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Abstract

Accuracy arguments are the en vogue route in epistemic justifications of prob-
abilism and further norms governing rational belief. These arguments often
depend on the fact that the employed inaccuracy measure is strictly proper.
I argue controversially that it is ill-advised to assume that the employed
inaccuracy measures are strictly proper and that strictly proper statistical
scoring rules are a more natural class of measures of inaccuracy. Building on
work in belief elicitation I show how strictly proper statistical scoring rules
can be used to give an epistemic justification of probabilism.

An agent’s evidence does not play any role in these justifications of prob-
abilism. Principles demanding the maximisation of a generalised entropy
depend on the agent’s evidence. In the second part of the paper I show how
to simultaneously justify probabilism and such a principle. I also investigate
scoring rules which have traditionally been linked with entropies.
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Introduction and Notation1

1. Introduction2

All Bayesians agree on one basic norm governing strength of rational3

belief4

Probabilism: Any rational agent’s subjective belief function5

ought to satisfy the axioms of probability and every probability6

function is, in principle, permissible. Prob7

The question arises as to how to justify this norm. Traditionally, axiomatic8

justifications [6, 41], justifications on logical grounds [22] and Dutch Book9

Arguments [12, 50] were given to this end. Dutch Book Arguments have10

been widely regarded as the most persuasive justification, however, they have11

recently begun losing some of their once widespread appeal [21].112

Recent epistemic justifications of probabilism are accuracy-based argu-13

ments [24, 25, 30, 31, 49], which all build on [11]. The latter three arguments14

employ Inaccuracy Measures (IMs) which are assumed to be strictly proper.15

These IMs are closely related to the notion of a Scoring Rule (SR) which16

the statistical community has a long tradition of studying, see [10] in the17

Encyclopedia of Statistics.18

In the first part of this paper, we argue that statistical SRs, properly19

understood, are better suited than IMs to justify Prob. The argument will20

be along the following lines: the most convincing justifications of Prob relying21

on IMs require these IMs to be strictly proper (Section 4.1). However, for22

the purposes of justifying Prob, assuming that an IM is strictly proper is ill-23

advised (Section 4.3). On the contrary, assuming that a SR is strictly proper24

is not only defensible but a desideratum (Section 3.2).25

In Theorem 5.6 we show how strictly proper IMs give rise to strictly26

proper SRs in a canonical way. We demonstrate in Theorem 6.2 how the27

class of so-constructed SRs can be used to justify Prob.28

1We are joining the debate concerning rational belief formation assuming that degrees
of beliefs are best represented by real numbers in the unit interval [0, 1] ⊂ R. Anyone who
rejects this premise will have to carefully assess whether the here presented account has
implications on her line of thinking. Some of our results also hold true for degrees of belief
represented by arbitrary positive real numbers.
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The justifications in the first part of this paper do not take the agent’s29

evidence into account. In all realistic cases rational agents do possess some30

evidence and this evidence ought to influence their degrees of belief, in some31

way. Maximum (generalised) entropy principles require an agent to adopt the32

probability function which maximises (a generalised) entropy among those33

probability functions which satisfy constraints imposed by her evidence.34

In the second part of this paper we show how to simultaneously justify35

Prob and a such principle (Theorem 7.1 and Theorem 7.2). The usual argu-36

ment here consists of a two-stage justification – first one justifies Prob and37

then one justifies the entropy principle – and a story explaining why and how38

the justification of Prob trumps that of the entropy principle. The advantage39

of the simultaneous justification given here is that no such story needs to be40

told.41

Taken together, Prob and such a principle entail the Principle of Indiffer-42

ence (PoI) in a large number of cases (Theorem 7.5, Corollary 7.6).43

The logarithmic SR is well-known to be the only local SR which is strictly44

proper when applied to belief functions which are probability functions. Fur-45

thermore, this SR is at the heart of the maximum entropy principle. Since46

we here do not presuppose Prob, we investigate notions of locality applied47

to SRs for general belief functions (Section 8 and Section 9). We prove a48

non-existence result for such SRs in Theorem 8.4. Furthermore, we investi-49

gate how to weaken our assumptions to obtain strictly proper statistical SRs50

which are local in some sense, see Proposition 9.1 and Proposition 9.2.51

2. The Formal Framework52

Throughout, we work with a fixed, non-empty and finite set Ω, which is53

interpreted as the set possible worlds or elementary events. The power set54

of Ω, PΩ, is the set of events or the set of propositions. We shall assume55

throughout that |Ω| ≥ 2 and for X ⊆ Ω let X̄ := Ω \X.56

The set of probability functions P is the set of functions P : PΩ→ [0, 1]57

such that
∑

ω∈Ω P ({ω}) = 1 and whenever X ⊆ Ω is such that X = Y ∪ Z58

with Y ∩Z = ∅, then P (X) = P (Y )+P (Z). We shall use P (ω) as shorthand59

for P ({ω}).60

Note that for all probability functions P ∈ P we have that P (X)+P (X̄) =61

1 and hence 2
∑

X⊆Ω P (X) =
∑

X⊆Ω P (X) + P (X̄) = |PΩ|.62

The set of belief functions is the set of functions Bel : PΩ → [0, 1] and63

shall be denoted by B. Throughout, we assume that all belief and probability64
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functions are total, i.e. defined on every X ⊆ Ω. Trivially, since |Ω| ≥ 2 we65

have P ⊂ B, where ⊂ denotes strict inclusion. Of particular interest are66

the functions vω ∈ P for ω ∈ Ω. A vω is the at a world ω ∈ Ω vindicated67

credence function. A vω can also be thought of as the indicator function of68

the elementary event ω ∈ Ω. The vω are defined as follows:69

vω(X) :=

{
0 if X is false at ω

1 if X is true at ω .

By “X is true at ω” we mean that ω ∈ X; on the contrary, “X is false at70

ω”, if and only if ω /∈ X.71

In this paper we will stay within the classical framework of decision mak-72

ing developed in [53]. So, we assume act-state independence2, we also only73

consider propositions which do not refer to themselves nor to their chances.74

Such propositions are well-known to cause problems for the classical decision75

making framework. Unsurprisingly, accuracy arguments based on the clas-76

sical decision making framework are also troubled by such propositions, see77

[5, 18]. Decision making frameworks for accuracy arguments which can deal78

with such propositions are explored in [27].79

Part 180

3. The Statistical Approach81

3.1. Scoring Rules, Applications and Interpretations82

Central to SRs and IMs is a measure function measuring the goodness or83

badness, in some sense, of a belief function Bel. In the statistical community84

this function is interpreted pragmatically as a loss incurred in a betting85

scenario, whereas the epistemic tradition interprets the goodness measure as86

a measure of (in)accuracy.87

SRs have mainly been used to elicit beliefs or to assess forecasts. For88

belief elicitation it is widely assumed that the agent’s belief function Bel∗89

2In our context this means that neither the truth value nor the objective probability
of a proposition X ⊆ Ω depends on the agent’s belief function Bel.
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is a probability function, i.e., Bel∗ ∈ P. Similarly, forecasted events are90

normally assumed to be ruled by an objective probability function P ∗, often91

taken to be the distribution of one (or several) random variable(s). In both92

applications, there exists a canonical probability function P ∈ P (either Bel∗93

or P ∗) which can be used to aggregate losses incurred in different elementary94

events.95

Formally, L is a loss function L : Ω×P→ [0,+∞] and is referred to as a96

SR. For a guide to the voluminous literature to SRs refer to [17]. Expected97

loss is computed in the usual way98

SL : P× P→ [0,+∞], SL(P,Bel) :=
∑
ω∈Ω

P (ω) · L(ω,Bel) . (1)

Statisticians consider degrees of belief which satisfy Prob. Their notion99

of loss is thus only defined for probabilistic belief functions. For Bel ∈ P we100

have that Bel is completely determined by {Bel(ω) |ω ∈ Ω}. In this case101

we can regard L(ω,Bel) as only depending on the first argument, ω, and102

{Bel(ω) |ω ∈ Ω}.103

We shall here be interested in justifying Prob. We thus consider a more104

general loss function L that also depends on degrees of belief in all non-105

elementary events X ⊆ Ω. We thus consider a loss function L : Ω × B →106

[0,+∞] and define expected loss by107

SL : P× B→ [0,+∞], SL(P,Bel) :=
∑
ω∈Ω

P (ω) · L(ω,Bel) . (2)

In general, such a loss function L : Ω × B → [0,+∞] is not determined by108

the first argument, ω, and {Bel(ω) |ω ∈ Ω}. Rather, L(ω,Bel) depends on109

the elementary event ω and {Bel(X) |X ⊆ Ω}. So, although (1) and (2)110

appear at first glance to be the same expressions, they do differ in important111

aspects.112

We shall tacitly assume that L(ω,Bel) in (1) and (2) may also depend113

on Ω throughout. That is, L may explicitly refer to the elementary events114

ν ∈ Ω \ {ω} or the the events X ⊆ Ω which contain ω. An example of the115

former kind of dependence can be found in (3) and of the latter kind in (14).116

For ease of reading, we shall use the term statistical SR to refer to SL(·, ·)117

as in (2), rather than the long-winded “expectation of a SR L : Ω × B →118
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[0,+∞]”.119

The most famous SR is the Brier Score [3]:120

Definition 3.1. The Brier Score SBrier takes the following form:3121

SBrier(P,Bel) : =
∑
ω∈Ω

P (ω) ·
(∑
µ∈Ω

(vω(µ)−Bel(µ))2
)

(3)

=
∑
ω∈Ω

P (ω)·
(

(1−Bel(ω))2 +
∑

µ∈Ω\{ω}

Bel(µ)2
)

(4)

=
∑
ω∈Ω

P (ω)·
(

1− 2Bel(ω) +
∑
µ∈Ω

Bel(µ)2
)

(5)

= 1 +
∑
µ∈Ω

Bel(µ)2 −
∑
ω∈Ω

P (ω) · 2Bel(ω). (6)

See [57] for an axiomatic characterization of SBrier.122

3.2. Strict Propriety for statistical Scoring Rules123

We now turn to the key property:124

Definition 3.2 (Strict X-propriety). For any set of belief functions P ⊆ X ⊆125

B, a statistical SR SL is strictly X-proper4, if and only if for all P ∈ P126

arg inf
Bel∈X

SL(P,Bel) = {P} . (7)

In plain English, strictly X-proper statistical SRs track probabilities,127

whatever these probabilities are.128

3The original definition in [3] does not contain the formal expectation operator∑
ω∈Ω P (ω)·. Rather, Brier envisioned a series of n forecasts which would all be scored

by
∑

ω∈Ω(Beli(ω)−Ei,ω)2 where Beli(ω) notates the i-th forecast in ω and Ei,ω denotes
indicator function for ω on the i-th occasion. The final score is then computed by dividing
this sum by n. In essence, this amounts to taking expectations.

4Our notion of strict X-propriety notably differs from Γ-strictness, see [20]. A SR is
Γ-strict, if and only if for all P ∈ Γ ⊆ P it holds that arg infBel∈P SL(P,Bel) = {P};
Γ-strictness is thus a weakening of strict P-propriety. Strict B-propriety is a strengthening
of strict P-propriety. Γ ⊆ P constraints the set of probability functions according to which
expectations are computed, X is a set of belief functions containing P.
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Recall from when we introduced statistical SRs that losses are usually129

interpreted pragmatically as losses in a betting scenario. For our purposes130

we will interpret the function SL as a measure of inaccuracy. The intended131

interpretation is that SL(P,Bel) scores the inaccuracy of Bel with respect to132

the probability function P . By convention, score is an inaccuracy measure,133

a low score thus means low inaccuracy.134

Now consider a function P ∈ P and a statistical SR SL(P,Bel). If135

SL(P,Bel) is strictly B-proper, then Bel = P is the unique belief func-136

tion for which SL(P, ·) is minimal. So, Bel = P is the unique function137

which minimises inaccuracy. On the other hand, if SL(P,Bel) is not strictly138

B-proper, then there exists a P ∈ P and a Bel′ ∈ B \ {P} with Bel′ ∈139

arg infBel∈B SL(P,Bel). Arguably, then140

The class of strictly B-proper statistical SRs is the class of inac-141

curacy measures in the class of statistical SRs.142

Plausibly, one might want to demand further desiderata (such as continuity143

of L) an inaccuracy measure ought to satisfy. However, it is not clear which144

other desideratum stands out in the class of further desiderata. Moreover, our145

approach covers the entire class of strictly B-proper statistical SRs. We will146

henceforth take it that the class of statistical SRs which measure inaccuracy147

is the class of strictly B-proper statistical SRs.148

While SBrier is well-known to be strictly P-proper it is not strictly B-149

proper since it does not depend at all on beliefs in non-elementary events150

and general belief functions Bel ∈ B are not determined by their values on151

elementary events. Thus, SBrier cannot be the SR of choice for rational belief152

formation approaches that do not presuppose Prob.153

To the best of our knowledge, strictly B-proper SRs have, surprisingly, not154

been studied in the literature. So far, only strictly P-proper SRs and strictly155

proper IMs (see Definition 4.2) have been investigated. In [29], Landes &156

Williamson use “strictly B-proper SR” to refer to a function which computes157

expected losses of normalised belief functions. Their notion and our notion158

are thus not the same.159

4. The Epistemic Approach160

4.1. Ingredients161

To highlight that we are now working within the epistemic framework we162

refer to the ω ∈ Ω as possible worlds, Ω is now called the set of possible worlds163
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and the X ⊆ Ω are referred to as propositions. This change in terminology164

is, of course, purely cosmetic.165

In recent epistemic approaches, the basic unit of inaccuracy is the inac-166

curacy of Bel(X) at a world ω ∈ Ω, where proposition X is either true or167

false at ω. Formally, the inaccuracy is represented by an inaccuracy function168

I(X, vω(X), Bel(X)). Since there may be reasons to treat different proposi-169

tions X ⊆ Ω differently, the inaccuracy of Bel(X) at world ω may depend170

on the proposition X ⊆ Ω. For example, different (additive or multiplica-171

tive) weights may be attached to different propositions. The basic inaccuracy172

units, I(X, vω(X), Bel(X)), are then aggregated to an overall IM IMI which173

measures the inaccuracy of Bel ∈ B with respect to a world ω ∈ Ω.174

Definition 4.1 (Inaccuracy Measure). Let I be a function I : PΩ×{0, 1}×175

[0, 1]→ [0,∞]. An IM IMI is a map IMI : Ω× B→ [0,∞] such that176

IMI(ω,Bel) :=
∑
X⊆Ω

I(X, vω(X), Bel(X)) . (8)

So, for a given world ω and a given belief function Bel, IMI sums the177

inaccuracies over all propositions X ⊆ Ω of all beliefs Bel(X) with respect to178

ω (or, depending on one’s point of view, with respect to the at ω vindicated179

credence function vω).180

It is natural to think of I as some measure of distance between vω(X) and181

Bel(X). For example, measuring inaccuracy in Euclidean terms one could182

consider183

I(X, vω(X), Bel(X)) =(1−Bel(X))2, if ω /∈ X
I(X, vω(X), Bel(X)) =Bel(X)2, if ω /∈ X .

Such an IM will formally be introduced in Definition 4.4.184

The terminology in the literature has not yet converged. The function I185

has been called an (local) “inaccuracy measure” in [30, 43], whereas Predd186

et al. call I a SR and refer to IMI as a “penalty function”, while Joyce calls187

it a “component function” in [25]. Groves (private communications) refers188

to I as “proposition-specific inaccuracy measure” which is more to the point189

but quite a mouthful.190

In principle, it would be desirable to measure inaccuracy by some function191
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f : Ω×B→ [0,+∞] (possibly satisfying further conditions) without assuming192

that f can be written as a sum over the X ⊆ Ω. For further discussion on193

this point see [30, Section 5.2.1]. For the purposes of this paper we shall be194

interested in the set-up of Definition 4.1.195

Conceptually, statistical SRs and IMs formalise notions of inaccuracy.196

While they share a common idea they measure inaccuracy differently. Statis-197

tical SRs measure inaccuracy between a belief function Bel and a probability198

function P ∈ P, strictly B-proper statistical SRs track probabilities. Whereas199

IMs measure inaccuracy between a belief function Bel and a possible world200

ω ∈ Ω, strictly proper IMs track the actual world, as we will see shortly. For201

some further discussion see Section 6.1.202

One final difference of note is that SL(P,Bel) is a single real number,203

whereas IMI(ω,Bel) is a tuple of real numbers, one real number for each204

ω ∈ Ω.205

Definition 4.2 (Strict Propriety). An IM IMI is called strictly proper, if206

and only if the following two conditions are satisfied207

• for all p ∈ [0, 1] and all ∅ ⊂ X ⊂ Ω it holds that pI(X, 1, x) + (1 −208

p)I(X, 0, x) is uniquely minimized by x = p209

• I(Ω, 1, x) + I(∅, 0, y) is uniquely minimised by x = 1 and y = 0.210

Intuitively, strict propriety ensures that setting degrees of belief in X211

equal to the probability of X is the only way to minimise expected inaccuracy,212

see further Section 4.3.213

In general, the second condition above is required because P (∅) = 0 and214

P (Ω) = 1 for all P ∈ P and later on we want p to equal the probability of X.215

Some authors do not allow I to depend on X, see for instance [44]. For216

such a loss function the requirement that I(1, x) + I(0, y) is uniquely min-217

imised by x = 1 and y = 0 is simply an instance of the first condition. For218

such an I, the second condition follows from the first.219

If IMI is strictly proper, then for all ω ∈ Ω and all X ⊆ Ω such that220

ω ∈ X it holds that I(X, 1, Bel(X)) + I(X̄, 0, Bel(X̄)) is minimised, if and221

only if Bel(X) = 1 and Bel(X̄) = 0. That is, Bel and vω agree on X and X̄.222

Hence, IMI(ω,Bel) is uniquely minimized by Bel = vω. So, if ω∗ ∈ Ω is the223

actual world, then the strictly least inaccurate belief function is Bel = vω∗ .224

In this sense, strictly proper IMs track the actual world.225

Strict propriety as a desideratum for IMs has been argued for in various226

contexts in which Prob is pre-supposed, see [14, 16, 19, 38]. We shall not227
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advance arguments for strict propriety here; in Section 4.3 we shall argue228

against the use of strictly proper IMs in the current context.229

The following condition strikes us as a sensible property an IM should230

satisfy:231

Definition 4.3. An IM IMI is called continuous, if and only if I is contin-232

uous in Bel(X).233

Continuity is here taken in the usual sense: For all X ⊆ Ω, for all i ∈234

{0, 1} and for all sequences (Beln(X))n∈N converging to Bel(X) ∈ [0, 1] it235

holds that limn→∞ I(X, i, Beln(X)) = I(X, i, Bel(X)), where both sides of236

this equation may be equal to +∞.237

The most popular IM is an epistemic version of the Brier Score SBrier:238

Definition 4.4 (Brier IM). The Brier IM is defined as239

IMBrier(ω,Bel) :=
∑
X⊆Ω

(vω(X)−Bel(X))2 . (9)

In other words: IMBrier(ω,Bel) is the square of the Euclidean distance in240

R|PΩ| between vω and Bel. It is well-known that IMBrier is strictly proper and241

continuous. Recently, quadratic IMs, such as IMBrier, have been advocated242

in [30, 31] on the grounds that they are the only class of measures which keep243

an agent out of certain epistemic dilemmas.244

Compare this measure IMBrier to SBrier (Definition 3.1) and observe that245

IMBrier(ω,Bel) depends on the entire belief function while SBrier(P,Bel)246

only depends on beliefs in elementary events. In Definition 5.2, we will see247

how to associate IMBrier and a statistical SR. For now, we simply observe248

the following structural similarity249

SBrier(vω, Bel) =
∑
µ∈Ω

(vω(µ)−Bel(µ))2

IMBrier(ω,Bel) =
∑
X⊆Ω

(vω(X)−Bel(X))2 .

4.2. Justifications of Probabilism250

In justifications of norms of rational belief formation employing IMs it is251

normally assumed that the agent has no information as to which world is the252
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actual one. How is one then to aggregate inaccuracies IMI(ω,Bel) in differ-253

ent worlds? Surely, one could simply add the inaccuracies up,
∑

ω∈Ω IMI(ω,Bel).254

But why should one not multiply the inaccuracies,
∏

ω∈Ω IMI(ω,Bel), or con-255

sider the sum of the logarithms of the inaccuracies,
∑

ω∈Ω log(IMI(ω,Bel))?256

Apparently, there is no canonical way to aggregate the inaccuracies IMI(ω,Bel)257

for the possible worlds ω ∈ Ω.258

The Decision Theoretic Norm (DTN) which is widely applied in such a259

situation is dominance. Historically, the first justification of Prob applying260

dominance was:261

Theorem 4.5 (De Finetti [11]).262

• For all Bel ∈ B \ P there exists some P ∈ P such that for all ω ∈ Ω263

IMBrier(ω,Bel) > IMBrier(ω, P ).264

• For all Bel ∈ P and all Bel′ ∈ B \ {Bel} there exists an ω ∈ Ω such265

that IMBrier(ω,Bel
′) > IMBrier(ω,Bel).266

De Finetti’s result relies on IMBrier to measure inaccuracy. Plausibly,267

there are other IMs which measure inaccuracy. Recently, the following gen-268

eralisation has been proved in the context of belief elicitation:269

Theorem 4.6 (Predd et al. [49]). If IMI is a continuous and strictly proper270

IM, then:271

• For all Bel ∈ B \ P there exists some P ∈ P such that for all ω ∈ Ω272

IMI(ω,Bel) > IMI(ω, P ).273

• For all Bel ∈ P and all Bel′ ∈ B \ {Bel} there exists an ω ∈ Ω such274

that IMI(ω,Bel
′) > IMI(ω,Bel).275

Predd et al. credit Lindley (see [34]) for a precursor of their result.276

The first parts of these theorems say that every non-probabilistic belief277

function Bel ∈ B \ P is strongly accuracy dominated by some probability278

function and thus impermissible. The second parts mean that every proba-279

bilistic belief function Bel ∈ P is permissible, because no Bel ∈ P is weakly280

accuracy dominated.281

The two other main justifications of Prob along similar lines are due to282

Joyce, see [24] and [25]. Both justifications apply dominance as DTN in the283

same way as de Finetti and Predd et al.284
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The former justification in [24], does not require that a measure of in-285

accuracy f(ω,Bel) can be written as a sum over the propositions X ⊆ Ω.286

In order to prove the theorem Joyce has to assume a number of properties287

f has to satisfy. The assumed symmetry property has been objected to in288

[16, 35], Maher also objected to the convexity property. In his 2009 paper,289

Joyce concedes that the objections raised have merit and that it would be290

best to do without these properties [25, p. 285].291

The latter justification ([25, Theorem 2]) also does not require that the292

measure of inaccuracy f(ω,Bel) can be written as a sum over the propositions293

X ⊆ Ω. It is only assumed that the measure of inaccuracy f satisfies a294

number of conditions one of which is that f has to be finitely-valued.295

We feel that the main draw-back with [25, Theorem 2] is that it only296

applies for every partition of propositions and not to all propositions X ⊆ Ω.297

For further discussions see [61, Section 1].298

4.3. Strict Propriety for Justifications of Probabilism299

We now argue that Theorem 4.6 does not provide a satisfactory justifi-300

cation of Prob for belief formation. The problem lies with the requirement301

that IMI be strictly proper.302

We fully agree with Joyce303

[..] we cannot hope to justify probabilism by assuming that ratio-304

nal agents should maximize the expected accuracy of their opin-305

ions because the concept of an expectation really only makes sense306

for agents whose partial beliefs already obey the laws of proba-307

bility. [24, p. 590]308

Proponents of strictly proper IMs may object that strict propriety guaran-309

tees that it is permissible to hold degrees of belief that agree with known310

probabilities.311

This objection misses the mark in at least two decisive ways.312

Firstly, a function f ought to be considered as a measure of inaccuracy in313

virtue of f measuring inaccuracy and emphatically not solely on the virtue of314

the belief functions it renders permissible given a certain DTN. This objection315

does not make clear why every appropriate measure of inaccuracy IMI has316

to be strictly proper. Intuitively plausible properties such as I(X, 1, x) has a317

unique minimum on [0, 1] for x = 1 or that I(X, 1, x) is a (strictly) decreasing318

function in x ∈ [0, 1] do not feature in this objection.319
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Secondly, as Joyce already pointed out, why would an agent with a non-320

probabilistic belief function Bel∗ ∈ B \ P care for the following expectation321

Bel∗(X)I(X, 1, Bel∗(X)) + (1 − Bel∗(X))I(X, 0, Bel∗(X))? It seems that322

such an agent rather cares for the “expectation” Bel∗(X)I(X, 1, Bel∗(X)) +323

Bel∗(X̄)I(X, 0, Bel∗(X)). Since we are in the business of justifying Prob,324

an agent with degrees of belief Bel∗(X) = 0 for all X ⊆ Ω would not be325

threatened in her beliefs by strict propriety.326

We conclude that assuming strict propriety for our purposes is ill-advised.327

So, Theorem 4.6 does not yield a satisfactory justification of Prob for belief328

formation.329

4.4. Strict Propriety for Belief Elicitation330

In the belief elicitation framework of Predd et al. it is assumed that the331

agent’s belief function Bel∗ is a probability function. Predd et al. [49, p.332

4786] motivate strict propriety by “Our scoring rule thus encourages sincer-333

ity since your interest lies in announcing probabilities that conform to your334

beliefs.” That is, a subjective Bayesian agent avoiding inaccurate beliefs335

has a clear impetus to minimise the expectation Bel∗(X)I(X, 1, Bel′(X)) +336

Bel∗(X̄)I(X, 0, Bel′(X)) by announcing Bel′(X) = Bel∗(X). I hence find337

no fault with the requirement of “strict propriety” for eliciting beliefs from338

subjective Bayesian agents, although I do object to it for the purposes belief339

formation.340

Belief elicitation is at heart an empirical problem, which is often tackled341

by employing questionnaires, by conducting interviews and/or by observa-342

tional studies (of subjects playing [incentive compatible] games). SRs have343

made their way into the applied sciences [39, 65]. See [16, Section 3] for a344

recent philosophical treatment of belief elicitation.345

5. Associating Inaccuracy Measures with Scoring Rules346

5.1. Extended Scoring Rules347

In this section we shall introduce a class of statistical SRs which allow us348

to connect IMs to the here introduced class of statistical SRs. We follow [29]349

and define:350

Definition 5.1 (Extended Scoring Rule). A statistical SR SL : P × B →351

[0,∞] is called extended, if and only if it can be written as352
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SextL (P,Bel) =
∑
ω∈Ω

P (ω) · L(ω,Bel) (10)

=
∑
X⊆Ω

P (X) · L′(X,Bel) (11)

=
∑
ω∈Ω

P (ω) ·
∑
X⊆Ω
ω∈X

L′(X,Bel) , (12)

for some function L′ : PΩ× B→ [0,∞].353

The name extended is somewhat unfortunate. Originally, it was intended354

to capture the fact that the domain of the SR has been extended from P×P355

to P× B and that the sum in (10) is over all events X ⊆ Ω and not merely356

over the elementary events ω ∈ Ω as in (1).357

For our running example, Brier Scores, we give the following extended358

SR:359

Definition 5.2 (Extended Brier Score).

SextBrier(P,Bel) : =
∑
X⊆Ω

P (X) ·
(

(1−Bel(X))2 +Bel(X̄)2
)

(13)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

(1−Bel(X))2 +
∑
Y⊆Ω
ω/∈Y

Bel(Y )2
)

(14)

=
∑
ω∈Ω

P (ω) · IMBrier(ω,Bel) . (15)

Proposition 5.3. SextBrier is strictly B-proper.360

Proof. The idea is to decompose SextBrier(P,Bel) into pairs of summands,361

where each pair is of the form P (X) · ((1 − Bel(X))2 + Bel(X̄)2) + P (X̄) ·362

((1 − Bel(X̄))2 + Bel(X)2). We then show that each such pair is uniquely363

minimised by Bel(X) = P (X) and Bel(X̄) = 1− P (X).364

Consider the following minimization problem for fixed P ∈ P, fixed X ⊆365

Ω and x := Bel(X), y := Bel(X̄)366

minimize P (X) · ((1− x)2 + y2) + (1− P (X)) · ((1− y)2 + x2)
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subject to x, y ∈ [0, 1] .

Note that the objective function of this minimisation problem is equal to367

x2−2xP (X)+P (X)+y2−2y(1−P (X))+(1−P (X)). The unique minimum368

obtains for x = P (X) and y = 1− P (X).369

Hence, Bel = P uniquely minimizes SextBrier(P, ·).370

A version of de Finetti’s Theorem (Theorem 4.5) for SextBrier follows as a371

simple Corollary:372

Corollary 5.4.373

• For all Bel ∈ B \ P there exists some P ∈ P such that for all Q ∈ P374

SextBrier(Q,Bel) > SextBrier(Q,P ).375

• For all Bel ∈ P and all Bel′ ∈ B\{Bel} there exists a P ∈ P such that376

SextBrier(P,Bel
′) > SextBrier(P,Bel).377

Proof. 1) Let Bel ∈ B \P. By Theorem 4.5 there exists a PBel ∈ P such that378

for all ω ∈ Ω it holds that IMBrier(ω,Bel) > IMBrier(ω, PBel). Using (15),379

the fact that Ω is finite and that for all Q ∈ P there exists an ω ∈ Ω with380

Q(ω) > 0 we find that SextBrier(Q,Bel) > SextBrier(Q,PBel).381

2) We saw in Proposition 5.3 that SextBrier is strictly B-proper. Hence,382

SextBrier(Bel, ·) is uniquely minimised by Bel = Bel.383

Note that de Finetti’s Theorem applies dominance with respect to the384

possible worlds ω ∈ Ω while the above corollary applies dominance with385

respect to the probability functions Q ∈ P.386

5.2. The Canonical Association387

In this section we shall see how to canonically associate with every IM an388

extended SR. We shall give two further examples to illustrate the association.389

Definition 5.5 (Canonical Association). For IMI define an associated sta-390

tistical SR SasoI by:391

SasoI (P,Bel) :=
∑
ω∈Ω

P (ω) · IMI(ω,Bel) (16)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

I(X, 1, Bel(X)) +
∑
Y⊆Ω
ω/∈Y

I(Y, 0, Bel(Y ))
)

(17)
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=
∑
X⊆Ω

P (X) · I(X, 1, Bel(X)) + P (X̄) · I(X, 0, Bel(X)) (18)

=
∑
X⊆Ω

P (X) ·
(
I(X, 1, Bel(X)) + I(X̄, 0, Bel(X̄))

)
. (19)

So, letting L′(X,Bel) := I(X, 1, Bel(X)) + I(X̄, 0, Bel(X̄)) we see that392

SasoI is an extended SR.393

For a fixed IM IMI , S
aso
I (P,Bel) is simply the expected inaccuracy of Bel,394

where expectations are computed with respect to the probability function395

P ∈ P.396

Theorem 5.6. IMI is strictly proper, if and only if SasoI is strictly B-proper.397

Proof. If IMI is strictly proper, then for every ∅ ⊂ X ⊂ Ω and all P ∈ P398

P (X) · I(X, 1, Bel(X)) + P (X̄) · I(X, 0, Bel(X))

is uniquely minimised by Bel(X) = P (X).399

Furthermore, I(Ω, 1, Bel(Ω)) + I(∅, 0, Bel(∅)) is uniquely minimised by400

Bel(Ω) = 1 and Bel(∅) = 0. Applying (18) we now find that SasoI (P, ·) is401

uniquely minimised by Bel = P .402

Now, suppose that SasoI is strictly B-proper. Then for all p ∈ [0, 1] and403

all P ∈ P with P (ω) = p and P (ω′) = 1− p for different ω, ω′ ∈ Ω we have404

SasoI (P,Bel) =
∑
X⊆Ω

P (X) · I(X, 1, Bel(X)) + P (X̄) · I(X, 0, Bel(X))

=
∑
U⊆Ω
ω,ω′∈U

1 · I(U, 1, Bel(U)) + 0 · I(U, 0, Bel(U))

+
∑
W⊆Ω
ω,ω′ /∈W

0 · I(W, 1, Bel(W )) + 1 · I(W, 0, Bel(W ))

+
∑
Y⊆Ω

ω∈Y, ω′ /∈Y

p · I(Y, 1, Bel(Y )) + (1− p) · I(Y, 0, Bel(Y ))

+
∑
Z⊆Ω

ω′∈Z, ω/∈Z

(1− p) · I(Z, 1, Bel(Z)) + p · I(Z, 0, Bel(Z)) .
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Now observe that every belief function Bel+ ∈ B minimising SasoI (P, ·) min-405

imises each of the four sums above individually, since every sum only depends406

on degrees of belief no other sum depends on.407

By considering the first two sums for U = Ω and W = ∅ we find that408

I(Ω, 1, Bel+(Ω)) + I(∅, 1, Bel+(∅)) is uniquely minimised by Bel+(Ω) = 1409

and Bel+(∅) = 0.410

Let us now consider the third sum. Note that any given Y ⊆ Ω such that411

ω ∈ Y and ω′ /∈ Y only appears in this sum once (and it does not appear412

in any other sum). Thus, Bel+(Y ) = p = P (Y ) is the unique minimum413

of p · I(Y, 1, ·) + (1 − p) · I(Y, 0, ·). By varying p = P (ω) we obtain that414

Bel+(Y ) = P (ω) is the unique minimum of p · I(Y, 1, ·) + (1 − p) · I(Y, 0, ·)415

for all p ∈ [0, 1] and all Y ⊆ Ω with ω ∈ Y .416

Finally, note that the above arguments do not depend on ω ∈ Ω. We thus417

find for all Y ⊆ Ω that Bel+(Y ) = p is the unique minimum of p · I(Y, 1, ·) +418

(1− p) · I(Y, 0, ·) for all p ∈ [0, 1].419

Thus, IMI is strictly proper.420

From a purely technical point of view, Theorem 5.6 can be most helpful.421

All one needs to do to check whether a SR SasoI is strictly B-proper is to422

check whether the IM IMI is strictly proper. The latter task can be accom-423

plished simply by checking whether simple sums are uniquely minimised by424

Bel(X) = p and Bel(X̄) = 1−p. Checking strict B-propriety requires one to425

solve a minimisation problem in [0, 1]|PΩ|, which is in general a much harder426

problem.427

Furthermore, Theorem 5.6 allows us to easily generate strictly B-proper428

statistical SRs by association. That means that the class of inaccuracy mea-429

sures in our sense is a rich class consisting of a great variety of members.430

We now give two applications of Theorem 5.6 in which we generate ex-431

tended strictly B-proper SRs. The logarithmic IM (Ilog(X, 1, x) := − log(x),432

Ilog(X, 0, x) := − log(1 − x)) and the spherical IM are well-known to be433

strictly proper (Isph(X, 1, x) := 1+ −x√
x2+(1−x)2

, Isph(X, 0, x) := 1+ x−1√
x2+(1−x)2

),434

see, e.g., [25, Section 8]).435

Corollary 5.7. The following logarithmic SR is strictly B-proper.436

Sasolog (P, bel) :=
∑
X⊆Ω

P (X) ·
(
− log(Bel(X))− log(1−Bel(X̄))

)
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=
∑
ω∈Ω

P (ω) ·
(
−
∑
X⊆Ω
ω∈X

log(Bel(X))− log(1−Bel(X̄))
)
.

As usual in this context, we put 0 · ∞ := 0 and r · ∞ =∞ for r ∈ (0, 1].437

By “log” we refer to a logarithm with an arbitrary base b > 1 and by438

“ln” to the natural logarithm, i.e., with base e.439

Corollary 5.8. The following spherical SR is strictly B-proper.440

Sasosph(P, bel) :=
∑
X⊆Ω

P (X)·

(
2 +

−Bel(X)√
Bel(X)2 + (1−Bel(X))2

+
Bel(X̄)− 1√

bel(X̄)2 + (1−Bel(X̄))2

)
.

For our running example, Brier Scores, we already considered the canon-441

ical association in Definition 5.2. We now note that Proposition 5.3 can442

alternatively be obtained as a simple corollary from Theorem 5.6443

Theorem 5.6 raises one, as of yet, open problem:444

Open Problem 1: Does for all strictly B-proper statistical SRs
SL exist an IM IMI such that

SL(P,Bel) =
∑
ω∈Ω

P (ω) · IMI(ω,Bel) ?

6. Justifying Probabilism with statistical Scoring Rules445

In this section we build on Theorem 4.6 in order to obtain an epistemic446

justification of Prob for rational belief formation.447

6.1. The Rationality of Tracking Objective Probabilities448

We will assume the existence of objective probabilities and that the set449

of objective probability functions is P. Whether such probabilities exist in450

the real world is a metaphysical debate, which we will not enter here. We451

content ourselves with noting that a number of writers have defended their452

existence in the real world. While the existence of objective probabilities in453
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the real world is a matter of debate, at least in (statistical) models featur-454

ing probability distributions of random variables objective probabilities may455

safely be assumed to exist.456

Ideally, one might think, rational agents aim for beliefs which track the457

truth rather than tracking probabilities. Determining the truth, if such a458

thing as the true state of the world exists, has proven to be a rather com-459

plicated endeavour. Many have argued that if an agent knows the chances,460

then the only rational option is to set degrees of belief equal to the chances.461

We take it here that these arguments are right and that rational agents aim462

at tracking objective probabilities, at least in situations in which objective463

probabilities exist.464

6.2. The formal Derivation465

Lemma 6.1. Let SL be a strictly B-proper SR. For all Bel ∈ P and all466

Bel′ ∈ B \ {Bel} there exists a P ∈ P such that SL(P,Bel′) > SL(P,Bel).467

Proof. If Bel ∈ P, then SL(Bel, ·) is uniquely minimized by Bel = Bel. So,468

for Bel′ ∈ B \ {Bel} we have SL(Bel, Bel′) > SL(Bel, Bel).469

Theorem 6.2. Let SasoI be strictly proper and let IMI be continuous.470

• For all Bel ∈ B \ P there exists some P ∈ P such that for all Q ∈ P471

SasoI (Q,Bel) > SasoI (Q,P ).472

• For all Bel ∈ P and all Bel′ ∈ B\{Bel} there exists a P ∈ P such that473

SasoI (P,Bel′) > SasoI (P,Bel).474

Proof. 1) Let Bel ∈ B \ P, then by Theorem 4.6 there exists a PBel ∈ P such475

that for all ω ∈ Ω it holds that IMI(vω, Bel) > IMI(vω, PBel). For all Q ∈ P476

there exists some ω ∈ Ω such that Q(ω) > 0. We thus find for all Q ∈ P that477

SasoI (Q,Bel) > SasoI (Q,PBel) holds.478

2) By Theorem 5.6 SasoI is strictly B-proper, now apply Lemma 6.1.479

6.3. A brief Discussion480

Besides the assumptions that rational agents aim only at accurate beliefs481

and that inaccuracy may be measured by a statistical SR SL, the above justi-482

fication of Prob rests on the following: A) The statistical SR SL is associated483

with an IM. B) SasoI is strictly B-proper. C) Continuity of I. D) Dominance484

as DTN.485
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In order to make this justification compelling A – D need to be plausible.486

If rational agents only aim at accurate beliefs, then the statistical SR should487

be strictly B-proper, as we argued in Section 3.2. If the answer to Open488

Problem 1 is “yes”, then B implies A. If the answer is “no”, then we either489

need to give an argument which singles out the class of statistical SRs which490

are associated with some IM IMI or give a proof of Theorem 6.2 that also491

applies to statistical SRs which are not associated with an IM. Those who492

consider the class of strictly proper IMs to be the class inaccuracy measures in493

the epistemic approach seem to be forced to accept that the class of statistical494

SRs which measure inaccuracy by closeness-to-chances is precisely the class495

obtained by association.496

Continuity is a fairly harmless technical condition. Again, as for A, it497

might be possible to prove Theorem 6.2 without assuming continuity.498

As far as we are aware, no-one has seriously objected to dominance as499

DTN in this context, when applied to possible worlds. In the setting of500

this paper, agents aim at tracking objective probabilities and not at tracking501

worlds. It is thus fitting that dominance applies to objective probabilities in502

Theorem 6.2.503

In Section 4.3 we argued that strict propriety for IMs without presup-504

posing that Bel ∈ P is unsatisfactory. For statistical SRs however, strict505

B-propriety is desirable as a mean to encourage tracking of objective proba-506

bilities and thus reduce inaccuracy (Section 3.2). Under the assumption that507

strict propriety is technically necessary for convincing justifications of Prob,508

the upshot of Section 3.2 is that statistical SRs are in principle better suited509

than IMs for such justifications. Theorem 6.2 demonstrates that it is also510

possible to give a justification of Prob in the statistical framework.511

The statistical approach has, at least in principle, one further advantage512

over the epistemic approach. Suppose the ω ∈ Ω are the elementary events513

of some trial with chance distribution P ∗. Given a belief function Bel and a514

SR SL we can, at least in principle, approximate SL(P ∗, Bel) by conducting515

i.i.d. trial runs. Thus, we do not need to have access to P ∗ to approximate516

SL(P ∗, Bel). In the epistemic approach one assumes that there is an actual517

world ω∗ among the ω ∈ Ω but one does not know which possible world is518

the actual world. It is thus not possible, not even in principle, to compute519

IMI(vω∗ , Bel).520

Another advantage distinct to the statistical approach is that it canoni-521

cally lends itself to take the agent’s evidence into account, as we shall see in522

the second part of this paper. The question of whether the classical epistemic523
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framework is able to adequately capture the agent’s evidence for justifications524

of Prob is a matter of philosophical debate; see [13, 45]; which we will not525

enter here.526

6.4. Meeting some Objections527

One may object that the here presented justification presupposes prob-528

abilism by assuming the existence objective probability distributions which529

satisfy Kolmogorov’s axioms. We openly acknowledge that we assumed the530

existence of objective probabilities and that this assumption is key. Note how-531

ever that the assumption of objective probabilities is an assumption about532

the “outside world” which is external to the agent. We did not presuppose533

anything about the agent’s degrees of belief (other than that they are real534

numbers in [0, 1] ⊂ R). Our presupposition thus concerns the agent’s envi-535

ronment but not the agent’s doxastic state.536

We want to make two further points. Firstly, justifications of Prob in the537

framework of Section 4.2 which assume strict propriety presuppose internal538

probabilism, the condition strict propriety involves an expectation! Secondly,539

objective probabilities may well not exist in the real world. However, in540

(toy) models their existence is guaranteed by the model specifications. The541

sceptical reader may thus read our proposal as only applying to such toy542

models. In general, we agree with Jaynes543

In this connection we have to remember that probability theory544

never solves problems of actual practice, because all such prob-545

lems are infinitely complicated. We solve only idealizations of546

the real problem, and the solution is useful to the extent that the547

idealization is a good one. [23, p. 568]548

One may also object that there are further epistemic goods which rational549

agents ought to care for. It is certainly true that there might be other550

epistemic goods, or even non-epistemic goods, rational agents ought to care551

for. In the absence of a convincing account detailing what exactly these552

goods are, we feel that it is appropriate to ignore these goods and solely553

focus on inaccuracy minimisation.554

The proponent of the classical epistemic framework in Section 4.2 may be555

drawn to one of the following moves. Firstly, convincing justifications could556

be given that do not require the IM IMI to be strictly proper. This move557

appears very unlikely, but possible, to succeed.558

21



Secondly, one might head down the Joycean path and consider general559

measures of inaccuracy f(ω,Bel). This path is, of course, open. The techni-560

cal challenges one encounters appear to be so substantial, that assumptions561

need to be made which make the justifications less than fully satisfactory.562

Thirdly, an argument may be advanced claiming that the class of appro-563

priate IMs is a proper subclass of the strictly proper IMs. The appeal of564

such an approach then hinges on the characterisation of this subclass of IMs.565

Such an argument was put forward in [30, 31]. The class of IMs considered in566

[30, 31] is so narrow that it does not contain the logarithmic nor the spher-567

ical IM. Their justification, improving on de Finetti’s result by moderately568

enlarging the class of IMs, can thus only be a step towards a satisfactory569

justification of Prob. Until such a reasonably large subclass of strictly proper570

IMs has been discovered, we remain sceptical about this approach.571
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Part 2572

7. Maximum Entropy Principles573

The first part of this paper focussed on justifications of Prob. A great574

number of writers invoke further norms to constrain the choice of a belief575

function more tightly. Typically, such norms are Calibration Norms ([63,576

Section 3.3]), a Principal Principle ([33, 43, 47]) or the Maximum Entropy577

Principle (discussed in more detail below) to constrain the choice of a belief578

function depending on the agent’s evidence. Justifications of such approaches579

are normally given in a two-stage argument. First, Prob is justified, then the580

further norm(s) are justified. This leaves proponents of such approaches581

with the complicated task of explaining why and how the justification of582

Prob supersedes the justification(s) of the further invoked norm(s).583

In this section we give a single justification for Prob and Maximum Gen-584

eralised Entropy Principles at the same time. Since we give a single justifi-585

cation no two-stage justificatory argument is required of the proponent of a586

combination of Prob and a Maximum Generalised Entropy Principle.587

Exactly as in the first part, we do not presuppose Prob, strict P-propriety588

is hence of little use. The key notion will again be strict B-propriety.589

As in the first part of this paper we focus on formal aspects of the justi-590

fications and only touch on the question as to when DTNs apply. The DTN591

we will here use is Worst-Case Expected Loss (WCEL) avoidance. In the for-592

mal literature, WCEL has rich history and goes back to the seminal work of593

Morgenstern and von Neumann. The most obvious toy cases in which WCEL594

avoidance is an appropriate DTN are two-player single-round games with an595

adversary playing after Player1 has made her move. Recently, normative ar-596

guments for risk sensitivity were advanced in [4]. A maximally risk-sensitive597

agents adheres to WCEL avoidance.598

The justifications we give here apply to interpretations of P ∈ E as epis-599

temic subjective probabilities or as objective probabilities.600

7.1. The general Arguments601

Consider an agent with current evidence which narrows the chance func-602

tion down to a non-empty and convex set ∅ ⊂ E ⊆ P. E is called the set of603

calibrated functions. The most prominent objective Bayesian approach then604

requires an agent to equivocate sufficiently between the basic propositions605
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that the agent can express while adopting a belief function in E, cf. [63].5606

That is, the agent is required to assign the basic propositions the same prob-607

abilities as far as this is consistent with the agent’s evidence. This norm is608

then spelled out in terms of the Maximum Entropy Principle:609

Maximum Entropy Principle (MaxEnt) A rational agent ought
to adopt a probability function Bel ∈ E which maximises Shan-
non Entropy, Hlog

Hlog(Bel) :=
∑
ω∈Ω

−Bel(ω) log(Bel(ω)) . (20)

The probability function P= ∈ P defined by P=(ω) := 1
|Ω| for all ω ∈ Ω is610

called the equivocator. P= is the function in P with greatest entropy. MaxEnt611

can be understood as requiring an agent to adopt a belief function in E which612

is as similar to P= as possible.613

MaxEnt has given rise to a substantial literature on rational belief for-614

mation; as examples we mention [1, 8, 23, 29, 40, 41].615

Key to MaxEnt is the loss function L(ω,Bel) = − log(Bel(ω)) and the616

logarithmic scoring rule Slog617

Slog(P,Bel) :=
∑
ω∈Ω

−P (ω) log(Bel(ω)) .

We can express Shannon Entropy in terms of this SR, Hlog(P ) = Slog(P, P ).618

MaxEnt is well-known to be justified on the following grounds of WCEL619

avoidance [20, 59]620

Theorem 7.1 (Justification of MaxEnt). If ∅ 6= E ⊆ P is convex and closed,621

then622

arg inf
Bel∈P

sup
P∈E

Slog(P,Bel) = arg sup
P∈E

Hlog(P ) (21)

5For our purposes, it is not relevant to explain what “sufficiently equivocates” amounts
to. We shall only be concerned with maximal equivocation.
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and there is only one unique such function maximising Shannon Entropy,623

P †.624

So, an agent which aims to minimise supP∈E SL(P,Bel) by adopting a625

probabilistic belief function Bel ∈ P, i.e., avoiding worst-case expected loga-626

rithmic loss, has to adopt P † as her belief function.627

We now generalise this well-known justification of MaxEnt to strictly X-628

proper SRs which satisfy the following minimax equation629

inf
Bel∈X

sup
P∈E

SL(P,Bel) = sup
P∈E

inf
Bel∈X

SL(P,Bel) . (22)

See [58] for an introduction to such minimax equations which arose from Von630

Neumann’s seminal game theoretical work.631

Following [20], we call HL(P ) := SL(P, P ) generalised entropy. If the set632

arg supP∈EHL(P ) contains a unique function, then this function is denoted633

by P ‡ and called generalised entropy maximiser. The following generalises634

[20, Theorem 6.4] to non-probabilistic belief functions.635

Theorem 7.2 (Justification of Generalised Entropy Maximisation). If ∅ 6=636

E ⊆ P is convex and closed, SL strictly X-proper, (22) holds and if HL(P ) is637

strictly concave on P, then638

arg inf
Bel∈X

sup
P∈E

SL(P,Bel) = arg sup
P∈E

HL(P ) =: {P ‡} . (23)

Proof. Let us first use (22) and the fact that SL is strictly X-proper to obtain639

inf
Bel∈X

sup
P∈E

SL(P,Bel) = sup
P∈E

inf
Bel∈X

SL(P,Bel) (24)

= sup
P∈E

SL(P, P ) . (25)

Since E is convex, closed and non-empty the function SL(P, P ) has a unique640

supremum in E. That is, the set arg supP∈E
∑

ω∈Ω SL(P, P ) consists of a641

unique probability function which is in E, P ‡.642

Using X-strict propriety to obtain the strict inequality in (27) we find for643

all Bel ∈ X \ {P ‡}644
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sup
P∈E

SL(P,Bel) ≥ SL(P ‡, Bel) (26)

> SL(P ‡, P ‡) . (27)

Recall that infBel∈X supP∈E SL(P,Bel) equals SL(P ‡, P ‡). Thus, no Bel ∈645

X \ {P ‡} minimises supP∈E SL(P,Bel). Hence, P ‡ is the unique minimiser of646

supP∈E SL(P,Bel).647

This means that an agent which aims to minimise supP∈E SL(P,Bel) by648

adopting a belief function Bel ∈ B(!), i.e., avoiding worst-case expected loss,649

has to adopt P ‡ as her belief function.650

So, Theorem 7.2 simultaneously justifies Prob and the following principle:651

Maximum Generalised Entropy Principle A rational agent652

ought to adopt the unique probability function in E which max-653

imises the generalised entropy HL(P ).654

The question arises how P ‡ changes when the agent receives new infor-655

mation and the set of calibrated functions changes. It is not rational for656

a WCEL avoiding agent to change her belief, if E′ ⊂ E and P ‡ ∈ E′ (see657

below). This property of unchanged beliefs has been termed obstinacy, see658

for example [40, p. 80].659

Corollary 7.3. Let E and SL be as in Theorem 7.2. If ∅ ⊂ E′ ⊂ E contains660

P ‡, then661

arg inf
Bel∈X

sup
P∈E′

SL(P,Bel) = {P ‡} . (28)

Note that we do not require that E′ is convex nor that E′ is closed.662

Proof. First note that663

inf
Bel∈X

sup
P∈E′

SL(P,Bel) ≤ inf
Bel∈X

sup
P∈E

SL(P,Bel) (29)

= SL(P ‡, P ‡) . (30)

For all Bel ∈ X \ {P ‡} we find using strict X-propriety of SL that664
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sup
P∈E′

SL(P,Bel) ≥ SL(P ‡, Bel) (31)

> SL(P ‡, P ‡) . (32)

For the belief function P ‡ we find665

SL(P ‡, P ‡) ≤ sup
P∈E′

SL(P, P ‡) (33)

≤ sup
P∈E

SL(P, P ‡) (34)

= SL(P ‡, P ‡) . (35)

So, supP∈E′ SL(P, P ‡) = SL(P ‡, P ‡). Hence, P ‡ uniquely minimises WCEL.666

667

7.2. Generalised Entropies668

Theorem 7.2 gives general conditions under which generalised entropy669

maximisation is justified with respect to the choice of a particular statistical670

SR. Unsurprisingly, the choice of different SRs, i.e., utility functions, leads671

to different generalised entropy maximisers. The importance of choosing an672

appropriate SR has recently been emphasised in [36].673

Consider the extended Brier score SextBrier, the spherical SR Sasosph and674

Sextllog := − |PΩ|
2

+
∑

Y⊆Ω Bel(Y ) −
∑

X⊆Ω P (X) · ln(Bel(X)). We now show675

that all three SRs satisfy satisfy the conditions in Theorem 7.2. We shall676

not give the rather uninformative calculations but rather state the result of677

these calculations.678

All three SRs are strictly B-proper, see Proposition 5.3, Corollary 5.8 and679

Proposition 9.1.680

Straightforward calculations show that Brier Entropy HBrier(P ) and the681

Spherical Entropy HSph(P ) are strictly concave on P. The entropy of the682

logarithmic SR is HPΩ(P ) :=
∑

X⊆Ω−P (X) log(P (X)) which we shall prove683

in Section 9.1. This entropy is called Proposition Entropy in [29]. Clearly,684

HPΩ is strictly concave on P.685

Note that HPΩ is different from Shannon Entropy, Hlog. In HPΩ the sum686

is taken over all events X ⊆ Ω and not over all elementary events ω ∈ Ω. Not687

only are Proposition Entropy and Shannon Entropy different functions; in688
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general, their respective maximum obtains for different probability functions689

in E, cf. [29, Figure 1, p. 3536].690

That all three entropies considered here are sufficiently regular, satisfying691

the minimax condition (24), follows for instance from König’s result [28, p.692

56], see [51] for a discussion of König’s result.693

These three entropies have different maximisers on rather simple sets E,694

as can be gleaned from Figure 1 and Figure 2.695

Figure 1: Brier Entropy HBrier (green), Proposition Entropy HPΩ (blue) and Spherical
Entropy HSph (red) for Ω = {ω1, ω2, ω3}. The black line segment connects P1 = (1, 0, 0)
and P2 = (0, 5

6 ,
1
6 ).

Figure 2: Brier Entropy HBrier (green), Proposition Entropy HPΩ (blue) and Spherical
Entropy HSph (red) plotted along the line segment between P1 = (1, 0, 0) and P2 = (0, 5

6 ,
1
6 )

parametrised as P1 + t · (−0.6, 0.5, 0.1) for t ∈ [0, 10
6 ]. The Brier Entropy maximiser

is P †
Brier = (0.4194, 0.4839, 0.0968) [t = 0.968], the Proposition Entropy maximiser is

P †
PΩ = (0.4054, 0.4955, 0.0991) [t = 0.991] and the Spherical Entropy maximiser is P †

Sph =
(0.4277, 0.4770, 0.0954) [t = 0.954]. The absolute value of the Spherical Entropy has been
adjusted to fit all curves neatly into the picture.

Theorem 7.2 deals with generalised entropies. The question arises whether696

we can find a statistical SR to simultaneously justify Prob and MaxEnt. Un-697

fortunately, we do not know the answer to this question698
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Open Problem 2 Does there exist a strictly B-proper statistical
SR SL such that (24) holds and such that for all closed and convex
∅ ⊂ E ⊆ P it holds that

arg sup
P∈E

SL(P, P ) = arg sup
P∈E

Hlog(P ) ? (36)

7.3. Generalised Entropies and the Principle of Indifference699

The Principle of Indifference (PoI) has long fascinated philosophers. We700

here show that maximising generalised entropies entails the PoI for many701

natural generalised entropies. Recent arguments in its favor can be found in702

[37, 46, 62].703

Definition 7.4. A SR SL is called equivocator neutral, if and only if for all704

ω, ω′ ∈ Ω it holds that L(ω, P=) = L(ω′, P=).705

Theorem 7.5 (Generalised Entropies and PoI). If SL is equivocator neutral,706

strictly X-proper with P ⊆ X ⊆ B, satisfies (24) and if HL(P ) is strictly707

concave on P, then708

arg inf
Bel∈X

sup
P∈P

SL(P,Bel) = arg sup
P∈P

SL(P, P ) = {P=} . (37)

So, under complete ignorance, E = P, the unique rational choice under709

WCEL avoidance is Bel = P=; this provides a justification of the PoI. For a710

recent justification of the PoI using IMs we refer the reader to [46].711

Proof. From Theorem 7.2 and the fact that P is convex and closed we obtain712

arg inf
Bel∈X

sup
P∈P

SL(P,Bel) = arg sup
P∈P

SL(P, P ) . (38)

Note that since SL is equivocator neutral, there exists some constant713

c ∈ R such that for all ω ∈ Ω it holds that L(ω, P=) = c.714

Assume for contradiction that there exists some Q ∈ arg supP∈PHL(P )715

which is different from P=. Since HL(P ) is a strictly concave function on P716

the maximum of HL(·) has to be unique and hence HL(Q) > HL(P ). We717

then obtain using (38)718
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HL(P=) < HL(Q) (39)

= inf
Bel∈X

sup
P∈P

SL(P,Bel) (40)

≤ sup
P∈P

SL(P, P=) (41)

= sup
P∈P

∑
ω∈Ω

P (ω)L(ω, P=) (42)

= sup
P∈P

∑
ω∈Ω

P (ω)c (43)

= c (44)

=
∑
ω∈Ω

1

|Ω|
L(ω, P=) (45)

=
∑
ω∈Ω

P=(ω)L(ω, P=) (46)

= HL(P=) . (47)

Contradiction. Thus, {P=} = arg supP∈PHL(P ).719

Equivocator neutrality is a very weak symmetry condition on L. Strict720

B-propriety and satisfying (24) are standing assumptions in this section. Fi-721

nally, arg supP∈PHL(P ) containing a unique element would follow from HL722

being strictly concave. If SL is strictly P-proper, then HL is concave, see [17,723

p. 361]. Thus, in a large number of cases maximising generalised entropy724

entails the PoI.725

Not only is the equivocator the unique function minimising WCEL under726

complete ignorance, it is also the unique such function as long as P= ∈ E:727

Corollary 7.6. For a SR SL as in Theorem 7.5 and for all sets E ⊂ P such728

that P= ∈ E it holds that729

arg inf
Bel∈X

sup
P∈E

SL(P,Bel) = arg sup
P∈P

SL(P, P ) = {P=} . (48)

Proof. First, let us reason as in Theorem 7.5 to obtain the equality below730
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inf
Bel∈X

sup
P∈E

SL(P,Bel) ≤ inf
Bel∈X

sup
P∈P

SL(P,Bel) (49)

= SL(P=, P=) . (50)

Using strict propriety we find for all belief functions Bel ∈ X \ {P=} that731

sup
P∈E

SL(P,Bel) ≥ SL(P=, Bel) (51)

> SL(P=, P=) . (52)

So all belief functions different from the equivocator P= have a strictly sub-732

optimal WCEL. P= has the best possible WCEL as we saw in Theorem 7.5.733

It follows that734

arg inf
Bel∈X

sup
P∈E

SL(P,Bel) = {P=} . (53)

735

For instance, SL = SextBrier, SL = Sasosph and SL = Sextllog satisfy the assump-736

tions of Theorem 7.5. We hence obtain737

Corollary 7.7. If SL = SextBrier, SL = Sasosph or SL = Sextllog and P= ∈ E, then738

arg inf
Bel∈B

sup
P∈E

SL(P,Bel) = arg sup
P∈P

SL(P, P ) = {P=} . (54)

8. Local Scoring Rules739

We now turn our attention to strictly B-proper statistical SRs themselves.740

Slog stands out as the only strictly P-proper local SR and as the heart of Max-741

Ent. It has hence received considerable attention in the literature. Locality742

means that if a elementary event ω ∈ Ω obtains, then the loss incurred only743

depends on Bel(ω) and not on the entire belief function.744

Subsequently, we will take an interest in notions of locality applied to745

SRs defined on P × B. Surprisingly, the most natural way of extending the746

notion of locality to P× B is incompatible with strict B-propriety.747
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8.1. Locality and strict P-propriety748

Definition 8.1. A statistical SR SL : P×P→ [0,+∞] is called local, if and749

only if L(ω,Bel) only depends on the belief in ω and not on other beliefs.750

Abusing the notation in the usual way we write L(Bel(ω)).751

The class of such SRs which are strictly P-proper is rather simple:752

Theorem 8.2 (Savage [54]). Up to an affine-linear transformation, the only753

local and strictly P-proper statistical SR is754

Slog(P,Bel) =
∑
ω∈Ω

−P (ω) log(Bel(ω)) . (55)

Local SRs or logarithmic loss functions have been argued for in a variety755

of settings. For example, in [66, pp. 16] and [2, p. 72-73] for belief elicitation.756

See [7, p. 2039-2040] for a discussion on locality and [7, p. 2046] for an757

axiomatic characterisation of logarithmic SRs in terms of scale-invariance.758

Levinstein points out advantages of Slog as a measure of inaccuracy over759

SBrier applied to probabilistic belief functions, see [32]. We also want to760

mention that Slog is the only strictly P-proper SR which is consistent with761

the use of likelihoods or log likelihoods to evaluate assessors, cf. [64, p. 1075].762

In [63, p. 64-65], Williamson shows that Slog can be characterised in terms of763

four natural axioms, one of which is locality. Slog has found applications in a764

variety of areas, for example in information theory [9, 52], Neyman-Pearson765

Theory in statistics [15] and the health sciences [26].766

Recently, the IMlog has left a positive impression in formal epistemology767

as a tool to measure a degree of confirmation, see [60].768

Let us now consider a local loss function L : [0, 1] → [0,+∞] and the769

corresponding local SR SL : P × B → [0,+∞] (defined on belief functions770

Bel ∈ B!)771

SL(P,Bel) =
∑
ω∈Ω

P (ω) · L(Bel(ω)) . (56)

Note that only beliefs in elementary events appear in the above expression.772

Thus, beliefs in non-elementary events will not affect the score SL(P,Bel).773

Thus, a DTN applying local statistical SR SL(P,Bel) can only yield con-774

straints on the agent’s beliefs in elementary events; beliefs in non-elementary775
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events are completely unconstrained. So, local SRs are ill-suited for justifi-776

cations of norms of rational belief formation without presupposing Prob.777

Thus, we now investigate how to extend the notion of locality, which778

proved to be technically fruitful when Prob was presupposed, without pre-779

supposing Prob.780

8.2. Locality, strict B-propriety and extended Scoring Rules781

One obvious way to generalise locality is:782

Definition 8.3. An extended SR is called ex-local, if and only if there exists783

a loss function Lloc : PΩ× [0, 1]→ [0,∞] such that784

SextLloc
(P,Bel) =

∑
X⊆Ω

P (X) · Lloc(X,Bel(X)) (57)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

Lloc(X,Bel(X))
)
. (58)

Ex-locality here means that L(X,Bel) is of the form Lloc(X,Bel(X)), i.e.785

the loss attributable to event X in isolation of all other events, if X obtains,786

only depends on X and on Bel(X). Here, we do not allow L(X,Bel(X)) to787

depend on further beliefs such as Bel(X̄).788

This notion of an ex-local extended SR differs from local statistical SRs in789

Savage’s sense in two respects. Firstly, the sum is now over all events X ⊆ Ω790

and not only over the elementary events ω ∈ Ω. Secondly, the loss function791

Lloc may now depend on the event X whereas Savage’s loss function only792

depended on the belief in an elementary event ω and not in the elementary793

event itself.794

If SextL is ex-local, then the loss attributable to Bel(X) only enters once795

into (57). More precisely, the only summand depending on Bel(X) is P (X) ·796

Lloc(X,Bel(X)). Since P is a probability function, P (∅) = 0 holds. Hence,797

by our convention that 0 · ∞ = 0 we obtain P (∅) · Lloc(∅, Bel(∅)) = 0 ·798

Lloc(∅, Bel(∅)) = 0 for all P ∈ P. So, SextLloc
(P,Bel) does not depend on799

Bel(∅).800

Hence, a belief functionBela which agrees with P on all events ∅ ⊂ X ⊆ Ω801

and Bel(∅) = a with a ∈ (0, 1] it holds that SextLloc
(P, P ) = SextLloc

(P,Bela).802

Thus, no ex-local SR is strictly B-proper.803
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One might initially think that the incompatibility of ex-locality and strict804

B-propriety is only due to the fact that for all P ∈ P P (∅) = 0 holds.805

However, we shall now see that this is not the case.806

Let B− := {Bel : PΩ\{∅} → [0, 1]} and define strict B−-propriety of a SR807

SL in the obvious way, i.e., for all P ∈ P it holds that arg infBel∈B− S(P,Bel) =808

{P�PΩ\{∅}}. For ease of notation we drop the restriction operator “�” from809

now on.810

Theorem 8.4. There does not exist an ex-local extended strictly B−-proper811

SR SextLloc
.812

Proof. It is sufficient to show that for all P ∈ P813

arg inf
Bel∈B−

SextLloc
(P,Bel) = arg inf

Bel∈B−

∑
X⊆Ω

P (X) · Lloc(X,Bel(X)) (59)

does not depend on P , since strict B−-propriety would require that the above814

minimum obtains uniquely for Bel = P .815

For a fixed loss function Lloc and a fixed event ∅ ⊂ X ⊆ Ω it holds that816

arg infBel(X)∈[0,1] Lloc(X,Bel(X)) only depends on Bel(X) ∈ [0, 1] and not on817

P nor on Bel(Y ) for Y 6= X. Furthermore, Bel(X) may be freely chosen in818

[0, 1], since Bel does not have to satisfy any further constraints, such as the819

axioms of probability. Hence, for all ∅ ⊂ X ⊆ Ω the infimum (or infima) of820

P (X)Lloc(X,Bel(X)) obtains independently of P .821

Thus, SextLloc
(P,Bel) is minimised, if and only if every summand in (59)822

is minimised. For each summand this minimum obtains independently of823

P .824

Proposition 8.5. Sextlog (P,Bel) :=
∑

X⊆Ω−P (X)·log(Bel(X)) is not strictly825

B−-proper.826

Proof. Define a belief function Bel1 ∈ B by Bel1(X) := 1 for all X ⊆ Ω. For827

all P ∈ P and all X ⊆ Ω it holds that P (X) log(Bel1(X)) = 0. So, for all828

P ∈ P829

Bel1 ∈ arg inf
Bel∈B

Sextlog (P,Bel) . (60)

830
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Recall from Theorem 8.2 that the logarithmic SR Slog is the only local831

P-strictly proper statistical SR. Evidently, strict propriety crucially depends832

on the set of scored belief functions.833

The SR considered in Corollary 5.7: Sasolog (P,Bel) :=
∑

X⊆Ω P (X)·(− log(Bel(X))−834

log(1 − Bel(X̄))) is not ex-local. The loss term depends on Bel(X) and835

Bel(X̄). Thus, Proposition 5.7 does not contradict Theorem 8.4.836

Note that SextLloc
(P,Bel) does not depend on Bel(X) for all those event837

X ⊂ Ω with P (X) = 0. If any genuine measure of inaccuracy has to take838

into account how P (X) and Bel(X) relate for all X ⊆ Ω, then ex-local839

SRs cannot serve as measures of inaccuracy. In this case, the impossibility840

theorem only rules out the existence of SRs which are unsuitable for our841

purposes.842

9. Two Notions of Locality843

The question we now pose is: how much of the locality condition do we844

need to give up in order obtain strictly B-proper extended SRs which are845

local, in some sense?846

9.1. Penalties847

As it turns out, there exists an extended SR employing logarithms which848

is strictly B-proper.849

Proposition 9.1. The following extended SR is strictly B-proper850

Sextllog(P,Bel) :=
∑
X⊆Ω

P (X) ·

(
−1 +

∑
Y⊆Ω Bel(Y )∑
Y⊆Ω P (Y )

− ln(Bel(X))

)
(61)

= −|PΩ|
2

+
∑
Y⊆Ω

Bel(Y )−
∑
X⊆Ω

P (X) · ln(Bel(X)) . (62)

This SR is not purely logarithmic since it contains the penalty term,851 ∑
Y⊆Ω Bel(Y ). This term penalises belief functions for indiscriminately as-852

signing high degrees of belief to all events. In particular it prevents Bel1 ∈ B853

from being the score minimiser. The penalty term is constant for all X ⊆ Ω,854

it is thus global.855
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Proof. Define an IM IMllog by

I(X, 0, Bel(X)) : = Bel(X)

I(X, 1, Bel(X)) : = Bel(X)− 1− ln(Bel(X)) .

We now show that IMllog is strictly proper. Clearly, IMllog is never strictly856

less than zero.857

Let p ∈ [0, 1] and ∅ ⊂ X ⊂ Ω be fixed and let858

f(Bel(X)) : = p · I(X, 1, Bel(X)) + (1− p) · I(X, 0, Bel(X))

= p ·Bel(X)− p− p · ln(Bel(X)) + (1− p) ·Bel(X)

= −p− p · ln(Bel(X)) +Bel(X) .

By equating the derivative of f(Bel(X)) with zero we find for p > 0859

d f(Bel(X))

dBel(X)
= − p

Bel(X)
+ 1 = 0 . (63)

Trivially, this equation is uniquely solved by Bel(X) = p > 0. Considering860

the second derivative of f(Bel(X)) shows that Bel(X) = p > 0 is the unique861

minimum.862

For p = 0 we recall the usual convention that 0 ln(Bel(X)) = 0, even if863

Bel(X) = 0. Hence, f(Bel(X)) = (1− p) · I(X, 0, Bel(X)) = Bel(X), which864

is uniquely minimised by Bel(X) = p = 0.865

For X = ∅ and X = Ω we have

Illog(Ω, 1, Bel(X)) + Illog(∅, 0, Bel(X)) = Bel(Ω)− 1− ln(Bel(Ω))−Bel(∅),

which is uniquely minimised by Bel(Ω) = 1 and Bel(∅) = 0.866

We next show that Sextllog is strictly B-proper. We do so by showing that867

it is associated with IMllog and hence strictly B-proper by Theorem 5.6.868

∑
ω∈Ω

P (ω) · IMllog(ω,Bel)
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=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

I(X, 1, Bel(X)) +
∑
Y⊆Ω
ω/∈Y

I(Y, 0, Bel(Y ))
)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

Bel(X)− 1− ln(Bel(X)) +
∑
Y⊆Ω
ω/∈Y

Bel(Y )
)

=
∑
ω∈Ω

P (ω) ·
(∑
Z⊆Ω

Bel(Z) +
∑
X⊆Ω
ω∈X

−1− ln(Bel(X))
)

=
∑
Z⊆Ω

Bel(Z) +
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

−1− ln(Bel(X))
)

=
∑
Z⊆Ω

Bel(Z) +
∑
X⊆Ω

P (X) ·

(
−1− ln(Bel(X))

)

=
∑
X⊆Ω

P (X) ·
∑
Z⊆Ω

Bel(Z)∑
Y⊆Ω P (Y )

+
∑
X⊆Ω

P (X) ·

(
−1− ln(Bel(X))

)

=
∑
X⊆Ω

P (X) ·

(∑
Z⊆ΩBel(Z)∑
Y⊆Ω P (Y )

− 1− ln(Bel(X))

)
= Sextllog(P,Bel) .

869

Sextllog contains a local term, ln(Bel(X)), and a global term,
∑

Y⊆ΩBel(Y ).870

The constant term, − |PΩ|
2

, has been added for the following cosmetic reason.871

For Bel ∈ P we have872

Sextllog(P,Bel) = −
∑
X⊆Ω

P (X) · ln(Bel(X)) (64)

= Sextlog (P,Bel) . (65)

So, for Bel ∈ P we recapture the SR considered in Proposition 8.5 (for the873

natural logarithm) and we note that874

Sextllog(P, P ) = −
∑
X⊆Ω

P (X) · ln(P (X)) .
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At first glance, Sextllog appears to be an extended strictly B-proper SR which875

is not associated to an IM. If this were the case, then we would have solved876

Open Problem 1 (Section 5.2) in the negative. However, we saw in the above877

proof that Sextllog is indeed associated with the strictly proper IMllog. We have878

thus not solved Open Problem 1.879

Finally, let us remark that proving strict B-propriety of Sextllog directly is a880

rather complicated endeavour. The above proof is a nice illustration of the881

technical helpfulness of Theorem 5.6 to which we alluded to in Section 5.2.882

9.2. Normalising Beliefs883

In Proposition 9.1 we saw how one can use a penalty term to construct a884

strictly B-proper logarithmic SR. In [29] the authors showed that the penalty885

term can be dropped, if the belief functions are normalised, that is the belief886

functions considered are in some set Bnorm ⊃ P.887

We shall now quickly summarise the relevant points in [29]: Denote by888

π a set of non-empty mutually exclusive, jointly exhaustive proper subsets889

of Ω, i.e., a partition. Denote by Π the union of {Ω, ∅}, {Ω} and the set of890

these partitions. Then define891

Bnorm := {B : PΩ→ [0, 1] |
∑
F∈π

B(F ) = 1 for some π ∈ Π

and
∑
F∈π

B(F ) ≤ 1 for all π ∈ Π} .

For a given a weighting function g : Π→ R≥0 such that for all ∅ ⊆ X ⊆ Ω it892

holds that
∑

π∈Π
X∈π

g(π) > 0, a SR is defined on P× Bnorm by:893

Sextnormlog,g(P,B) := −
∑
π∈Π

g(π)
∑
X∈π

P (X) · log(B(X)) (66)

=
∑
X⊆Ω

P (X) ·
(∑
π∈Π
X∈π

g(π)
)
· log(B(X)) . (67)

Proposition 9.2. [29, Corollary 3, p. 3542] Sextnormlog,g(P,B) is strictly Bnorm-894

proper for all such g.895

Note that since P ⊂ Bnorm, strict Bnorm-propriety is well defined in the896

sense of Definition 3.2.897
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The above proposition does not contradict Theorem 8.4, since we here898

consider normalised belief functions in Bnorm while Theorem 8.4 concerns899

belief functions in B.900

The SRs Sextllog and Sextnormlog,g rely on the same idea: The main culprit in901

the impossibility Theorem 8.4 is that in (59) there is no interaction between902

the degrees of belief in different events. Normalising beliefs re-introduces903

such an interaction. The main structural difference between the two SRs is904

how normalisation is achieved. The former SR, Sextllog, introduces a penalty905

(i.e. normalisation) term into the SR, for the latter SR, Sextnormlog,g, one pre-906

supposes normalised belief functions.907

10. Conclusion908

In the first part of this paper we saw how to use statistical SRs to justify909

Prob. In this second part we demonstrated the usefulness of statistical SRs for910

justifications of further norms of rational belief formation. In particular, we911

saw how an agent’s evidence can be naturally taken into account by applying912

WCEL avoidance as DTN.913

Logarithmic SRs occupy a prominent place in the literature as protago-914

nists in Savage’s theorem and objective Bayesianism. We hence set out to915

investigate how to construct statistical logarithmic SRs which are strictly916

B-proper. We found three such logarithmic SRs (Proposition 5.7, Proposi-917

tion 9.1 and Proposition 9.2).918

Ideas from the epistemic and the statistical approach have been influential919

in the development of this paper. Looking into the future, pulling strands920

from both approaches together appears to have the potential to be benefi-921

cial for both approaches. Generally speaking, extending Richard Pettigrew’s922

Epistemic Utility Theory Programme [42, 48] to statistical SRs appears to923

be a research avenue holding great promise. We thus hope for many more924

exciting entries to be added to Table 1.925

Unfortunately, we did not answer all the questions we raised. Hopefully,926

future work will solve the problems left open in this paper.927
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Decision Theoretic Norm Inaccuracy Measures Scoring Rules

Dominance w.r.t. ω ∈ Ω [11], [49], [24], [55]
[25],[43], [44] [56]

Dominance w.r.t. P ∈ P Corollary 5.4, Theorem 6.2
Expected Loss w.r.t. Bel∗ Belief Elicitation

Worst-Case Loss w.r.t. ω ∈ Ω [46]
Theorems 7.1, 7.2, 7.5

WCEL w.r.t. P ∈ E [20], [29]

Table 1: Combinations of IMs and SRs with DTNs
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Tamar Szabó Gendler and John Hawthorne, editors, Oxford Studies in968

Epistemology: Volume 2, chapter 6, pages 143–164. Oxford University969

Press, 2007.970

[17] Tilmann Gneiting and Adrian E. Raftery. Strictly Proper Scoring Rules,971

Prediction, and Estimation. Journal of the American Statistical Asso-972

ciation, 102(477):359–378, 2007.973

[18] Hilary Greaves. Epistemic Decision Theory. Mind, 122(488):915–952,974

2013.975

[19] Hilary Greaves and David Wallace. Justifying Conditionalization:976

Conditionalization Maximizes Expected Epistemic Utility. Mind,977

115(459):607–632, 2006.978

[20] Peter D. Grünwald and A.Philip Dawid. Game theory, maximum en-979

tropy, minimum discrepancy and robust Bayesian decision theory. An-980

nals of Statistics, 32(4):1367–1433, 2004.981

41
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