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An application of Carnapian inductive logic to an
argument in the philosophy of statistics

Abstract

I claim that an argument from the philosophy of statistics can be improved by
using Carnapian inductive logic. Gelman and Shalizi [10] criticise a philosoph-
ical account of how statisticians ought to choose statistical models which they
call ‘the received view of Bayesian inference’ and propose a different account in-
spired by falsificationist philosophy of science. I introduce another philosophical
account inspired by Carnapian inductive logic and argue that it is even better
than Gelman and Shalizi’s falsificationist account.

1. Introduction

The structure of this paper is as follows: section two introduces the notion
of a philosophical account of statistical model-choice, starting with the ‘received
view’ account according to which statistical models represent all relevant factors
of a statistical investigation. It summarises Gelman and Shalizi’s criticism of
this account. In contrast to the received view, Gelman and Shalizi see statistical
models as representing only the beginning of a statistical investigation; they ar-
gue that statistical models cannot and should not describe the important tasks
of searching for ways in which models fail, and then conceiving of improved
models on the basis of this testing. Section two ends by presenting the ‘falsifi-
cationist’ account, which Gelman and Shalizi introduce as an improvement on
the received view.

Section three develops an alternative ‘Carnapian’ account of statistical model-
choice. In section four I argue that the Carnapian account is a further improve-
ment: it shares the advantages that Gelman and Shalizi identify in the falsifica-
tionist account, and in addition is more technically fruitful and philosophically
well-grounded.

Finally, section five addresses several qualms about Carnapian inductive
logic which might cause misgivings about a model-choosing philosophy inspired
by it.

2. Gelman and Shalizi’s arguments

2.1. Philosophical accounts of statistical model-choice

Gelman and Shalizi [10], like this paper, concerns collections of succinct stip-
ulations as to how statisticians ideally ought to conduct investigations involving
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probabilistic models. I call these collections ‘philosophical accounts of statistical
model-choice’. In order to make it easy to discuss shared features of different
approaches at the same time, I do not require that accounts of statistical model-
choice specify an approach to ideal model-choice completely.

Philosophical accounts of scientific methodology are important because they
can influence scientific research. As Gelman and Shalizi put it,

. . . even those [scientists] who believe themselves quite exempt
from any philosophical influences are usually the slaves of some de-
funct methodologist.”

Gelman and Shalizi [10, p.31]

2.2. Criticism of the ‘received view of Bayesian inference’

Gelman and Shalizi aim to counteract the influence of what they call ‘the
received view of Bayesian inference’, a philosophical account of statistical model-
choice that, they claim, has had a negative effect on statistical research. Ac-
cording to the received view, Gelman and Shalizi write,

Anything not contained in the posterior distribution p(θ | y) is sim-
ply irrelevant. . .

Gelman and Shalizi [10, p.9]

I therefore consider the following, slightly more general, stipulation to be a
key tenet of the received view:

RV All desiderata that are relevant in a statistical investigation should be
represented formally in a statistical model. Other factors should be disre-
garded.

This stipulation does not amount to a fully-fledged philosophy of statistics
and therefore should not be seeen as encapsulating the received view, which
must include other stipulations: perhaps that models should be chosen so as
to fit given data. Nonetheless, since it is where Gelman and Shalizi focus their
criticism, this is the only aspect of the received view that we need to consider.

Gelman and Shalizi argue that RV is incompatible with certain facts about
statistical research as it goes on in the real-world, as there are important uses
in statistical investigations for knowledge that is not represented by a statistical
model.

In Gelman and Shalizi [10, §3] they argue that it is practically impossible to
represent all the assumptions that might be entertained during the course of an
investigation in the form of a statistical model.

In Gelman and Shalizi [10, §4], Gelman and Shalizi claim that knowledge
that is not represented in a statistical model plays an important role in model-
checking. Bayesian models are typically tested by investigating the ways in
which empirical data differs from data simulated using the fitted model. Statis-
tician’s knowledge enables them to devise tests which distinguish unimportant,
patternless discrepancies which can safely be ignored from systematic differences
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which might cause the model to be revised. According to RV, such knowledge
should be disregarded unless it is represented in a statistical model: Gelman
and Shalizi argue (Gelman and Shalizi [10, §4.3]) on methodological grounds
that this is not always feasible.

2.3. The falsificationist account

Gelman and Shalizi propose an alternative philosophical account of statis-
ticians’ model-selection choices that is inspired by falsificationism, a prominent
approach to the philosophy of science. Given Gelman and Shalizi’s use of the
term, I call this philosophical account ‘falsificationist’. This label should not
be read as indicating agreement with the philosophy of Karl Popper: I argue
below that, as Gelman and Shalzi present it, the falsificationist account is in fact
incompatible with Popper’s philosophical approach. The falsificationist account
consists of the following stipulation:

F A candidate statistical model should first be chosen for consideration using
the statistician’s judgement. The model should then be confronted with
data and either rejected or cautiously accepted depending on how well it
is found to resemble the data source.

Gelman and Shalizi think that the way in which resemblance between models
and data sources should be measured, as well as the level of non-resemblance
required for rejection, should depend on the particular circumstances of the
investigation. They write:

. . . the hypothesis linking mathematical models to empirical data
is not that the data-generating process is exactly isomorphic to the
model, but that the data source resembles the model closely enough,
in the respects which matter to us, that reasoning based on the model
will be reliable.
Gelman and Shalizi [10, p.20]

Gelman and Shalizi’s principled abstention from specifying exactly how ‘re-
semblance’ between statistical models and data sources should be measured
distinguishes their philosophical account from RV. According to the received
view only resemblance that is represented formally in a statistical model can be
relevant in a statistical investigation, whereas the falsificationist account allows
tests of resemblance that do not have this property.

The key feature of resemblance between models and data, according to Gel-
man and Shalizi, seems to be that, if there is resemblance, then the assumption
that ‘reasoning based on the model will be reliable’ is justified. This desidera-
tum encompasses standard tests of model-fit to the extent that reasoning based
on poorly-fitting models is unreliable.

Below I grant all of Gelman and Shalizi’s claims about statistical research
in practice. Specifically, I assume that working statisticians often have reasons
other than knowledge-representation for choosing between statistical models, as
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well as uses for knowledge that is not represented in the form of a statistical
model. In addition I assume that statisticians do and should choose models in
roughly the way suggested by Gelman and Shalizi’s falsificationist philosophical
account, cautiously adopting models after testing them for reasoning-justifying
resemblance to data in the situation- and priority-sensitive way that Gelman
and Shalizi outline. These assumptions allow me to focus on other aspects of
Gelman and Shalizi’s account that I find controversial.

Despite the fact that I do not dispute its empirical adequacy, I argue be-
low that Gelman and Shalizi’s falsificationist philosophical account should be
rejected in favour of an alternative Carnapian one.

3. The Carnapian account

In this section I introduce the Carnapian account of statistical model choice,
according to which statistical models should be chosen according to their per-
formance as formalisations of inductive assumptions. I claim that this account
is more fruitful than the falsificationist one and also in better harmony with
Gelman and Shalizi’s arguments.

Section 3.1 summarises the philosophy that inspires this account, including
the devices—‘system of inductive logic’—which Carnap proposed for formalising
inductive assumptions, along with Carnap’s approach to formalisation itself. As
far as possible, I reproduce Carnap’s original presentation from [3] and [4], al-
though I make certain terminological departures, indicated below, for the sake of
ease of exposition and agreement with more recent literature on inductive logic.
Section 3.2 shows how any statistical model of a certain kind—probabilistic
constraints on finitely valued random variables—can be interpreted as a system
of inductive logic. Section 3.3 uses this discussion to formulate the Carnapian
account of statistical model choice.

I emphasise that I see the significance of the Carnapian account as narrowly
philosophical. I do not mean to suggest that statisticians ought to adopt the
formal framework of Carnapian inductive logic. This would involve undue effort
and in any case, as we shall see, the Carnapian framework is limited in certain
ways. Rather, I discuss the relationship between systems of inductive logic and
statistical models with a view to applying philosophical arguments from the
literature on inductive logic to the problem of statistical model-choice.

3.1. Carnapian inductive logic

A Carnapian ‘inductive method’ is an ordered pair (L,m) where L is a formal
language and m : SL → R≥0, known as a ‘measure function’, is a function
mapping L’s sentences to positive real numbers.1

1Carnap formulated inductive methods slightly differently, as pairs (L, c) where the ‘con-
firmation function’ c : SL × SL → R≥0 has two arguments. However, all inductive methods
that feature in this paper can be formulated using either measure functions or confirmation

functions by stipulating that c(h, e) =
m(h∧e)
m(e)

if m(e) �= 0 and is undefined otherwise. Carnap
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This formal apparatus restricts the Carnapian inductive logician in several
ways. The requirement that measure functions’ outputs be single real numbers
precludes the possibility of representing inductive reasoning using functions that
associate sentences with sets of real numbers, while the requirement that their
domain be the set of all sentences rules out representations where certain sen-
tences do not receive any values at all.

3.1.1. First-order unary languages

Carnap focused on inductive methods with first-order unary languages. All
the languages I mention below are assumed to be of this kind. A first-order unary
language Lk has an alphabet consisting of: some natural number k one-place
relation symbols P1, . . . , Pk known as primitive predicates, countably infinitely
many constant symbols a1, a2, . . ., the logical connective symbols ∧, ∨ and ¬,
the quantifier symbols ∀ and ∃ and countably infinitely many variables x1, x2 . . .,
together with standard rules specifying which combinations of these symbols are
formulae and sentences. Such languages can be identified by their number k of
primitive predicates. For ease of notation, where this number is unimportant I
sometimes refer to languages using L.

For every language Lk there are 2k open formulae α1(x), ..., α2k(x) which,
following Paris and Vencovská [15], I call ‘atoms’. Each atom αi(x) = ±P1(x)∧
. . .∧±Pk(x) is a conjunction of either the negated or un-negated form of every

primitive predicate in Lk. For any constant a,
∨2k

i=1 αi(a) is logically true while
αi(a)∧αk(a) is logically false, provided that i �= k. Since they are analogous in
this way to the atoms of a boolean alegbra, I prefer to discuss atoms rather than
‘Q-predicates’, which play an analogous formal role in the writings of Carnap
and other authors.

The requirement to use first-order unary languages imposes some restric-
tions on the phenomena that inductive logic can describe: in particular, rea-
soning involving non-unary relations or continuous magnitudes is difficult if not
impossible to depict without resorting to richer languages.

Such enrichments have been attempted. Paris and Vencovská [15] attempt
to address the first of problem by extending inductive logic to polyadic lan-
guages. Skyrms [21] contains a discussion of attempts to solve the problem of
depicting reasoning about continuous magnitudes by abandoning the framework
of classical logical languages altogether. Skyrms claims that Ferguson [8] and
Blackwell and MacQueen [1] show how to construct “confirmation functions for
the case where the outcome can take on a continuum of possible values” in a
way that, despite the use of a different formal framework, is nonetheless “quite
consonant with Carnapian techniques”.

introduces confirmation functions using this convention at Carnap [3, p.295]; The difference
is therefore merely terminological.
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3.1.2. Systems of inductive logic

A ‘system of inductive logic’ is a statement with the form ‘inductive methods
that do not satisfy the set of conditions X are inadequate’. Systems of inductive
logic differ only in the conditions that they require inductive methods to satisfy.

Carnap sought to discover systems of inductive logic that can usefully for-
malise real-world inductive assumptions, to study such systems’ mathematical
properties and to promote their use in science and philosophy.

3.1.3. Carnap on formalising inductive assumptions

Carnap coined the term ‘explication’ to describe the situation that obtains
when such a useful formalisation occurs, and it becomes practical to replace an
informal term, or ‘explicandum’—in our case, the natural-language expression
of an inductive assumption—with a formal ‘explicatum’ such as a system of
inductive logic.

Carnap drew a sharp distinction between what he called internal and ex-
ternal questions that may arise in connection with inductive-logical explicata.
The internal questions relate to which inductive methods the chosen system of
inductive logic identifies as inadequate, and are in general answerable using de-
ductive reasoning. External questions, on the other hand, concern whether the
choice of system was well-made, and are far less easily answered. Carnap puts
this point as follows:

An internal question of induction is a question within a given
system, e.g., concerning the value of c� for a given case. The answers
to questions of this kind are analytic. On the other hand, an external
question of induction is raised outside of the inductive system; a
question of this kind may concern the choice of an explicatum for
probability, in other words, the practical question whether or not to
accept a certain c-function or at least a class of such functions. . .
Carnap [5, p.981]

Although Carnap thought that the answer to an external question of induc-
tion is rarely clear-cut, he nevertheless proposed four broad criteria for judging
explicata in general, which are as follows2. Explicata should, Carnap thought,
be at least similar enough to their explicanda to replace them in some contexts
without misunderstanding (‘similarity’), as well as forming part of a harmo-
niously connected system of scientific concepts (‘exactness’) and being as easy
as possible to understand (‘simplicity’) and theorise about (‘scientific fruitful-
ness’).

3.1.4. Some important adequacy criteria

Below I characterise several adequacy conditions that make up systems of
inductive logic that become important later in this paper and explain the in-

2See Carnap [3, p.4] for remarks on clear-cutness and Carnap [3, §3] for Carnap’s criteria.
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ductive assumptions that they are intended to explicate.3

Probabilism. Probabilism requires inductive methods (L,m) with first-order
unary languages to satisfy the following conditions for all predicates P and
sentences θ, φ and ∃x(P (x)) ∈ SL:

P1 If θ is a logical truth then m(θ) = 1

P2 If θ logically entails ¬φ then m(θ ∨ φ) = m(θ) +m(φ)

P3 m(∃x(P (x))) = limn→∞ m(P (a1) ∨ . . . ∨ P (an))

Any measure function of an inductive method that satisfies probabilism can
be defined by specifying how it treats sentences consisting only of atoms4.

Probabilism formalises the inductive assumption that reasoning should pro-
ceed probabilistically. This assumption has been defended on various different
grounds. For example, Howson argues that probabilistic reasoning is uniquely
‘logically’ justified5, and there is also a well-known ‘Dutch Book’ argument to the
effect that reasoning should be probabilistic if it is linked to betting behaviour
in a certain way6. The assumption that reasoning should be probabilistic might
also be defended for methodological reasons such as those outlined by Gelman
et al. [9, Ch.1].

Constant exchangeability. Constant exchangeability imposes the following con-
dition on inductive methods (L,m):

Ex For any natural number n ∈ N, any sentence θ(a1, . . . , an) ∈ SL mention-
ing constants a1, . . . , an and any permutation σ of the natural numbers,
m(θ(a1, . . . , an)) = m(θ(aσ(1), . . . , aσ(n)))

Constant exchangeability explicates the assumption that it is irrelevant from
an inductive point of view which particular entities happen to be represented by
particular logical constants. This assumption might be appropriate, for example,
if the constants represent individuals and the available information does not
discriminate between them.

Johnson’s sufficientness postulate. Johnson’s sufficientness postulate requires
that inductive methods (L,m) have the following property:

JSP For any natural number n, atoms αj(x) and αh1(x), . . . , αhn(x) of L and
constants a1, ..., an+1, the value of m (αj(an+1) | ∧n

i=1αhi(ai)) depends
only on n and the number r of conjuncts αhi(ai) in the second argument
such that hi = j.

3Definitions of all these conditions are taken from Paris and Vencovská [15]. See Ch.3 for
probabilism, Ch.6 for constant exchangeability and Ch.17 for Johnson’s sufficientness postu-
late.

4See Paris and Vencovská [15, Ch.8]
5See Howson [11]
6See Paris and Vencovská [15, Ch.5] for a presentation of the ‘Dutch Book’ argument.
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Given a suitable interpretation, JSP formalises a natural inductive assump-
tion. Conditional measure functions must be interpreted as representing the
degree to which their second arguments give evidence for their first ones, and
constants as representing individuals whose interesting properties are repre-
sented by which atom they instantiate. JSP can then be taken to formalise
the assumption that there are only two relevant factors influencing the degree
to which a sample of n individuals’ interesting properties is evidence for a dif-
ferent individual having some configuration αj of properties: the number n of
individuals sampled and the number r of those individuals with configuration
αj .

This assumption is often appropriate: for example, suppose one is drawing
sweets from a large (for the sake of argument suppose it is large enough to con-
tain infinitely many sweets) bag and assigning degrees of belief to the possible
flavours—lemon or lime—of the next sweet. If one has some initial hunch as
to the likely distribution of flavours, but also wishes to take into account the
evidence in one’s hand, one might reasonably adopt the policy of initially allo-
cating degrees of belief based on the hunch, and then steadily adjusting them
so as to agree more and more with the observed frequencies. The inductive
assumption formalised by Johnson’s sufficientness postulate would ensure that
this policy is observed.

3.2. Connection with statistical models

Below I develop an approach to formulating statistical assumptions in the
form of systems of inductive logic suggested by Zabell [24]. Zabell claims that
statistical research can be improved by considering statistical models’ corre-
sponding systems of inductive logic because the latter are a useful vehicle for
clearly expressing inductive assumptions.7 He names the general approach of
choosing between statistical models on the basis of such assumptions ‘pragmatic
Bayesianism’.

I agree with Zabell’s claim, and in this section build on his work by showing
how any statistical model of a certain kind—a set of probabilistic constraints
on finitely-valued random variables—has a corresponding system of inductive
logic.

In contrast with results such as De Finetti’s representation theorem, which
have important applications to the practice of statistics, my demonstration is
not technically significant, as it amounts to a re-writing of the statistical model
using different terminology.

Nonetheless, I believe the exercise is interesting from a philosophical point
of view, as it shows that there is a clearly specified sense in which an important
class of statistical models can be thought of as systems of inductive logic. This

7For an interesting counterpoint see Romeijn [19], which contains an argument for the
converse claim that inductive logic can be improved by incorporating ideas from mathematical
statistics.
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means that Carnap’s arguments concerning choices of systems of inductive logic
can also be applied to the problem of choosing between such statistical models.

3.2.1. Probabilistic constraints on finitely-valued random variables

Statistical models often take the form of probabilistic constraints on finitely-
valued random variables. Finitely-valued random variables are functions X :
Ω → R ⊂ R from an underlying, at-most-countable, state-space Ω to a finite
range R of real numbers. I use the symbol X to represent the set of all random
variables under consideration in a particular case. Random variables are often
used to represent repeated experiments, with the members of Ω standing for
repetitions and the members of R for the possible results. For example, X(ω6) =
1 might represent that the sixth sweet drawn from a tube has flavour number
1.

A ‘configuration’ of random variables is a set of states K = {ω : X1(ω) =
v1K , . . . , Xn(ω) = vnK} determined by the values of the random variablesX1, . . . , Xn.

Probabilistic constraints on finite-valued random variables are sets of prob-
ability spaces M = {(Ω,P(Ω),X, P r) : conditions} such that Pr : Ω → [0, 1]
satisfies conditions preventing it from assigning certain numbers to certain con-
figurations of random variables.

As examples of probabilistic constraints on finitely-valued random variables,
consider the following models, which Gelman and Shalizi take as typical of
statistical research in practice8 and were part of an investigation into how voting
behaviour is related to income in different states of the USA:

Pr(y = 1) = logit−1(as + bx) (Model One)

and
Pr(y = 1) = logit−1(as + bsx) (Model Two)

In these models y, s and x are random variables, b is a real-valued parameter
and as and bs stand for real-valued components of the parameter vectors �a and
�b. logit−1 is the logistic function, which is a transformation used to make
the linear constraints on the right hand sides of the equations above apply to
the probabilities on the left hand sides. The underlying state-spaces are not
explicitly referred to, but their states represent voting acts.

In both models the random variable y has two possible values, 1 and 0,
representing a vote going to one or the other of two available political parties. s
has 50 values corresponding to the vote occurring in one or another state, and
x has five values representing the income quintiles a vote’s voter might belong
to. The models’ parameters can be adjusted so as to achieve the best possible
fit with empirical data documenting real votes.

Each model is a probabilistic constraint on finite-valued random variables: in
this case the members of Ω are the voting acts; each member of the set of random
variablesX = {y, s, x} has a finite range and the equations specifying each model

8See Gelman and Shalizi [10, §2.1]

9



exclude probability models depending upon the values their measures assign to
certain configurations of the random variables in X.

3.2.2. Probabilistic constraints as systems of inductive logic

Every probabilistic constraint M = {(Ω,P(Ω),X, P r) : conditions} can be
expressed in the form of a system of inductive logic using the procedure I outline
below. The idea is to find a logical language whose constants represent M ’s
states and whose atoms represent the possible values of its random variables,
and then to reproduce M ’s conditions as inductive logical adequacy criteria.
After showing how this can be done in general I work through an example using
the voting models introduced above.

First, suppose that each of the random variables X1, ..., Xl ∈ X have ranges
R1 = {v11 , . . . , v1q1}, . . . , Rl = {vl1, . . . , vlql}, each with, respectively, q1, q2, . . . , ql ∈
N possible values. Choose the language with q1 + q2 + . . .+ ql primitive predi-
cates and a set of constants with the same cardinality as Ω. Call this language
LM and the set of its constants CM .

Let f : Ω → CM be an arbitrary bijection associating the states of Ω with
the constants of LM .

LM will have exactly one primitive predicate for every possible value of
each of M ’s random variables, and its constants will correspond to M ’s states.
The predicates can be labelled PX1=v1

1
, . . . , PXl=vl

ql
accordingly. However, LM ’s

atoms cannot do the job of representing configurations of values of random vari-
ables without imposing more restrictions, because we have not yet built in the
impossibility of different values of the same random variable being instantiated
at the same time.

This feature can be captured by labelling each of LM ’s atoms either ‘good’
or ‘bad’ depending on whether or not it negates all except one of the predicates
corresponding to each random variable. To be precise, an atom is ‘good’ if and
only if, for every random variable Xi, it fails to negate exactly one predicate
out of PXi=vi

1
, . . . , PXi=vi

qi
, while negating all the others. Each good atom then

picks out a configuration of values of random variables, which can be identified
according to the predicates it does not negate: for example αv1

av
2
bv

3
c
(x) represents

the configuration X1 = a,X2 = b,X3 = c.9

With these terminological choices made, the probabilistic constraint can be
reproduced as the system of inductive logic including the following adequacy
conditions, applying to all inductive methods (L,m):

• L = LM

9This labelling procedure is similar to the one outlined by Carnap at Carnap [6, §2.A],
where each predicate is allocated a ‘family’ in such a way that the members each family’s
predicates partition of the language’s constants, that is, for any family F = {PF1 , . . . , PFn}
and constant a, PFj

(a) ∧ PFk
(a) is logically false provided that j �= k and

∨n
i=1 PFi

(a) is
logically true. Such families are analogous to the ranges of finitely-valued random variables,
so the admissible predicates of a language with families correspond exactly to the ‘good atoms’.
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• Probabilism.

• m(αb(a)) = 0 for any bad atom αb and constant a.

• For any state ω such that X1(ω) = v1j1 , . . . , Xl(ω) = vljl , if M ’s conditions
prevent Pr(ω) from being a certain number, then m(αv1

j1
...vl

jl

(f(ω))) can-

not be that number either.

3.3. Carnapian account of model choice

The fact that probabilistic constraints on finitely-valued random variables
correspond to systems of inductive logic in this way suggests that inductive
logical arguments can potentially be applied to discussions about statistical
models. The following ‘Carnapian’ philosophical account of statistical model-
choice does exactly this:

C Statisticians ought to choose whichever statistical models best explicate
the inductive assumptions they wish to entertain.

This account is ‘Carnapian’ in the sense that the proposed rationale for
choosing between statistical models is exactly the one that Carnap proposed for
choosing between systems of inductive logic, namely suitability as an inductive
assumption.

Reading this inductive logical rationale into statistics is plausible because
statisticians often treat statistical models as embodying assumptions. This can
be seen, for example, from Gelman and Shalizi’s account of models as sanction-
ing certain kinds of reasoning in the context of model-checking. In this regard
it is important to note that the Carnapian account does nothing to prevent
statisticians from testing models on the basis of how well they fit given data.
To the extent that bad fit is evidence that the assumptions a model embodies
are implausible and therefore not worth entertaining, the Carnapian account
advocates fit-based model-checking. Conversely, circumstances in which this is
not the case, and even very badly-fitting models are worth entertaining, either
because of untrustworthy data or lack of alternatives, present no problem for
the Carnapian account.

Another reason why it makes sense to apply Carnap’s philosophical approach
to statistical model-choice is that, as we have seen, statistical models and sys-
tems of inductive logic are formally similar. In the case of statistical models
in the form of probabilistic constraints on finite random variables, the models
themselves can be interpreted directly as systems of inductive logic. In cases,
such as those involving continuous random variables, where statistical models do
not obviously have corresponding systems of inductive logic, there is nonetheless
a strong analogy.

I emphasise that the Carnapian account does not commit a statistician to
using either the formal framework of Carnapian inductive logic or sharing Car-
nap’s views about the conditions under which particular assumptions, such as
constant exchangeability or Johnson’s sufficientness postulate, are appropriate.
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3.3.1. Example

This section shows how Gelman and Shalizi’s example of reasoning about
statistical models can be interpreted according to the Carnapian account. Model
One and Model Two from the example above are formulated as systems of
inductive logic, and Gelman and Shalizi’s reasons for Model Two are construed
as demonstrating its suitability as an inductive assumption.

Both models have three random variables with, respectively, 2, 50 and 5 pos-
sible values. We therefore choose a language L57 with 57 primitive predicates.

500 out of L57’s 2
57 atoms are good, as there are 2× 50× 5 = 500 possible

combinations of values of random variables. These good atoms can be labelled
so that, for example αy1s44x−2 might represent that a vote for party number 1,
the Republicans, occurs in state 44, say New Hampshire, and is performed by
a voter in income quintile −2, the bottom one.

A system of inductive logic can now be introduced whose adequacy condi-
tions reproduce the constraints in the original statistical model. For both of
our models this is straightforward: the system of inductive logic corresponding
to Model One, henceforth ‘System One’ requires that for any constant d and
values sj and xk, there are real-valued parameters b and a1, ..., a50 such that

m(αy1sjxk
(d)) = logit−1(aj + bxk). (1)

Similarly, ‘System Two’, corresponding to Model Two, imposes the requirement
that there must be real-valued parameters a1, ...a50 and b1, ..., b50 such that

m(αy1sjxk
(d)) = logit−1(aj + bjxk). (2)

Interpreting the two models as systems of inductive logic in this way, we can
see that the reasoning that lead Gelman and Shalizi to prefer Model Two to
Model One can be reconstructed as arguments that would plausibly persuade a
Carnapian inductive logician to reject System One in favour of System Two.

On this inductive logical reconstruction, the choice of which system to use,
if any, is an external question: the problem is to determine whether either sys-
tem usefully formalises an inductive assumption. As Gelman and Shalizi note,
System One has the advantage of simplicity, since it is has a well-understood
form and not too many parameters. It was therefore a reasonable first attempt
at a useful formalisation. However, in view of its systematic lack of fit with
the empirical data, System One arguably represents an implausible inductive
assumption. While it might be useful to explicate even such a dubious as-
sumption in some circumstances, the availability of System Two, which is more
plausible but not too much more complicated, means that in this circumstance
the best option is to reject System One in its favour.

4. Advantages of the Carnapian account

The Carnapian account of how statisticians ought to choose statistical mod-
els has two advantages over the falsificationist account. First, treatingt statis-
tical models as systems of inductive logic can make it easier for statisticians
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to articulate their reasons for choosing particular models (§4.1). Second, the
Carnapian account is in better harmony than the falsificationist account with
Gelman and Shalizi’s claims about good statistical practice (§4.2).

4.1. Technical Fruitfulness

The Carnapian account is technically fruitful, as considering statistical mod-
els’ corresponding systems of inductive logic can allow statisticians to express
some of their reasons for choosing models more articulately than would be pos-
sible otherwise.

When it is possible to find a model’s corresponding system of inductive logic,
and that system explicates a particular inductive assumption, the model can be
defended or attacked according to how appropriate that assumption is. In this
way, previously unarticulated justifications can be replaced by transparent ones
based on explicitly stated principles.

Finding statistical models’ corresponding systems of inductive logic can also
help to make clear whether, in a particular case, a model’s adoption is primarily
based on analytical convenience or if it represents a substantive judgement about
the nature of the scientific problem being confronted.

This advantage was identified by Zabell10, who argues that statisticians’
reasons for choosing models often lack such clarity.

To demonstrate this technical fruitfulness, I present below two examples of
important classes of statistical models whose corresponding systems of inductive
logic formalise natural inductive assumptions.

4.1.1. Independent, identically distributed random variables and constant ex-
changeability

De Finetti’s representation theorem identifies a duality between the system
of inductive logic requiring that probabilism and constant exchangeability be
satisfied and an important statistical tool, namely ‘IID models’.

An IID model consists of a set A of probabilistic constraints on finitely valued
random variables satisfying the ‘IID conditions’, together with a probability
distribution Pr : P(A) → [0, 1].

The IID conditions require that the sets A have only independent and iden-
tically distributed random variables. To see what this means, consider an ar-
bitrary set of constraints A = {(Ω,P(Ω),X, P r) : conditions}. The ‘indepen-
dence’ requirement imposes the equality Pr({ω : Xi(ω) = vi} ∩ {ω : Xj(ω) =
vj}) = Pr({ω : Xi(ω) = vi}) ·Pr({ω : Xj(ω) = vj}) on all values vi and vj of all
random variables Xi and Xj in X. Given a value v The condition of identical
distribution requires Pr({ω : Xi(ω) = v}) to be the same number for all random
variables Xi.

De Finetti’s representation theorem shows that every distribution that is
part of an IID model has a unique corresponding Carnapian inductive method

10See Zabell [24, p.291].
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that satisfies probabilism and constant exchangeability, and vice versa.11

Thanks to this correspondence, statisticians’ choices to use IID models can
be justified or criticised according to whether constant exchangeability and
probabilism represent reasonable inductive assumptions in the relevant scien-
tific situation. In circumstances where available information makes it prudent
to distinguish between individuals, constant exchangeability is not a reasonable
inductive assumption and therefore IID models should not be used, according
to the Carnapian account.

This recommendation seems to have been adopted in principle by the sta-
tistical community. For example, Gelman et al. write:

The usual starting point of a statistical analysis is the (often
tacit) assumption that the n values yi [in this context the indices
stand for states of a statistical model, which are analogous to con-
stants of a logical language] may be regarded as exchangeable. . . A
nonexchangeable model would be appropriate if information relevant
to the outcome were conveyed in the unit indexes. . . Generally, it is
useful and appropriate to model data from an exchangeable distri-
bution as independent and identically distributed. . .
Gelman et al. [9, p.6, round parenthesis and italics original, square
parenthesis added]

The Carnapian account gives a plausible interpretation of what is meant
by the condition that states “may be regarded as exchangeable”: it means
that constant exchangeability and probabilism explicate appropriate inductive
assumptions.

4.1.2. Dirichlet distributions and Johnson’s sufficientness postulate

Every IID model whose distribution is a member of the Dirichlet family
corresponds to a Carnapian inductive method that satisfies, in addition to
probabilism and constant exchangeability, the adequacy condition ‘Johnson’s
sufficientness postulate’12.

The same reasoning that favours using IID models when constant exchange-
ability is justified extends to this more specific case: statisticians following the
Carnapian account can therefore adopt IID models with Dirichlet distributions
on a principled basis. The scientific situation they face must render appropriate
the inductive assumption that the satisfaction ratio of the values of the vari-

11See Jeffrey [12] and Carnap [7, p.217] for presentations of De Finetti’s representation
theorem and discussions of how it relates to Carnapian inductive logic.

12This relationship was demonstrated in principle by Johnson [13] in the 1930s. Kemeny [14,
§ 4] later used Johnson’s sufficientness postulate, probabilism and constant exchangeability
to characterise the so-called ‘continuum of inductive methods’, but did not explicitly connect
these inductive methods with IID models with Dirichlet distributions. Zabell [23] makes this
connection (see equation 2.14), as well as presenting a more rigorous and general version of
Johnson’s proof.
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ables in some samples, together with the sample sizes, should be the only factors
relevant to predictions of future values of the variables.

According to Zabell13, future work may produce more correspondences of
this kind, allowing statisticians to clarify the assumptions underlying other
choices of models. Such research can only add to the Carnapian account’s
technical fruitfulness.

4.2. Agreement with Gelman and Shalizi’s arguments

The philosophy behind the Carnapian account—Carnap’s philosophy of in-
ductive logic—is in remarkable harmony with Gelman and Shalizi’s view about
the practice of statistics. On the other hand there are several fundamental
tensions between Gelman and Shalizi’s position and Karl Popper’s philosophy
of science. These parallels and contrasting tensions demonstrate that the Car-
napian account of statistical model-choice has the following advantages over the
falsificationist account.

Fist, to the extent that Gelman and Shalizi’s claims are correct, and shared
by other working statisticians, the parallels show that statisticians can adopt the
Carnapian account without committing to unfamiliar or implausible philosoh-
pical positions. They therefore constitute evidence of the Carnapian account’s
feasibility.

Secondly, the parallels show that the Carnapian account of statistical model-
choice can be seen as part of a more general underlying philosophy of science.
This kind of well-connectedness is advantageous as it allows similarities between
foundational problems in statistics and other areas to be more easily identified
and exploited. On the other hand, since the falsificationist account cannot
accommodate Gelman and Shalizi’s claims at the same time as Popper’s philos-
ophy, it must either be philosophically un-connected or else inconsistent with
its authors’ views.

4.2.1. Parallels with Carnap’s philosophy

Just as Gelman and Shalizi argue that, in practice, statistical models can
have other functions than representing knowledge, Carnap argued that systems
of inductive logic need not represent beliefs in order to be useful explicata.
Carnap’s expression of this point of view is very similar to Gelman and Shalizi’s:

The adoption of an inductive method is neither an expression
of belief nor an act of faith, though either or both may come in as
motivating factors. An inductive method is rather an instrument
for the task of constructing a picture of the world on the basis of
observational data. . .

Carnap [3, §18]
[A choice of inductive method] will take into consideration . . . the

truth-frequency of predictions and the error of estimates; further,

13See Zabell [24, p.292]
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the economy in use, measured by the simplicity of the calculations
required; maybe also aesthetic features, like the logical elegance of
the definitions and rules involved.

Carnap [4, p.55]
. . . ‘the model’, for a Bayesian, is the combination of the prior

distribution and the likelihood, each of which represents some com-
promise among scientific knowledge, mathematical convenience and
computational tractability. . . . we do not have to worry about mak-
ing our prior distributions match our subjective beliefs. . .

Gelman and Shalizi [10, p.19-20]

Similarly, Carnap would have been at ease with Gelman and Shalizi’s insis-
tence that the way in which resemblance between models and data sources is
measured should depend on the “respects that matter to us”, that some degree
of non-resemblance should be tolerated and that the ultimate criterion for selec-
tion should be whether or not “reasoning based on the model will be reliable”
in the future.

Carnap thought that inductive logic was essentially a tool for formalising
scientific assumptions. From this pragmatic point of view it is only natural
that the way systems of inductive logic, and analogously statistical models, are
evaluated should depend on the priorities of the investigator. He would also
have seen nothing problematic about failing to reject statistical models that are
not completely satisfactory: this is exactly his view of a system of inductive
logic that he advocated at one point:

It will not be claimed that c� [the only confirmation function allowed
by the system of inductive logic that Carnap was advocating] is
a perfectly adequate explicatum. . . For the time being it would be
sufficient that c� be a better explicatum than the previous methods.

Carnap [3, p.563, square parentheses added]

Finally, Carnap made philosophical arguments that are analogous to Gel-
man and Shalizi’s criticism of the received view. Just as Gelman and Shalizi
see no problem in leaving the Bayesian inferential framework in order to evalu-
ate statistical models, and therefore reject RV, Carnap rejected the analogous
stipulation that choices between systems of inductive logic should depend only
on inductive-logically represented factors. Such external questions, he thought,
ought to to be answered using testing and the experience of specialists rather
than general philosophical proscriptions:

The acceptance or rejection of abstract linguistic forms, just
as the acceptance or rejection of any other linguistic forms in any
branch of science, will finally be decided by their efficiency as instru-
ments, the ratio of the results achieved to the amount and complexity
of the efforts required. To decree dogmatic prohibitions of certain
linguistic forms instead of testing them by their success or failure in
practical use, is worse than futile. . . Let us grant to those who work

16



in any special field of investigation the freedom to use any form of
expression which seems useful to them; the work in the field will
sooner or later lead to the elimination of those forms which have no
useful function.

Carnap [2, §5]

4.2.2. Problems viewing Gelman and Shalizi as Popperians

In contrast to their natural fit with Carnap’s philosophy, Gelman and Shal-
izi’s arguments are hard to square with the philosophy of Karl Popper.

Contrary to Gelman and Shalizi’s view that measures of resemblance between
models and data sources should take into account the investigation’s priorities,
Karl Popper argued that disagreement between scientific systems and empirical
facts should be investigated in an objective way that does not depend on what
matters to scientists. The nature of Popper’s view is clear from this passage,
where he criticises a proposal by Reichenbach to define statistical hypotheses’
probability as the relative frequency with which they have previously been in-
stantiated:

. . . the suggested definition would make the probability of a hy-
pothesis hopelessly subjective: the probability of a hypothesis would
depend upon the training and skill of the experimenter rather than
upon objectively reproducible and testable results.

Popper [16, p.256]

Popper also thought that the conditions under which a system should be
rejected were sharply defined: he claimed that rejection should occur whenever
a reproducible effect that is inconsistent with the system is discovered14. This
view seems at odds with Gelman and Shalizi’s view that some kinds of non-
resemblance between models and data sources should be tolerated.

Gelman and Shalizi seem to acknowledge this divergence from Popper’s views
on the question of model-checking, writing that “Popper’s specific ideas about
testing require, at the least, substantial modification”15. However, there are
further points of tension between their position and Popper’s.

Popper saw scientific research as primarily concerned with attempting to
demonstrate that theories are false: he saw activities that do not assist this
process as not strictly scientific. It seems difficult, following such an approach,
not to construe the adoption and rejection of statistical models as expressions
of belief and disbelief, or to find conscionable Gelman and Shalizi’s claim that
desiderata that have little to do with truth and falsity, such as convenience or
tradition, can be important in statistical research.

Finally, Karl Popper was an anti-inductivist: he thought that the adoption
of scientific theories should never depend on judgements about the accuracy of

14See Popper [16, p.56].
15SeeGelman and Shalizi [10, p.28].
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their future predictions based on past observations. Popper believed that such
inductive judgements were unscientific:

Induction, i.e. inference based on many observations, is a myth.
It is neither a psychological fact, nor a fact of ordinary life, nor one
of scientific procedure.

Popper [17, p.53]

Gelman and Shalizi, in contrast, argue that judgements, based on past ob-
servations, about the future reliability of reasoning based on statistical models
should play an important role in statistical investigations. According to them,
such judgements are required in order to determine how to measure resemblance
between models and data sources and how much non-resemblance can tolerated
without rejection. Gelman and Shalizi therefore seem to be inductivists accord-
ing to Popper’s sense of the word.

Contrary to Gelman and Shalizi’s assessment, their claims about the practice
of statistics seems to be more than superficially incompatible with Popper’s
philosophy of science. They disagree with Popper on the fundamental question
of why theories should be accepted and rejected and that of whether science
should be inductive.

5. Allaying qualms about Carnapian inductive logic

Despite its advantages over the falsificationist account, statisticians might be
hesitant to adopt the Carnapian account due to suspicions about its underlying
philosophy. In this section I address several such concerns.

5.1. The problem of induction

It might be thought that the Carnapian account is particularly vulnerable
to the worries about the rationality of induction raised by Hume, since it has
an ‘inductive’ underlying philosophy. An anti-inductive philosophy of statistics,
according to which there is no need to reason inductively, might seem preferable.

I think that such caution about induction is unnecessary, as the Carnapian
account suffers no more from the problem of induction than any anti-inductive
alternative. systems of inductive logic are intended merely to formalise already-
existing inductive assumptions for the sake of practical convenience rather than
to justify them. While systems of inductive logic may be just as difficult to
justify as the everyday inductive assumptions that they explicate and Hume
problematised, no additional difficulty arises from the formalisation.

On the other hand, anti-inductive philosophies must address the ‘practical
problem of induction’, as set out in Salmon [20]. This is the problem of finding
rational but non-inductive grounds to trust some un-falsified systems more than
others when making practical decisions. It is hard to deny that some un-refuted
theories are more trustworthy than others: the absurdity of the opposite position
is clear from Worrall’s example of a person who decides to make decisions based
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on the un-falsified theory that attempting to float down from the Eiffel tower
will soon become safer than taking the lift16.

However, just as in the case of the original problem of justifying induction,
it is difficult to say what kind of reasoning could provide the required rational
grounds, as in this context deductive reasoning cannot discriminate between un-
falsified theories, while inductive reasoning has been ruled out by stipulation.
Solving this problem seems to be just as difficult as solving the original problem
of induction.

5.2. Excessive ambition

It has been suggested that Carnap sought to discover a single system of
inductive logic that explains all of scientific reasoning. Putnam, for example,
attributes to Carnap the view that

. . . something like a formal method (‘inductive logic’) underlies
empirical science, and continued work might result in an explicit
statement of this method. . .

Putnam [18, p.189, parentheses and quotation marks original]

Statisticians might justifiably be wary of such an ambitious philosophy: it is
not clear that there even is a single method underlying all of empirical science,
let alone one that can feasibly be formalised.

However, Carnap’s ambitions were not so lofty. As shown by the following
quotation, Carnap did not think it was feasible to explicate all of scientific
reasoning using inductive logic:

. . . there are many situations in science which by their complexity
make the application of inductive logic practically impossible. For
instance, we cannot expect to apply inductive logic to Einstein’s
general system of relativity. . .

Carnap [3, §49]

Carnap explains the true aims of his research at Carnap [3, §49]: he wanted
inductive logic’s scientific contribution, when it was fully developed, to consist
in providing “systematic unity” to mathematical statistics, as well as “a clar-
ity and exactness of its basic concepts” by expressing various statistical meth-
ods and concepts using inductive logic, analogously to the way that Russell
and Whitehead attempted to formulate mathematical concepts using deductive
logic. While this goal is certainly ambitious, it is at least potentially feasi-
ble, in contrast to the incorrectly attributed goal of formalising all of scientific
reasoning.

16See Worrall [22]
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5.3. Apriorism

Finally, a sceptical statistician might believe that Carnap wanted to find
logical or a-priori reasons for choosing between systems of inductive logic. This
‘apriorist’ view might seem discordant with the conduct of practising statis-
ticians, who typically use non-logical, factual information to build and test
statistical models.

However, such scepticism would be based on a misconception about the kind
of ‘logicality’ that Carnap had in mind. Carnap explains at Carnap [3, §10-12]
that he wanted systems of inductive logic to be ‘logical’ only in the weak sense
that they mention only formally well-defined concepts. This requirement relates
only to the way in which systems of inductive logic are specified, serving to en-
sure that the process of explication results in formalised inductive assumptions,
rather than just differently stated informal ones.

Carnap was quite happy, on the other hand, for the reasons for which systems
of inductive logic are chosen not to be logical or a-priori in any sense. This can be
seen from this passage from the appendix to Logical Foundations of Probability :

The system of inductive logic here proposed. . . is intended as a
reconstruction. . . of inductive thinking as customarily applied in ev-
eryday life and in science.

Carnap [3, p.576]

Clearly the question of which systems of inductive logic reconstruct inductive
thinking is not entirely logical; nor can it be answered using exclusively a-priori
reasoning. Some a-posteriori investigation into the nature of thinking as it
occurs in everyday life and science needs to take place. Thus Carnap’s aim
cannot have been to find purely logical or a-priori grounds for choosing between
systems of inductive logic.

This reading of Carnap is somewhat controversial. It is widely believed that
the early Carnap was an apriorist, but that he abandoned this position in his
later work. While I believe that quotations like the one above undermine this
view, showing that neither early nor late Carnap were apriorists, the scepti-
cal statistician can safely disregard this exegetical debate by taking the late
Carnap’s writing to constitute the philosophical background for the Carnapian
account.

6. Conclusion

In summary, the Carnapian account of how statisticians ought to choose
statistical models seems superior to the falsificationist account found in Gelman
and Shalizi [10]. It is technically fruitful, potentially allowing more articulate
expression of the reasons behind the selection of particular models. Clearly
stated modelling assumptions can only improve statistical research. In addition,
unlike the falsificationist account, the Carnapian account has a viable underlying
philosophy that is in tune with Gelman and Shalizi’s claims about the practice
of statistics. Since the Carnapian account has these advantages, I conclude that
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Gelman and Shalizi’s argument would be improved by substituting it for the
falsificationist account.
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[15] Paris, J. and Vencovská, A. (2014). Pure Inductive Logic. Cambridge
University Press.

[16] Popper, K. (1959). The Logic of Scientific Discovery. Routledge.

[17] Popper, K. (1962). Science: Conjectures and Refutaions. New York Lon-
don.

[18] Putnam, H. (1981). Reason, Truth and History. Philosophical Papers.
Cambridge University Press.

[19] Romeijn, J.-W. (2011). Inductive logic and statistics. In Woods, J., Hart-
mann, S., and Gabbay, D. M., editors, Inductive Logic, volume 10 of Handbook
of the History of Logic, pages 625–650. North-Holland.

[20] Salmon, W. C. (1981). Rational prediction. British Journal for the Philos-
ophy of Science, pages 115–125.

[21] Skyrms, B. (1996). Carnapian inductive logic and Bayesian statistics. Lec-
ture Notes-Monograph Series, 30:321–336.

[22] Worrall, J. (1989). Why both Popper and Watkins fail to solve the problem
of induction. In Freedom and Rationality, volume 117 of Boston Studies in
the Philosophy of Science, pages 257–296. Springer Netherlands.

[23] Zabell, S. L. (1982). W. E. Johnson’s “sufficientness” postulate. The Annals
of Statistics, 10(4):1090–1099.

[24] Zabell, S. L. (2011). Carnap and the logic of inductive inference. In Woods,
J., Hartmann, S., and Gabbay, D. M., editors, Inductive Logic, volume 10 of
Handbook of the History of Logic, pages 265–309. North-Holland.

22


