Size|Grade|HR_status|Positive LN [Surgery|Radiotherapy|Survival|Status
70-74| 22 2 1 1 1 1 37 1
45-49| 8 1 1 0 2 1 41 1

The variables of the clinical database—i.e., the column headings of Table 6.1
are as follows:
Age: Age in years;
T Size: size of the primary tumour, in millimetres;
Grade: Histological grade of the tumour, from 1-3; 3 being most abnormal;

34 (Ries et al., 2004).
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HR_Status: Positive if the sample was positive for either Oestrogen or Proges-
terone receptors;

Positive LN: 1 if the patient had any lymph nodes involved by tumour, 0 oth-
erwise;

Surgery: 1 if the patient had surgery for the tumour;

Radiotherapy: 1 if the patient received radiotherapy for their tumour;

Survival: Recorded survival in months;

Status: Status at final follow-up, 1 = alive, 0 = died.

Genomic Data

We used two karyotype datasets from the progenetix database (www.progen-
etix. de).?® Progenetix contains discretised data on band-specific chromosomal
rearrangements of cancer and leukemia cases (loss -1, gain +1, no change 0). It
consists of a compilation of published data from comparative genome hybridisa-
tion (CGH), array CGH, and matrix CGH experiments, as well as some studies
using metaphase analysis. Progenetix is, with 12320 CGH experiments, by far
the largest public CGH database. We had available:

(i) a breast cancer CGH dataset of 502 cases which lacked consistent clinical
annotations, which we used to learn the genomic Bayesian net from band
data only,

(ii) a second CGH data set of 119 cases with clinical annotation, including lymph
node status (an additional 12 individual cases with clinical annotation were
set aside as a validation set), and

(iii)a recent study, Fridlyand et al. (2006), which contains quantitative informa-
tion concerning the probabilistic dependence between the variables HR _status
and 22q12—this provided a further bridge between clinical and genomic
variables.

From the total number of chromosomal bands in the human genome, we se-
lected 28 bands in this proof-of-principle application. The chosen bands were
hypothesised to be closely associated with tumour characteristics, progression
and outcome (as represented by variables in the clinical net) based on genes
with known function present on the bands. Genes were evaluated according to
the biological processes they participate in, using their Gene Ontology annota-
tions, e.g., cell cycle regulation, DNA damage repair and cancer-related signal
pathways. An additional selection criterion was the presence of at least 3 relevant
genes on the band.

The larger dataset consisted of 116 separate data fields. For reasons of space,
12 sample fields are reproduced in Table 6.2. The code of the form Np/gn indi-
cates:

N: which chromosome (1-22, X or Y);
p/q: the short (p)/ long (¢) arm of the chromosome;
n: the band on the chromosome arm (0-40, depending on chromosome).

35 (Baudis and Cleary, 2001).
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Table 6.2. A sample of the larger of the genomic datasets

1p31[1p32]1p34[2932[3q26]4q35[5q14[7p11]8q23[20p13[Xp11][Xql3
000 |1]-1]0]O0]1]0] 0] o0]-1
ojlo|l1l1]lo|lo]o]|-1]-1] 0] o01]oO

Table 6.3. A sample of the smaller of the genomic datasets

Lymph Nodes|1q22|1q25({1q32|1q42{7q36|8p21|8p23|8q13|8q21|8q24
0 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

The level of each band could either be unchanged (0) decreased (-1) or increased
(1).

The smaller dataset was similar to the larger one, except for the fact that it
included data on whether the patient’s lymph nodes were also involved. 11 of
the 26 data fields are reproduced in Table 6.3.

6.15 Constructing the Network

Our knowledge takes the form of a clinical database, two molecular databases,
and information about the relationship between two variables derived from a
research paper (§6.14). The clinical database determines a probability distribu-
tion freq, over the clinical variables and imposes the constraint pjc = freq,, i.e.,
the agent’s probability function, when restricted to the clinical variables, should
match the distribution determined by the clinical dataset. Similarly the first
molecular database imposes the constraint p|as = freg,,. The additional molec-
ular dataset and the paper contain the observations that define the probability
distribution freq, of three variables S = { HR_status, Positive LN, 22q12}, the
first two of which occur in the clinical dataset and the other of which occurs in
the molecular dataset; it imposes the constraint p;g = freq,.

Given constraints of this form, an obnet on the variables in C', M and S can
be constructed in the following way. First use standard methods, such as Hugin
software, to learn a Bayesian net from the clinical dataset that represents freq.,,
subject to the condition that the linking variables (positive LN, HR status) are
root variables (Fig. 6.2). Similarly learn a Bayesian net from the larger genomic

36 Fridlyand et al. (2006) report frequency data on gain and loss of 22q12 in breast
cancer dependent on oestrogen hormone receptor status. Interestingly, loss of 22q12
is far more frequent in ER positive tumours; in their study, 45% of ER positive cases
showed loss of 22q12, and 5% exhibited gain. In contrast, in ER negative tumours,
loss or gain occurs with equal frequency of 20%. This information was used to add
an additional arrow between HR status and 22q12, and the conditional probability
table for 22q12 was amended to reflect this dependence using the frequency data.
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Fig. 6.2. The graph of the Bayesian net constructed from the clinical dataset

Fig. 6.3. The graph of the Bayesian net constructed from the large genomic dataset

dataset that represents freq,,, ensuring that the linked variable (22q12) is a
root of the net (Fig. 6.3). Finally learn a bridging network, Fig. 6.4, from the
smaller genomic dataset and the study, merge the three graphs to form one graph
by merging identical variables, and integrate the conditional probability tables.
Fig. 6.5 shows the graph of the resulting integrated obnet.

Here a conflict arose between the probability distribution determined by the
clinical dataset and the probability distribution determined by the genomic
dataset used to bridge the genomic and clinical variables: these gave different
values to the probability of Positive LN. In §6.7, we pointed out that if nei-
ther dataset were to be preferred over the other, then the conflicting datasets
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@

Fig. 6.4. The graph of the Bayesian net constructed from the smaller genomic dataset
and the published study. The variables are Positive LN, HR status and 22q12.
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Fig. 6.5. The objective Bayesian net. Probability for positive lymph node status is
set to 1 (black bar), and the calculated probability distributions for selected nodes are
shown (HR status: 0 negative, 1 positive; chromosomal bands: -1 loss, +1 gain, 0 no
rearrangement; RT radiotherapy).

constrain the probability of the assignment in question to lie within the closed
interval bounded by the conflicting values; one should then take the least com-
mittal value in that interval. But in this case there are reasons to prefer one
dataset over the other. First, the clinical dataset is based on a much larger sam-
ple than the bridging genomic dataset—for example, the clinical dataset has
2935 people with LN = 0, while the bridging genomic dataset has 56. Second,
the molecular dataset has a clear sample bias: overall a frequency bias in favour
of loss of 22q12 in breast cancer has been observed (20% loss vs. 7% gain in 800
cases in the progenetix database; accessed on the 14th of June 2006); further-
more, one may hypothesise that the presence of the KREMEN1 gene on 22q12
suggests that band loss, rather than gain, is more likely to be correlated with
positive lymph node status, at least in certain karyotype contexts (§6.16). Thus
the clinical data should trump the genomic data over the conflict on LN, i.e.,
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Table 6.4. Probability table for Positive LN in the obnet

Positive LN| p
0 0.62
1 0.38

Table 6.5. Conditional probability table for 22q12 in the obnet

Positive LN 0 0 1 1
22q12| HR_Status 0 1 0 1

-1 0.082 0.205 0.266 0.567
0 0.835 0.772 0.468 0.370
1 0.082 0.023 0.266 0.063

the probability table of LN in the obnet, Table 6.4, is simply inherited from the
clinical net. The conditional probability table for 22q12 is depicted in Table 6.5.

Validation

Validation of our merged network is difficult; almost by definition, a suitable
dataset involving the whole domain does not exist (if it did, we would not need
to use this technique; we would simply use the dataset to learn a Bayesian net).
Because of this, the best we were able to do was to use a small validation set with
11 test cases; validation showed reasonable agreement between the test cases and
the obnet, but we must be careful not to over-interpret the results.

We approached the validation from two sides; the first was to set the 22q12
status and observe the effect on lymph node (LN) status; the second was to set
the status of the lymph node variable, and observe the effect on 22q12 status.
Unfortunately, the test set is both small and contains few cases of of 22q12
alteration.

Table 6.6. Setting 22q12 and observing LN status

22q12|LN status: Predicted from net Actual|No.
1 0.62 0 1
0 0.5 0.55 | 9
-1 1 1 1

As can be seen from Table 6.6, only the linkage between no change of 22q12
and LN status predicted by the net is reflected in the validation set. It is difficult
to interpret the results for the other values of 22¢q12.
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Table 6.7. Setting LN status and observing 22q12

LN status|22q12: Predicted from net Actual No.
+ 0: 0.84, 1: 0.08, -1:0.08 0: 1.00 5
- 0: 0.95, 1: 0.05 0: 0.66, 1: 0.16, -1:0.16| 6

Entering evidence in LN status, we have the results of Table 6.7. As we can
see, both cases of LN status agree reasonably well with the observed cases, but
again we must be careful not to over-interpret this relationship.

6.16 Interpretation of the Integrated Obnet

We have presented a general method for merging Bayesian networks which model
knowledge in different areas. This method was applied to an example application
linking knowledge about breast cancer genomics and clinical data. As a result,
we have been able to examine the influence of karyotype pattern on clinical
parameters (e.g., tumour size, grade, receptor status, likelihood of lymph node
involvement) and vice versa (Fig. 6.5).

In the post-genome era, prognostic prediction and prediction of targets for
new anti-cancer treatments from omic and clinical data are becoming ever more
closely related—both need to relate molecular parameters to disease type and
outcome. This correspondence is very clearly reflected in the uses to which the
integrated obnet may be put. Obnet analysis may facilitate (i) discovery of ge-
nomic markers and signatures, and (ii) translation of clinical data to genomic
research and discovery of novel therapeutic targets.

Discovery of Genomic Markers

Since hormone receptor status and lymph node involvement are well-known prog-
nostic factors for survival and disease recurrence in patients with breast cancer,
the ability to link karyotype patterns to this is clearly of great potential sig-
nificance. Previous tumour genotyping in breast cancer has already shown the
usefulness of genomic rearrangements as prognostic indicators.3”

For clinical decision making, this technique may also be useful when applied
to integrate karyotype or other molecular data with parameters that cannot be
observed in routine clinical practice, but are of clinical significance. An example
might be the presence of distant metastasis on PET-CT, an imaging modality
that may be present in the research setting but is not widely available in the
clinic, but which may have prognostic significance for breast cancer recurrence.
The use of such a net would then allow practitioners, where PET-CT is not
available, to use genomic data to estimate the likelihood of a positive scan.
There are of course, many different possible options for such networks, and it

57 See, e.g., Al-Kuraya et al. (2004).
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remains an open question as to which will, in clinical terms, prove to be the most
useful.

Large clinical datasets are extremely expensive and difficult to collect. This is
particularly true in diseases such as breast cancer, where the risk of recurrence
extends up to at least 10 years, and hence requires long-term follow-up for ac-
curate estimation. However, the generation of potential new predictive markers,
such as genomic information or cell surface proteins, for exploration is currently
a significant area of research. The correlation of such markers with better known
clinical markers is (relatively) simple, in that it does not require long-term follow-
up, and can be estimated following standard surgical treatment. However, for
such information to be useful, it must be integrated with the existing databases
on long-term outcomes, and it is this that we have demonstrated here.

Translation of Clinical Data to Genomic Research

The probabilistic dependence between 22ql2 status and lymph node involve-
ment was followed up by analysis of the genes with known function on this
chromosomal band. This strongly suggested a causal interpretation of the de-
pendency relationship based on knowledge of cellular pathways which regulate
biological processes (mechanistic causation). KREMEN1 encodes a high-affinity
dickkopf homolog 1 (DKK1) transmembrane receptor that functionally cooper-
ates with DKK1 to block wingless (WNT)/beta-catenin signalling, a pathway
which promotes cell motility.3® Loss of 22q12 may therefore contribute to cancer
cell migration through loss of the inhibiting KREMENT protein. The probability
distribution for 22q12 is consistent with this hypothesis (Fig. 6.5).

In total, twelve genes implicated in cell migration and metastatic potential
were identified on 22q12 and the other bands shown in Fig. 6.5. Like KREMENT,
the protein products of the other eleven genes can also be placed in the context
of the metastatic pathways they participate in. Provided that appropriate ki-
netic interaction data are available, computational pathway modelling®® can be
employed to predict changes in pathway function resulting from the probabilis-
tically dependent band gains and losses and concomitant changes in gene copy
number. Molecularly targeted intervention strategies aimed at bringing about a
therapeutic response in the cells so affected can be explored by running simu-
lations using such pathway models. Simulation may be seen as being motivated
by an agency-oriented notion of causation (see also §6.20).

Part IV: Further Development of the Method

6.17 Qualitative Knowledge and Hypotheses

There are various ways in which we intend to develop the method presented
here.

38 (Mao et al., 2002).
39 (Alves et al., 2006).
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First, as discussed in §6.11, there are a variety of knowledge sources that we
hope to integrate. These include argumentation systems, medical ontologies, and
causal relationships, as well as the clinical and molecular datasets which have
been the focus of this chapter. In this Part, we shall discuss some of these other
knowledge sources.

Second, as indicated in §6.16, we intend to exploit the objective Bayesian net
that integrates these knowledge sources by using it not only for prognosis but also
as a device for hypothesising new qualitative relationships amongst the variables
under consideration. If the obnet reveals that two variables are probabilistically
dependent, and that dependence is not explained by background knowledge, then
we may hypothesise some new connection between the variables that accounts for
their dependence. For example, we may hypothesise that the variables are causally
(§6.20) or ontologically (§6.19) related. Furthermore, any such dependence can be
used to generate qualitative arguments (§6.18): each variable will be an argument
for or against the other, according to the direction of the dependence.

Third, we can increase the complexity of the formalism, in order to model
temporal change or different levels of interaction, for instance. We shall discuss
such extensions in §6.21.

These are avenues for future research. In this Part it will suffice to make some
remarks on the likely directions that such research will take.

6.18 Argumentation

So far we have described how the network was developed, and analysed its per-
formance as a Bayesian network. However, as suggested in §6.10 above, we are
interested in more than just the probabilistic interpretation of the network—we
are also interested in what the new network says about the world. Whereas in
that section we suggested moving from qualitative to quantitative knowledge,
here we shall discuss the opposite.

Bayesian Networks as Arguments

Bayesian networks are a useful tool for providing estimates of the probability for
a variable of interest based on the evidence. Of course, Bayesian networks are
not the only method of doing so, and there has been much work over the years
on different formal methods to support decision making (rule-based systems,
support vector machines, regression models, etc.). More generally, humans often
use the notion of weighing up ‘the arguments’ for a belief or action to help
them come to a conclusion. The argumentative method goes back at least 2500
years, and extends beyond the Graeco-Roman tradition.*’ Arguments have the
advantage that they can present not only a conclusion, but also its justification.
The idea of trying to base decision-making on arguments has a long history.
The first clear example of an (informal) procedure for doing so was described by
Benjamin Franklin.*!

40 (Gard, 1961).
4! (Franklin, 1887).
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Of course, this informal notion of an argument can be neither implemented
nor assessed in any rigorous fashion, but over the last 10-15 years there has been
some work on developing competing formal (and computable) models of argu-
ment.*? More recent work has drawn together developments in non-monotonic
logic and insights from cognitive science to produce a number of different argu-
mentation frameworks.*> We do not intend to present a review of the field here,
but suffice to say that there are two general themes, argument formation and
argument resolution. Each competing formalism defines these slightly differently,
but in general an argument is a set of premises that allow one to deduce, via a
set of rules, some set of conclusions. Resolution of competing arguments varies
considerably between formalisms, is difficult to summarise in general terms, and
matters less for our discussion here. However, what interests us is how one can
interpret our new Bayesian network in terms of arguments. In other words, given
a Bayesian network, what can we say about the arguments for and against a set
of propositions, and given a new Bayesian network (formed from two or more ex-
isting ones) what new arguments can we make? Two of the authors of this paper
have previously presented a simple technique for developing arguments from a
Bayesian network,** basing the arguments on a relatively simple argumentation
formalism,*® and we use the method outlined there to develop our arguments
from the Bayesian network. For reasons of space, we do not present the details
of our method here; they can be found in Williams and Williamson (2006). In-
stead, let us consider what it might mean, in general terms, for a probabilistic
statement to be interpreted as an argument. Firstly, therefore, let us consider
what we mean by an argument.

Rules, Arguments and Probability

Intuitively, an argument is a line of reasoning that proceeds from some premise(s)
via a set of deductions to some conclusion. As we all know, arguments are
defeasible—that is, their conclusions may at some point be challenged and what
was at some point held to be ‘true’ by argument may later be found to be untrue.
We can formalise this ‘method of argument’ in various different ways (as men-
tioned above) but in general we have a quartet of premises, rules (for deduction),
conclusions, and conflict between arguments. In order to map probabilistic state-
ments into an argumentative framework, therefore, we need to consider how dif-
ferent aspects of a Bayesian system map into the quartet of argumentation, and
what effects this has. We shall do this below, but first we need to establish a (fairly
trivial) mapping between Bayesian notation and argumentative notation. We do
this by considering all variables to be binary in nature, and each node in the net-
work to represent a single binary-valued variable. The mapping between such a
network and a truth-valued logic (say, propositional logic) should be clear: for any
variable X, p(X = 1) is interpreted as  and p(X = 0) is interpreted as —.

(Fox and Parsons, 1997).

(Amgoud et al., 2004; Hunter and Besnard, 2001; Krause et al., 1995).
4 (Williams and Williamson, 2006).

(Prakken and Sartor, 1996).
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Given the correspondence above, mapping the premises is fairly simple: they
are the inputs to the network, i.e., the variables in the net that are instantiated.
Similarly, the conclusions are also relatively simple—they are the values of other
nodes in the network. Given any two nodes in a Bayesian network, the absence of
any connection between them implies probabilistic independence, and therefore
precludes one being an argument for the other. The presence of a connection
suggests that there may be a relationship between them. It is this relationship
that we interpret as forming the ‘rules™® for an argumentation system, and in
its most basic form, if the truth of one variable A increases the probability of
another variable B being true, then we might write ¢ = b. An argument is
the association of a set of premises and rules that lead to a conclusion*”—e.g.,
< {a,a = b},b >, where <> denotes the argument, the first element {a,a = b}
is the support and b is the conclusion. Arguments are in conflict if they argue
for conclusions which are mutually exclusive—so if we had another argument
< {e¢,e¢ = —b}, b >, this would be in conflict with our first argument.

Our Network as Arguments

We are now in a position to return to the first question we posed above—‘what
can we say about the arguments for and against a set of propositions?’ The first
thing to observe is that our approach will only allow us to develop arguments
about literals that correspond to nodes in the network. Secondly, we can only
develop rules between literals that are linked in the network. Thus, while we
might know of some connection, that connection will not appear unless it also
appears as a conditional dependence (and hence a link) in our network. This is
why the procedure outlined in §6.10 is so important: all background knowledge
must be taken into account in the construction of the objective Bayesian net.
Of course, in general we might add some additional rules (from other sources),
but the rules (and hence the arguments) developed from the network will only
be concerned with those literals that appear and are associated in the network.
Thirdly, given the dichotomised nature of the variables, we have a tendency
to develop arguments both for and against literals. We can see this from the
following example. The CPT for the Tumour size node from our clinical network
is shown in Table 6.8. From these values we can calculate that p(7T_-Size = 0
20) is 0.657, whilst p(T'_Size = 0-20 |[LN = 0) is 0.753, and p(T_Size = 0-20
|LN = 1) is 0.5. Therefore, following the method outlined above, we can see that
we should develop the following rules:

o (LN =0)= (T_Size = (0-20))
(LN =1) = =(T_Size = (0-20))

On the one hand, this may seem to problematic—the generation of pairs of
opposing rules (and hence arguments) might lead us to some sort of deadlock.

46 A ‘rule’ in this context is a defeasible piece of knowledge that allows one to infer the
value of one variable from another.

47 Most systems, including ours, also impose further restrictions to ensure arguments
that are consistent and non-circular.
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Table 6.8. Conditional probability table for Tumour Size

Grade 1 1 2 2 3 3
T_Size(mm)|Positive LN 0 1 0 1 0 1

0—20 0.85 0.66 0.76 0.5 0.62 0.42

20—50 0.14 0.33 0.21 0.5 0.35 0.58

50—150 0.005 0 0.02 0 0.03 0
No. 689 271 1668 990 578 535

However, this is not a bad as it may seem. Firstly, it seems intuitively correct
to develop rules for both options—after all, the whole point of the Bayesian
net is that it contains information about both options. Secondly, the ‘deadlock’
between the rules can be resolved in a variety of ways (for example, we could
encode the likelihood of the different options as ‘weights’ given to the rules).
Thirdly, the point of the rules, and arguments, is to allow us to help integrate
human decision-making with our Bayesian techniques, and to allow us to do
this we need to display arguments for both options, even if they have different
weights. Finally, in this case it would of course be impossible to have a measure-
ment for both LN = 0 and LN =1 at the same time (although we might have
other arguments for both at the same time, as we shall see below).

New Arguments from New Networks

The second question we asked above was ‘given a new Bayesian network. . .what
new arguments can we make?’ In a sense, the answer is (almost) ‘none’. After
all, as we said above, all the rules are developed from existing literals and rela-
tionships in a Bayesian network. Since our new network is only a combination of
the existing networks, there should not be anything new. However, this answer
misses one of the aspects that is crucial to the difference between argumentation
and Bayesian networks.

O—@O—@

Fig. 6.6. The graph of a Bayesian network

One of the key features of Bayesian networks, as mentioned in §6.8 is that
each variable is probabilistically independent of its non-descendants conditional
on its parents, and as is noted above, this has some very desirable properties from
a computational aspect. However, once we consider developing arguments from
our network, we see that this relationship comes out differently when applied to
arguments. For example, consider a (very simple) Bayesian net, whose graph is
shown in Fig. 6.6. Depending on the probabilities in the net, we may develop
the rules:

o (A=1)= (B=1) which we write as a = b
(B =1)= (C =1) which we write as b = ¢
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(B =0) which we write as ~a = —b

(A=0)
0 (C = 0) which we write as =b = —¢

=
(B=0)=
Now, according to the Bayesian network, B screens C' off from A. However, under
our argumentation formalism, we might have the following arguments:

o Ay: <{a,a= bb= c},c> as an argument for ¢
o Ay <{—a,—a = —b,—b= —c},c > as an argument for —c¢

which seems to make explicit the dependence of ¢ on a. Now, if we do not know
the status of b, then in both formalisms, we understand that in fact the best guide
to the state of ¢ is the state of a, and so the two approaches are in agreement.
If we know both a and b, and they are ‘concordant’ (e.g. a and b or —a and —b)
then we will find that indeed a is ‘redundant’, and c is entirely determined by b.
However, our work is motivated by the fact that our knowledge is often partial
and conflicting. For example, we might have one piece of information about a
and another about b, and they may conflict—for example, we may believe both
—a and b. In such a situation, the Bayesian net approach would typically discard
the information about a, as it would be over-ridden by the information about b.
Under an argumentative approach, however, we are able to construct arguments
for both ¢ and —¢, as shown below:

o Ai:<{bb=c},c>
o Ay <{na,—a= —-b,—b= —c},—c>

Thus the argumentation differs from the Bayesian net in that it does not
follow the probabilistic independencies of the net. Obviously at some point we
will need to resolve this disagreement, but we can at least start by considering
both cases. The Bayesian net approach retains probabilistic validity, but only
by enforcing a set of strict rules, one of which is committing to a particular
value of certain variables (b in our example); the argumentative approach loses
this precision, but has the advantage that it can handle conflicting premises and
generate arguments based on them, which it then resolves, rather than losing
this information (b and —a in our example). Such differences are not unique to
our particular brand of argumentation (for example, they are seen in Parsons’
qualitative probability framework,*® which devotes a considerable amount of
space to discussing the problem).

We are now finally in a position to answer our second question. When we add
a new network, we can still only develop the same rules that we developed in
each network. However, because we can use the rules to form arguments, we can
form arguments that are ‘bigger’ than those formed in either network alone. For
example, consider our merged network, Fig. 6.5. In this case, we can see that
22q12 is connected to lymph node status, and we would have been able to form
an argument linking the two from the genomic net alone. However, given the
links in the network, we can form an argument (but not a valid probabilistic
relationship) which would link lymph node status and 19p13 status, even if we

8 (Parsons, 2003, 2004).
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know 22q12 status. Such an argument is not interpreted probabilistically but
may still be useful for explaining the links to human users.

6.19 Ontologies

In §6.11 we mentioned some of the different types of knowledge that we might
try and integrate into our Bayesian network; one important category is onto-
logical knowledge. Ontologies (formal representations of vocabularies and con-
cept relationships) and common data elements support automated reasoning
including artificial intelligence methods such as Bayesian networks. Various
standard vocabularies and object models have already been developed for ge-
nomics, molecular profiles, certain molecular targeted agents, mouse models of
human cancer, clinical trials and oncology-relevant medical terms and concepts
(SNOMED-RT/CT, ICD-0-3, MeSH, CDISC, NCI Health Thesaurus, caCORE,
HUGO). There are also existing ontologies describing histopathology (standards
and minimum datasets for reporting cancers, Royal College of Pathologists;
calMAGE, NCI). The European Bioinformatics Institute (EBI) is developing
standards for the representation of biological function (Gene Ontology) and
the Microarray Gene Expression Data (MGED) Society is developing MIAME,
MAGE, and the MAGE ontology, a suite of standards for microarrays (tran-
scriptomic, array CGH, proteomic, SNP). However, significant gaps still exist
and eventually, all cancer-relevant data types (see the NCRI Planning Matrix,
www.cancerinformatics.org.uk/planning matrix.htm) will need to be formalised
in ontologies. These efforts are ongoing and pursued by a large community of
researchers (see above, and ftpl.nci.nih.gov/pub/cacore/ ExternalStds/ for fur-
ther details on available standards). Clearly, it would be desirable to incorporate
the fruits of these efforts in our scheme for knowledge integration; the potential
for using ontologies as a knowledge source will increase with the maturation of
these other initiatives.

While we would like to base our objective Bayesian net on ontological knowl-
edge as well as our other knowledge sources, we also believe that we could es-
tablish some possible ontological relationships from our Bayesian network. The
most obvious of these is in establishing a sub-/ super-class relationship between
two variables. For example, imagine a dataset which recorded both whether
someone had had breast cancer and if they had had each individual subtype
of breast cancer (and also included those without breast cancer). Such a net-
work would contain several nodes, but in each case, if any subtype of cancer
was positive, then the ‘has cancer’ variable would also be positive. Such pat-
terns of conditional dependence may be complex—in our example, there would
be several different nodes linking to the ‘has cancer’ node, but in general are in-
dicative of the presence of a sub-/super-class relationship (where the dependent
variable is the superclass). We may take this idea further by suggesting that if
there are certain combinations of variables that (together) are highly predictive
of another variable, we might regard those individuals as acting as a ‘definition’
of the outcome variable. For example, consider a dataset which records whether
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individuals (of different species) are human or not, whether they are women or
men, and if they have XX or XY chromosomes. Now, those individuals with XX
chromosomes are of course women, and so all individuals who are human and
have XX chromosomes will also be women. From this, we might deduce that in
fact, the two are equivalent, and thus being human and having XX chromosomes
is the same as being a woman. This approach is, to say the least, prone to error,
but provides a way to start learning such definitions from data, something that
currently has to be done by hand.

In an ideal world, we would expect these relationships to be absolute, but
in reality, we should allow for there being some ‘noise’ in the data, and may
well be willing to accept a near-absolute (say 95% or 98%) as being suggestive
of such a link. However, this is not the same as saying that the ontological
relationship is probabilistic, as some authors do. Instead, it is based upon a
supposition that the ontological relationship is absolute, but that the data may
imperfectly reflect this. Interestingly, however, we seem to rarely see this sort
of relationship in our networks. The reason for this is that the resolution of
ontological relationships is one of the things that we tend to do at either the data
collection or pre-processing stage. For example, as a part of our pre-processing
of the data we combined the Oestrogen and Progesterone receptor status into
a new variable, Hormone Receptor status, where the class of Oestrogen and
Progesterone receptors are subclasses of Hormone Receptors. However, this is
not to say that such relationships will never be important. One of the aims of
the semantic web, and science on the semantic web, is to enable large amounts of
data to be shared; such sharing will necessitate automatic handling of data (as
manual processing of larger and larger databases becomes harder and harder),
and tools for the handling of data may be able to use such strong probabilistic
relationships to highlight potential ontological issues to the user.

6.20 Causal Relationships

Concepts of Causation in Complex Systems

Since each patient’s cells evolve through an independent set of mutations and
selective environments, the resulting population of cancer cells in each patient is
likely to be unique in terms of the sum total of the mutational changes they have
undergone. Inter-personal variability has given rise to the new field of ‘pharma-
cogenomics’ (in cancer and other diseases) which has as its ultimate aim diag-
nostic and prognostic prediction, and design of individualised treatments based
on patient-specific molecular characteristics. Given the prevailing high degree of
uncertainty in the face of biological complexity, pharmacogenomics offers great
promise, but is also ‘high risk’. Risk has, for example, been highlighted by re-
cent findings of the nonreproducibility of classification based on gene expression
profiling (expression microarrays, transcriptomics).*” In this situation, diagnosis
and prognosis based on biomarkers or profiles of multiple molecular indicators

49 See, for example, Michielsa et al. (2005).
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may lead to mis-classification, and may identify patients as likely non-responders
to a given treatment when in fact they would derive benefit or, conversely, may
falsely predict efficacy in patients for whom none can be achieved. One may
argue that this uncertainty, at least in part, is compounded by prevailing no-
tions of biological causality which is still preoccupied with the search for single
(or a small number of) physical causes, and a failure to take into account the
characteristics of complex systems.

Different views on the nature of causality lead to different suggestions for
discovering causal relationships.’® Medicine has been, due to its very nature,
particularly focused on an agency-oriented account of causality which seeks to
analyse causal relations in terms of the ability of agents (doctors, health pro-
fessionals and scientists) to achieve goals (cures, amelioration of symptoms) by
manipulating their causes. According to this conception of causality, C' causes
E if and only if bringing about C' would be an effective way of bringing about
E. Or conversely, for example, in the context of therapeutic intervention, C' is
seen as a cause of F if by inhibiting C' one can stop E from happening. In this
intervention-oriented stance, the agent would also seek to ground this view of
causality in a mechanistic account of physical processes, as, for example, in the
mechanistic mode of action of a drug. In diagnostic and prognostic prediction
from patient data, a causal framework is also implied; here, causation may be
conceptualised as agency-based, mechanistic or in terms of a probabilistic re-
lationship between variables. However, the extensive literature on the subject
reveals a number of problems associated with all three approaches.®!

An alternative view of causality, termed epistemic causality by Williamson
(2005a), overcomes the strict compartmentalisation of current theories of cau-
sation, and focuses on causal beliefs and the role that all of these indicators
(mechanistic, probabilistic, agency-based) have in forming them. It takes causal-
ity as an objective notion yet primarily a mental construct, and offers a formal
account of how we ought to determine causal beliefs.?> This approach will be
applied to glean causal hypotheses from an obnet, as outlined below.

We are faced with a profound challenge regarding causation in complex bio-
logical systems. In her discussion of developmental systems and evolution, Susan
Oyama observes ‘what a cause causes is contingent and is thus itself caused’.®3
The influence of a gene, or a genetic mutation, depends on the context, such as
availability of other molecular agents and the state of the biological system, in-
cluding the rest of the genome. Oyama argues for a view of causality which gives
weight to all operative influences, since no single influence is sufficient for a bio-
logical phenomenon or for any of its properties. Variation in any one influence,
or many of them, may or may not bring about variation in the result, depending
on the configuration of the whole. The mutual dependence of (physical) causes
leads to a situation where an entire ensemble of factors contribute to any given

50 (Williamson, 2007a).

51 (Williamson, 2005a; Williamson, 2007a, and references therein).
52 (Williamson, 2007a).

58 (Oyama, 2000, pp. 17-18 and references therein).
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phenomenon, and the effect of any one factor depends both on its own proper-
ties and on those of the others, often in complex combinations. This gives rise
to the concept of organised causal networks and is a central insight of systems
thinking. The biological relevance of any factor, and therefore the information
it conveys, is jointly determined, typically in a statistically interactive fashion,
by that factor and the entire system’s state.?*

Whilst ‘systems thinking’ is likely to be fundamental for biomedicine and for
cancer, in particular, due to its overwhelming complexity, we still lack a princi-
pled methodology for addressing these questions. Methodology development is
a pressing need, and it is with this major objective in mind that our research
is undertaken. The work presented here combines a multidisciplinary framework
of biological systems theory and objective Bayesian network modelling; our next
step will be to integrate epistemic causality into this framework.

Here, it may be helpful, or even necessary, to draw a distinction between
fundamental science and applied biomedical research. In systems biology, the
ultimate goal may be to gain a complete mechanistic explanation of the system
complexity underlying causal networks. The achievement of this aim still lies in
the, possibly far distant, future. In contrast, in biomedical research and clinical
practice, we tend to be more immediately interested in discovering molecular
predictors for diagnostic and prognostic purposes, and in developing effective
strategies for intervention in malfunctioning body systems and disease processes.

Perhaps surprisingly, an applied focus of this kind may work in our favour
vis-a-vis biological complexity, as progress is not as severely constrained by a
requirement for an exhaustive mechanistic elucidation of the complete system.
In this chapter we sketch a discovery strategy which is based on the epistemic
view of causality (see below and §6.16). The strategy integrates probabilistic
dependency networks (Bayesian networks) with expert knowledge of biological
mechanisms, where available, to hypothesise causal networks inherent in the sys-
tem. This approach enables one to predict probabilistic biomarker profiles and
targets for intervention based on the identified dependencies between system
components. Interventions may then be tested by computational modelling and
experimental validation which may be seen as foregrounding ‘agency-based’ cau-
sation. This is a pragmatic strategy which can yield insights into system function
which are attainable now and are valuable from a biomedical point of view.

Gleaning Causal Relationships from an Obnet

The epistemic theory of causality maintains the following.?® Just as, under the
objective Bayesian account, an agent’s rational degrees of belief should take the
form of a probability function objectively determined by her evidence, so too
her rational causal beliefs, represented by a directed acyclic graph (dag), are
objectively determined by her evidence. An agent should adopt, as her causal
belief graph, the most non-committal graph (i.e., the dag with fewest arrows)
that satisfies constraints imposed by her evidence.

' (Oyama, 2000, p. 38).
5 (Williamson, 2005a, Chapter 9).
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Now, evidence imposes constraints in several ways. (i) The agent may already
know of causal connections, in which case her causal graph should contain the
corresponding arrows. (ii) She may know that A only occurs after B, in which
case her causal graph should not contain an arrow from A to B. (iii) Or a causal
connection from A to B may be incompatible with her scientific knowledge inas-
much as her scientific knowledge implies that there is no physical mechanism
from A to B and hence no possible physical explanation of B that involves A;
then there should be no arrow from A to B in her causal belief graph. (iv) Or
there may be a strategic dependence from A to B (i.e., A and B may be prob-
abilistically dependent when intervening to fix A and controlling for B’s other
causes) for which the agent has no explanation in her background knowledge;
she should then have an arrow from A to B in her causal graph to explain the
dependence, as long as other knowledge does not rule out such an arrow.

One can determine the agent’s causal belief graph by running through all
dags and taking a minimal graph that satisfies the constraints (i-iv) imposed by
background knowledge; but such a method is clearly computationally intractable.
Two other, more feasible methods are worth investigating. The agent’s causal
belief graph can be approximated by a minimal dag that satisfies the Markov
condition and constraints of type (i-ii); standard Bayesian net software can
be used to construct such a graph. Or one can generate an approximation to
the causal belief graph by constructing a graph that satisfies constraints (i-iii)
and incrementally adding further arrows (also satisfying these constraints) that
correspond to strategic dependences in the obnet. These extra arrows are causal
hypotheses generated by the objective Bayesian net.

6.21 Object-Oriented, Recursive and Dynamic Obnets

Another avenue for future research concerns extensions of the objective Bayesian
net framework to cope with object orientation, recursion and temporal change.

Object-oriented and dynamic Bayesian networks possess certain advantages
for the modelling of complex biological systems. For example, Dawid, Mortera
and Vicard have applied OOBNSs to the domain of genetics and complex forensic
DNA profiling® and Bangsg and Olesen showed how OOBNSs can be adapted to
dynamically model processes over time, such as glucose metabolism in humans.®”

Object-oriented Bayesian networks (OOBNSs) allow one to represent complex
probabilistic models.?® Objects can be modelled as composed of lower-level ob-
jects, and an OOBN can have nodes that are themselves instances of other
networks, in addition to regular nodes. In an OOBN;, the internal parts of an
object can be encapsulated within the object. Probabilistically, this implies that
the encapsulated attributes are d-separated from the rest of the network by the
object’s inputs and outputs. This separation property can be utilised to locally

56 (Dawid et al., 2007).
57 (Bangsgand Olesen, 2003).
58 (Koller and Pfeffer, 1997; Laskey and Mahoney, 1997).
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constrain probabilistic computation within objects, with only limited interaction
between them.

By representing a hierarchy of inter-related objects, an OOBN makes organ-
isational structure explicit. OOBN ‘is-a’ and ‘part-of’ hierarchical structuring
mirrors the organisation of ontologies in the biomedical knowledge domain (see
§6.19), and ontologies can therefore be used as background knowledge to struc-
ture an OOBN.

Recursive Bayesian networks offer a means of modelling a different kind of
hierarchical structure—the case in which variables may themselves take Bayesian
networks as values.” This extra structure is required, for instance, to cope with
situations in which causal relationships themselves act as causes and effects. This
is often the case with policy decisions: e.g., the fact that smoking causes cancer
causes governments to restrict tobacco advertising.

The timing of observations (e.g., symptoms, measurements, tests, events)
plays a major role in diagnosis, prognosis and prediction. Temporal modelling
can be performed by a formalism called Temporal Bayesian Network of Events
(TBNE).% In a TBNE each node represents an event or state change of a vari-
able, and an arc corresponds to a causal-temporal relationship. A temporal node
represents the time that a variable changes state, including an option of no-
change. The temporal intervals can differ in number and size for each temporal
node, so this allows multiple granularity. The formalism of dynamic Bayesian
nets can also be applied.®!

OOBN properties allow one to exploit the modular organisation of biological
systems for the generation of complex models. To our knowledge, OOBNs have
not been applied to systems-oriented cancer modelling. We aim to assess the
usefulness of OOBN methods for multi-scale models of cancer systems, especially
to represent variables associated with heterogeneity in tumours. Our research
will also evaluate the uses of the TBNE formalism and dynamic Bayesian nets
for temporal models of karyotype evolution (§§6.2, 6.3) and evolving therapeutic
systems (patient/tumour-therapy-response).

In sum, then, there are a variety of situations which call for a richer formalism.
Since an obnet is a Bayesian net, one can enrich an obnet using all the techniques
available for enriching Bayesian nets: one can render an obnet object-oriented,
recursive or dynamic. The details of these extensions are questions for further
work.

6.22 Conclusion

In this chapter we have presented a scheme for systems modelling and prognosis
in breast cancer. A multiplicity of knowledge sources can be integrated by form-
ing the objective Bayesian net generated by this evidence. This obnet represents
the probabilistic beliefs that should adopted by an agent with that evidence;

59 (Williamson and Gabbay, 2005).
50 (Arroyo-Figueroa and Sucar, 2005).
61 (Neapolitan, 2003).
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Table 6.9. The interplay between evidence and belief

Evidence — Belief
Clinical data Probabilistic (obnet)
Genomic data Argumentative

Published studies Ontological
Argumentation systems Causal

Medical ontologies
Causal knowledge
Biological theory

it can be used to assist prognosis of cancer patients. The obnet together with
evidence can, in turn, be used to generate sets of argumentative, ontological and
causal beliefs. These are just hypotheses and require testing; more data must be
collected to confirm or disconfirm these hypotheses. These new data increase the
base of evidence and consequently new beliefs (probabilistic, causal and so on)
must be formulated. We thus have a dialectical back-and-forth between evidence
and belief, as depicted in Table 6.9.

This iterative approach to knowledge discovery facilitates novel insights and
hypotheses regarding the organisation and dynamic functioning of complex bio-
logical systems, and can lead to fruitful discovery from limited data. Objective
Bayesian nets thus provide a principled and practical way of integrating domain
knowledge, and of using it for inference and discovery.
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