Cheating at coin tossing

Eric Raidl, IHPST Paris, University of Konstanz

Kent workshop, Paris, 9-10 June 2011

Randomness vs. determinism

Is coin tossing

- random? (definit probability?)
- ▶ or deterministic? (control?)
- ▶ Is this an exclusion?

Outline

Arguments for

- ▶ A "fair" coin has probability 1/2.
- ► There is no physical probability attached to the coin, we can cheat on each toss (by sufficient control).

My aim:

- The coin toss is fine-grained deterministic, but coarsgrained random.
- ▶ This explains why certain coin tossings allow to cheat (control is fine-grained), certain won't (control is coars-grained).
- Apparent randomness depends on two parameters: the uncertainty in control and the quasi-chaotic dynamics of the coin.

Deterministic vs. Random

A system $(\Gamma, (\phi_t)_{t \in \mathbb{R}})$ is **deterministic**, if $\phi_t : \Gamma \to \Gamma$ is a function.

A system $\phi_{(t)}: \Gamma \to \Theta$, with Θ partitionned into two possible outcomes $\{A, \neg A\}$ is **fine grained deterministic**, if there exists a function

$$\chi_A:\Gamma \to \{0,1\}$$

A system $\phi_{(t)}: \Gamma \to \Theta$ is ϵ -coarse grained random, if there exists $\epsilon > 0$ such that for every $p \in \Gamma$ and every open ball $B_{\delta}(p)$ $(\delta \geq \epsilon)$, A has a non trivial probability in that ball, i.e.

$$P_{\delta,p}(A) := P(A|B_{\delta}(p)) \notin \{0,1\}$$

Keller coin

The Keller coin is fine grained deterministic

A coin, tossed with initial velocity v_0 at hight z_0 , will, at t, be at hight

$$z(t) = z_0 + v_0 t - (g/2)t^2$$

Elapsed time until return to z_0 :

$$t^* = 2v_0/g$$

Flips per second

$$n_0 = \omega_0/\pi$$
, ω_0 angular velocity

Number of Flips

$$n = n_0 t^* = \frac{\omega_0}{\pi} \frac{2v_0}{g}$$

Coin lands

same side up if $0 \le n \le 1 \mod 2$ other side up if $1 \le n \le 2 \mod 2$

But also coars-grained random

Hyperbolas defined by j = xy, $j \in \mathbb{N}$

For physical probability

Assume a density on the (x, y) space. If it is approximately constant within a distance corresponding to two ribbons then

$$P(H) \approx P(T) \approx \frac{1}{2}$$

However, this becomes less true the smaller the control-ball.

Cheating at the coin

cf. Diaconis (2007).

Control $\psi \leq \pi/4$, to cheat.

Figure: Coin with $\psi = \frac{\pi}{2}$, $\psi = \frac{5}{16}\pi$, $\psi = \frac{26}{100}\pi$.

Hyperbolas defined by

$$xy = \left\{ \begin{array}{ll} j & \text{if} & j = 2n \\ j + \frac{2}{\pi} \sin^- \cot^2 \psi & \text{else} \end{array} \right.$$

with
$$y = \frac{2v_0}{g}$$
, $x = \frac{\omega_M}{\pi}$.

Diaconis (2007)

$$P_{\psi} = \left\{ egin{array}{ll} rac{1}{2} + rac{\sin^-\cot^2\psi}{\pi} & ext{if} & rac{\pi}{4} \leq \psi \leq rac{3\pi}{4} \ rac{1}{2} & ext{else} \end{array}
ight.$$

Against physical probability

There is no physical probability of the coin (cf. Jaynes 2003). Everything depends on controling the tossing.

- Are there systems where, tossing control might not be enough to cheat?
- ► This has to do with the shape of the bassins of attractions which has to do with the sensitivity of the mechanism.

Bouncing (after free fall) with precession

 ω_{ξ} rotation around parallel to x axis.

Strzalko (2008)

Figure: (a) Keller coin (b) bouncing coin with successive enlargements (c, d) (no air resistance)

... without Precession

Vulovic, Prange (1986)

Figure: Keller coin and (a) bouncing coin with successive enlargements (b,c). $E=0.51\omega^2$.

Probability of error

The probability of error

$$f(\epsilon) = \frac{\mu(\Sigma_{\epsilon})}{\mu(S)}$$

can be interpreted as a measure of how probable it is that cheating fails (given the error ϵ in control).

If Σ is **non fractal** then

$$f(\epsilon) \sim \epsilon$$

If Σ is **fractal** then

$$f(\epsilon) \sim \epsilon^{\alpha}$$

$$\lim_{\epsilon} \frac{\ln f(\epsilon)}{\ln \epsilon} = \alpha$$

$$\alpha = N - D_0, \quad \alpha < 1$$

Eg. $\alpha = 0.1$ To reduce $f(\epsilon)$ by a factor 10 we need to reduce ϵ by a factor 10^{10} . Improvent in prediction by improving accuracy in IC becomes harder as $\alpha \to 0$.

Variation of f_{ϵ}

 f_{ϵ} might vary in phase space (with location p)

$$f_{\epsilon}(p) = \frac{\mu(\Sigma_{\epsilon}(p))}{\mu(B_{\epsilon}(p))}$$

Although Σ is not fractal, $\Sigma_{\epsilon}(p)$ can "appraoch fractality" as $p \to \infty$.

Then

$$f_{\epsilon}(p) \sim \epsilon^{\alpha}$$

for $p \to \infty$.

Conclusion

If a system is fine-grained deterministic and coarse grained random, then

- ► The probability of error depends not only on our general ability to control, but also on the regions of (high/low) sensitivity of the system.
- ▶ One may argue for a certain definit probability of an outcome in a system, if across different regions the probability of error is high and the color pattern is sufficiently regular.

- Diaconis, P.; Holmes, S.; Montgomery, R. (2007): "Dynamical Bias in the Coin Toss". in *SIAM Review*, Vol. 49, No. 2, 211 235.
- Jaynes, E. (2003): *Probability Theory: The Logic Of Science*, Cambridge: Cambridge University Press.
- Keller J. B: "The Probability of Heads", *The American Mathematical Monthly*, Vol. 93, No. 3, (Mar., 1986), 191-197.
- Ott, E. (1993): Chaos in dynamical systems, Cambridge Univ. Press.
- Strevens, M.: Patterns of chance, [forthcoming]
- Strzalko, J. et all (2008): "Dynamics of coin tossing is predictable", *Physics Reports* 469, 59-92
- Vulovic, V.Z.; Prange R. E (1986). "Randomness of a true coin toss", *Phys. Review Am. phys. Soc.*, (1) 33, 576-582.