Interpreting probability in causal mod-
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ABSTRACT. How should probabilities be interpreted in causal mod-
els in the social and health sciences? In this paper we take a step
towards answering this question by investigating the case of cancer in
epidemiology and arguing that the objective Bayesian interpretation
is most appropriate in this domain.

After introducing the problem in §1 and giving an overview of
causal analysis in the social and health sciences in §2, in §3 we present
the cancer case study in some detail. In §4 we discuss the importance
of correctly interpreting probability. Then, in §5, we put forward some
desiderata that an interpretation of probability ought to satisfy; two
Bayesian interpretations of probability come out well according to
these desiderata. In §6 we go further by showing how the full-blown
objectivity of objective Bayesianism is needed for the practice of can-
cer treatment. Finally we discuss the ramifications of this conclusion
for the social and health sciences in §7.

1 Introduction

Whilst it might seem uncontroversial that the health sciences search for
causes—that is, for causes of disease and for effective treatments—the causal
perspective is less obvious in the social sciences, perhaps because it is ap-
parently harder to glean general laws in the social sciences than in other
sciences. Thus the search for causes in the social sciences is often perceived
to be a vain enterprise and it is often thought that social studies merely
describe the phenomena.

On the other hand an explicit causal perspective can already be found
in pioneering works of Adolphe Quetelet and Emile Durkheim in demogra-
phy and sociology respectively, and the social sciences have taken a signifi-
cant step in quantitative causal analysis by following Sewall Wright’s path
analysis, which was first applied in population genetics. Subsequent de-
velopments of path analysis—e.g., structural models, covariance structure
models and multilevel analysis—have the merit of making the concept of
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cause operational by introducing causal relations into the framework of sta-
tistical modelling. However, these developments in causal modelling leave a
number of conceptual issues unanswered: for instance the question of how
probability should be interpreted in probabilistic causal models.

In the philosophy of probability many interpretations have been pro-
posed and crucial objections raised. For instance, it has been argued that
the frequency interpretation does not make sense in the single-case, that
subjectivist accounts lead to arbitrariness in probability assignments, and
that logical interpretations, though suited to gambling situations, are of
scarce applicability in science.

In this paper we raise the problem of the interpretation of probability
within a specific context: causal models in cancer epidemiology.! This is
motivated by the thought that competing interpretations are not right or
wrong, but that they are better or worse suited to particular contexts and
the demands we make of them. To this end, we first introduce causal anal-
ysis in the social and health sciences and then present the case of cancer
epidemiology in some detail. We pay particular attention to explaining dif-
ferent possible meanings of probabilistic statements in this context and the
importance of choosing one interpretation of probability over another. We
then argue that any satisfactory interpretation of probability should satisfy
five desiderata; this narrows down the choice to the frequency interpreta-
tion twinned with an empirically-based subjective interpretation or with an
objective Bayesian interpretation. We go on to argue that the probabilities
in causal models in cancer epidemiology should be given a frequency-cum-
objective-Bayesian interpretation; the main reason for this choice is the
need to cope with two different types of probabilistic inference, generic and
single-case.

2 Causality in the social and health sciences

Different social sciences study society from different perspectives. Sociol-
ogy studies the structure and development of human society, demography
attends to the vital statistics of populations, economics studies the manage-
ment of goods and services, epidemiology studies the distribution of disease
in human populations and the factors determining that distribution, etc.
In spite of these differences, the social and health sciences share a common
objective: to understand, predict and intervene on society. Knowledge of

1We are fairly liberal as to which models count as causal. Arguably, a model is causal
if its relationships are interpreted causally or put to causal use. Thus associational and
regression models, which tend not be explicitly causal, would count as causal for us if
the relationships in the model are interpreted causally (e.g., if an association between
smoking and cancer is interpreted as supporting the claim that smoking causes cancer)
or used as a basis for intervention (e.g., by banning tobacco advertising).
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causes is required to achieve this common goal; such knowledge provides an
explanation of social phenomena as well as of individual behaviour.

Whilst social scientists have been looking for social causes, health scien-
tists traditionally focus on the biological causes of diseases. For instance,
in Le Suicide Emile Durkheim studies suicide as a social phenomenon and
consequently looks for the social causes of the suicide rate in the population.
Modern medicine, since the work of Claude Bernard (1813-1878), tries to
identify physiological mechanisms active in living beings. The Henle-Koch
Postulates, formulated by Robert Koch in 1882, provided criteria for judge-
ments about the presence of micro-organisms as causes of disease (Koch,
1882). For instance, the current theory of carcinogenesis involves a particu-
lar molecular mechanism. Under normal circumstances the growth of cells is
controlled accurately by inherited mechanisms and stimulated or inhibited
as required. Cancer occurs when genetic alterations (mutations) disturb
the normal regulation of a cell and cause it to erroneously multiply—with
potentially fatal consequences. Mutations like this trigger cell growth either
directly or indirectly by disrupting the mechanisms responsible for limiting
cell division. On the other hand, the social sciences try to understand the va-
riety of ways in which the population is exposed to carcinogenic substances,
according to levels of education, economic status, type of occupation, etc.

The association between diseases and various socio-economic factors is
the object of research in several disciplines. In particular, epidemiology
typically tries to single out individual genetic factors, biological factors,
and environmental risk factors. Studies have recently focused on the role of
neighbourhood environment (see Pickett and Pearl (2001) for a literature
review). Neighbourhood environment affects health through the availability
and accessibility of health services, infrastructure deprivation, stress, lack of
social support, and so on. An established tradition in sociology successfully
studies the impact of neighbourhood environment on sociological outcomes
such as educational attainment and labour market opportunity by taking
advantage of multilevel analysis. Epidemiology picks up this tradition and
uses multilevel analysis to examine group level effects on individual health.
Thus, although for long time the social and health sciences have trodden
quite different and independent paths, a new perspective integrating both
approaches is now seeming to emerge.

The case of epidemiology is of particular interest since it has been argued
that an integration of the social science approach and the health science ap-
proach will get at a better understanding of causal relations (see Susser and
Susser (1996); Vineis et al. (2004); Weed (2000) and references therein).
Some time ago the same methodological turn was also advanced in de-
mography (Mosley and Chen, 1984) for studying the phenomenon of child
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mortality in developing countries: social and economic determinants exert
an impact on mortality through biological mechanisms. Hence, Mosley and
Chen’s approach—which now constitutes the received view in the specific
field of child mortality in developing countries—incorporates both social
and biological variables and integrates research methods proper to the two
domains. Because of this move to consider both biological and social factors
when explaining a given phenomenon, we see epidemiology as paradigmatic
of the social and health sciences.

Epidemiology, being interested in the biological and social determinants
of diseases and in their distribution on the population, has cognitive and
practical goals. The cognitive goal concerns the aetiology of diseases, and
the practical goal concerns the implications of such causal knowledge on
policy making and also on causal attribution and diagnosis in particular
individuals.

In §3 we shall focus our attention on the case of cancer epidemiology.
This will help us make two major points in the paper. First, epidemiology
is concerned with two different types of causal inferences. One is generic and
concerns the population as a whole, and the other is single-case and con-
cerns particular individuals.? Second, both causal inferences are essentially
probabilistic; consequently we raise the question of which interpretation
of probability best fits these probabilistic inferences. We shall argue that
probabilities have to be interpreted according to an objective Bayesian ap-
proach in the single case and according to a frequentist approach in generic
inferences.

3 Case study: cancer

In the late ’50s, when he was a scientific consultant for the Tobacco Manu-
facturers Standing Committee, Sir Ronald Fisher advanced that the corre-
lation between smoking and lung cancer was due to an unknown genotype
influencing both smoking behaviour and the predisposition to lung cancer,
thus casting doubt on the hypothesis of a direct causal link from smoking to
lung cancer.®> The primary intent of Fisher was to point to the well known
fact that correlation is not causation and that alternative explanations—

2There is a subtlety here: the distinction between population-level and individual-level
(commonly drawn with regard to causal claims) does not quite correspond to the distinc-
tion (commonly drawn with regard to interpretations of probability) between the generic
and the single case. This can be seen from the following claims. In general, inequality
(population-level, generic) causes deterioration in health (population-level, generic). The
inequality of her compatriots (population-level but single-case) is a cause of Naomi’s de-
terioration in health (individual-level, single-case) (Glymour, 2003). To simplify matters
we shall restrict our attention to the generic / single-case distinction in this paper.

3 (Fisher, 1957, 1958)
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such as the one of an unknown genotype—could equally well account for
statistical correlations.

Since then, cancer research has gone a long way. The link between smok-
ing and cancer has been investigated under almost every possible angle.
For instance, scientists try to establish the effect of tobacco control pro-
grams on declines in smoking and heart disease mortality (Barnoya and
Glantz, 2004). In this type of study the causal effectiveness of tobacco con-
sumption on lung cancer is implicitly assumed. However, if we can ascribe
a decrease in mortality rates to a decrease in smoking, this will provide
further epidemiological evidence. Fisher’s hypothesis of a gene regulating
cancer predisposition has not been dismissed, however. For instance, a re-
cent study (Hwang et al., 2003) tried to assess the causal role of the p53
germline. Results indicate that a cancer predisposition due to a p53 muta-
tion is significantly increased by cigarette smoking.

Specific studies concerning particular populations or subpopulations, such
as those mentioned above, contribute to the mapping of the aetiology of
cancer. From an epistemological viewpoint, the problem is how to gather
together knowledge acquired in those specific studies in order to attain gen-
eral epidemiological knowledge abut cancer. Consider for instance the two
following papers: Lagiou et al. (2005); Vineis et al. (2004). These articles
intend to provide a rather complete overview of the present state of af-
fairs. That is, the aim is to summarize various epidemiological evidence on
tobacco and cancer coming from specialised studies.

The mapping of the aetiology of cancer bears on several questions. One
is the question of which types of cancer are due to tobacco consumption.
There are several: lung, nasal cavity, stomach, liver, kidney, uterine cervix.*
Another is the question of which biological factors are carcinogenic (e.g.,
hepatitis B and C virus, helicobacter pylori, human papilloma viruses, etc.)
and which cancer sites are associated with these factors. A third question
concerns the occupational chemicals that produce cancer; for instance, ar-
senic, asbestos, benzene, hair dyes, painting materials, soot. From a medical
viewpoint it is important to understand which cancer sites are most often
associated with exposure to these substances; on the other hand from a
demographic viewpoint it is also important to figure out which parts of the
population, in terms of social class or occupation, are more exposed to those
carcinogenic substances and what the intensity of exposure is. A large part
of medical and epidemiological research in cancer aetiology also focusses on

4 Although epidemiological studies have variably shown positive, inverse or null as-
sociations between cigarette smoking and breast cancer, experimental studies indicate
that tobacco smoke contains potential human breast carcinogens. See Terry and Rohan
(2002).



222 Federica Russo and Jon Williamson

the genetic factors predisposing or preventing cancer. Dietary behaviour,
lifestyle factors (e.g., passive smoking, consumption of alcoholic beverages,
ultraviolet radiation), and socio-demographic characteristics related to can-
cer are likewise investigated.

It is worth pointing out that results of particular studies do not auto-
matically count as epidemiological evidence. Their soundness is evaluated
according to specific criteria. The International Agency for Research on
Cancer (IARC) classifies evidence of carcinogenicity into four categories:®
sufficient, limited, inadequate and evidence suggesting lack of carcinogenic-
ity. We have sufficient evidence when a positive relationship has been ob-
served between the exposure and cancer in studies in which chance, bias and
confounding could be ruled out with reasonable confidence. Evidence is lim-
ited if the working group considers the association credible, but chance, bias
and confounding could not be ruled out with reasonable confidence. Evi-
dence is inadequate if the available studies are of insufficient quality, con-
sistency or statistical power to permit a conclusion about the presence or
absence of a causal relation. Finally, evidence suggests lack of carcinogenic-
ity when several studies are consistent in not showing a positive association
between exposure to the agent and any studied cancer at any observed level
of exposure.b

If this tells us something about the kind of evidence (biological and social)
used to support causal statements and about the criteria used for evaluating
those results, it doesn’t say anything about the very concept of causation
underlying causal analysis in cancer epidemiology.

In the following, we shall not review the extensive epidemiological liter-
ature to come up with an inventory of different concepts of cause. Such an
overview of different concepts of cause in epidemiology is offered in recent
publications (see Parascandola and Weed (2001) and references therein);
virtues, faults and applicability of various concepts—production, necessary
and sufficient, sufficient-component, counterfactual, probabilistic—are pre-
sented there. We won’t even enter the debate about whether a probabilistic
concept of causality does a better job than a deterministic one (although this
seems to be the most recent point of view emerging, see Parascandola and
Weed (2001); Vineis et al. (2004)). Instead, we shall focus on causal mod-
els and inferences in cancer epidemiology where, as matter of fact, causal
relations are probabilistically characterized. It is worth noting, however,
that a probabilistic methodology and epistemology do not necessarily im-

5See Vineis et al. (2004, p. 100) and Lagiou et al. (2005, p. 569), and the TARC web
site http://monographs.iarc.fr/ENG /Preamble/index.php.

60f course, evidence of lack of carcinogenicity requires that studies meet to a sufficient
degree the standards of design, and in particular that bias, confounding and missclassi-
fication be ruled out with a reasonable degree of certainty.
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ply that the concept of cause—i.e., the cause in the metaphysical sense—is
itself probabilistic.” Consequently, “probabilistic” has to be understood in
a non-metaphysical sense—i.e., as just referring to the use of probabilistic
models for causal analysis in cancer epidemiology.

As mentioned above, there is now unquestionable evidence that tobacco
is a powerful carcinogenic substance that can cause cancer in many different
organs. It is also commonly agreed that while tobacco consumption raises
the probability of developing cancer, tobacco consumption—whether active
or passive—is not a sufficient cause. In other words, what scientists seek to
establish is the extent to which smoking increases the probability of devel-
oping cancer, or the extent to which exposure to a carcinogenic substance
such as asbestos influences cancer rates, or the extent to which particular
dietary habits prevent—i.e., lower the probability of developing—cancer.
Thus, causation of cancer is conceptualized in a probabilistic sense involv-
ing statistical terms and procedures. Whether studies are experimental or
observational, the goal in both cases is to reduce uncertainty, by performing
as many studies as possible to generate sensible summary statistics, and by
reducing confounding and bias. Different statistical models, ranging from
multiple regression analysis to structural modelling, are used to accomplish
this task.

It is not hard to see that these probabilistic models only allow for prob-
abilistic inferences. But what types of inferences are we concerned with?
The first type of inference, which we shall call generic inference, aims at es-
tablishing whether or not a factor is a cause of disease by deciding whether,
roughly, alterations in the frequency or intensity of this factor are accom-
panied by alterations in the frequency or intensity of disease. This corre-
sponds to the naive causal statement ‘smoking causes lung cancer.” The
second type of inference, which we shall call single-case inference, is instead
concerned with particular individuals. For instance, exposure to a known
cause of cancer implies that this individual is now more likely to develop
cancer. Assessing single-case probabilities for particular individuals is a real
worry for practicians, and in fact one goal of Evidence Based Medicine is to
provide guidelines to tackle particular situations.® Parascandola and Weed
(2001, p. 908) echo Cox’s, Holland’s and Olsen’s criticisms of probabilistic
accounts: a probabilistic theory of causation, based on statistical inequali-
ties, is inadequate since it leaves unclear what it means for smoking to raise
the probability of an individual developing lung cancer. They argue that
in this respect counterfactuals help. Instead, we argue that the problem is

"Parascandola and Weed (2001, p. 906) make this point but don’t develop it further.
8See for instance online resources of the Centre for Health Evidence,
http://www.cche.net/usersguides/.
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not the inadequacy of probabilistic theories but rather a neglected aspect
of them: the distinction between the generic and the single-case.

Lagiou et al. (2005, p. 569) seem to have grasped the importance of such
a distinction, for they claim that although criteria such as those mentioned
above are surely important for discerning causal association from non-causal
association, they do not allow one to separate the different issues posed by
(i) the results of a single study, (ii) the results of several studies, and (iii)
the likelihood of causation in a particular individual. They acknowledge
that an individual study (what they call level I) does not allow one to infer
causation but can provide evidence when we already have several studies
(level II) pointing to the same causal relation. Level II, however, is not
sufficient to establish a causal link between an individual’s exposure and
disease. What it is still possible to do, they claim, is to infer from level II
that the specific individual’s illness was more likely than not caused by the
specified exposure. This highlights the levels of causation and the different
types of inferences we make either concerning the population as a whole or
concerning particular individuals.

The discussion, however, is not pushed further. In particular, only to
recognise different types of inferences is not enough: those inferences are
probabilistic and consequently raise the problem of how probability has to
be interpreted. This is the question we turn to next.”

4 Interpreting probability

In the philosophy of probability there is a wide-ranging debate about inter-
pretation. Indeed, discussions about the meaning of probability began as
early as the first formulations of probability theory. We direct the reader
to Hacking (1975) and Gillies (2000) for interesting historical overviews.
As we have seen in §3, causal inferences in cancer epidemiology are es-
sentially probabilistic. A standard objection to probabilistic theories of
causation is that the claim ‘smoking raises the probability of lung can-
cer’ is ambiguous for it might be interpreted in different ways. It might
say that within the population, the proportion of those who develop lung
cancer is greater amongst smokers. It might also say that if a particular
patient smokes, then it’s more likely that she will develop lung cancer. This
ambiguity motivates a distinction between different levels of causation and
consequently between different types of causal inferences: generic and single-
case. Those claims state, in different terms, a probabilistic relation between

9nferences in cancer epidemiology, whether generic or single-case, are also based on
the computation of relative risks and odds ratios. In the appendix we briefly address the
problem of correctly interpreting these measures and argue that the generic/single-case
distinction is again illuminating.
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smoking and lung cancer. But what does probability mean in these cases?
Is there a unique interpretation fitting the two examples equally well? Or
should we attach a different meaning to probability depending on the claim
at stake?

It is not hard to see that those claims state quite different things. A
generic causal claim posits an average causal relation, which is supposedly
valid for the majority of individuals exposed within the population. The
adoption of a probabilistic framework entails, by itself, that such a causal
claim is not a universal and necessary law, and, consequently, that not every
individual in the population who instantiates the cause will instantiate the
effect. In fact, as is well known, some smokers never develop cancer, and
some non-smokers instead do. This leads us to ask what the meaning of
a single-case causal claim is. Two meanings ought to be distinguished. In
one case we wish to make a prediction: your smoking now makes you more
likely to develop cancer in the future. A second interpretation is instead
retrospective: it is likely that smoking caused you to develop lung cancer.

It is then apparent that the meaning of probability for generic causal
claims is connected with frequency of occurrence, whereas for single-case
causal claims the meaning is closer to something like belief or credence
about what will happen or happened. A competing interpretation for the
single-case is single-case chance. However, as we shall see, single-case chance
raises problems of epistemic access.

The overview we offer next is meant to see whether any of the leading
interpretations provide sensible meaning both for generic and single-case
claims. However, we shall see that none of these interpretation succeeds.
In §5 we argue that a frequency interpretation is needed for the generic
and that a Bayesian approach is needed for the single case. In §6 we will
argue that practical considerations motivate choosing the objective Bayesian
approach over the empirically-based Bayesian approach.

We will now sketch very briefly the main features of the four leading
contenders: (i) the classical and logical interpretations; (ii) the physical in-
terpretations: frequency and propensity; (iii) the subjective interpretation;
(iv) the objective Bayesian interpretation.

The classical interpretation of probability defines probability as the ratio
between the number of favourable cases and the number of all equipossible
cases. The easiest way to grasp the meaning of favourable and equipossible
cases is to think of dice. The six sides of a die constitute the probability
space—i.e., the six possible outcomes. Assuming that the die is not biased,
the six sides are all equipossible—i.e., they all have the same probability
of occurring uppermost. The favourable cases constitute the event we are
interested in. For instance, the probability that an even number will result



226 Federica Russo and Jon Williamson

is given by the number of favourable cases (sides 2, 4 and 6) over the total
number of the equipossible cases (for an unbiased die: 1, 2, 3, 4, 5 and 6)
which gives %7 i.e.,%.

First developed by Laplace (1814), a similar interpretation was also pro-
posed by Pascal. Probability values are assigned in the absence of any
evidence—the probability of an event is simply the fraction of the total
number of possibilities in which the event occurs. The notion of equipossi-
bility is expressed by what Keynes called the Principle of Indifference. This
principle states that whenever there is no evidence favouring one possibility
over another, these possibilities have the same probability. The classical
interpretation seems especially well suited to games of chance, although it
is sometimes objected that this interpretation suffers the problem of circu-
larity, for equipossible means equiprobable, hence ‘probable’ is not properly
explicated. A second traditional objection is that the classical interpretation
is of scarce applicability in science; in fact, adopting the classical interpre-
tation we have no meaningful way to express knowledge of the population
probabilistically, nor to evaluate individual hypotheses.

A generalization of the classical interpretation is the so-called logical
interpretation, advanced by Keynes (1921); Jeffreys (1939); Carnap (1950).
This interpretation depends on the Principle of Indifference and thus rests
on the idea that probabilities can be determined a priori by an examination
of the space of possibilities, but only when no knowledge indicating unequal
probabilities is available. The main aim of the logical interpretation is
to provide an account, as general as possible, of the degree of support or
confirmation that a piece of evidence e confers upon a given hypothesis h.
In Carnap’s notation, the c-function precisely expresses this idea.'?

According to the physical view, probability values are quantitative ex-
pressions of some feature of the world, not of our knowledge or beliefs. The
physical view is typically taken to encompass the frequency and the propen-
sity interpretations. A simple version of frequentism, due to Venn (1866),
states that the probability of an attribute A in a finite reference class B
is the relative frequency of the actual occurrence of A within B. Further
developments of frequentism are due to von Mises (1928) and Reichenbach
(1935), who consider infinite reference classes and identify probabilities with
the limiting relative frequencies of events or attributes therein. This second
sort of frequentism is also advocated by Salmon (1967). Limiting relative

10As well as appealing to symmetry or indifference, Carnap (1950, §§41-42) bases
probability values upon knowledge of physical probabilities. He says, ‘in these cases the
probability is determined with the help of a given frequency and its value is either equal or
close to that of the frequency’ (Carnap, 1950, §42B). Consequently, Carnap’s development
of the logical interpretation might be classified alongside the objective Bayesian approach,
which we will shortly introduce.
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frequencies serve, in his approach, to determine the probability of evidence.
Note that frequentism interprets generic probabilities; in order to associate
a frequency with a single case, a unique reference class must be associated
with the single case; that this can not be done in general is known as the
reference class problem.

The propensity interpretation is also located in the physical realm, since
probability is ‘in the world’, so to speak, rather than ‘in our heads’—as it
is in the subjectivist approach and the classical and logical interpretations.
Probability is here conceived as a physical propensity, or disposition, or
tendency, of a given type of physical situation to yield an outcome of a
certain kind, or to yield a long run relative frequency of such an outcome.
The propensity interpretation was advanced by Popper (1957, 1959), who
was motivated by the desire to make sense of single-case probabilities, for
instance in quantum mechanics.

In the subjective interpretation probabilities are quantitative expressions
of an agent’s opinion, or degree of belief, or epistemic attitude, or something
similar. First advances are due to Ramsey (1926) and de Finetti (1937). De
Finetti’s viewpoint is paradigmatic of personalistic approaches, for he firmly
stated that probability does not exist (in the physical sense), and that it
is possible to reconstruct and deduce probability theory just relying on the
subjectivist interpretation (de Finetti, 1993, pp. 248 ff). In subjectivist
approaches, also called subjective Bayesian, probabilities are analyzed in
terms of betting behaviour. Probabilities are identified with the announce-
ment of the betting odds that a rational agent is willing to accept. A Dutch
book (against an agent) is a series of bets, each acceptable to the agent,
but which collectively guarantee her loss, whatever happens. Two Dutch
book theorems then follow. (i) If an agent’s degrees of belief violate the
probability calculus, then she is liable to a Dutch book, and, conversely, (ii)
if an agent’s degrees of belief conform to the probability calculus, then no
Dutch book can be made against her. A series of bets is called coherent if it
is not susceptible to a Dutch book. In subjectivist approaches, adherence to
the probability calculus is taken to be a necessary and sufficient condition
for rationality.

It is typically objected that this personalistic account leads to arbitrari-
ness, that is, it is too subjective. In fact, two agents with exactly the same
evidence may assign different probability values to the same event and be
equally rational, provided that they do not violate the probability calculus.
(It is worth pointing out that de Finetti’s betting interpretation derives
probabilities from utilities and rational preferences. The intimate link be-
tween utility of outcomes and probabilities is even more prominent in the
approaches of Savage (1954) and Jeffrey (1965). The main idea of the utility
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interpretation is that probabilities and utilities can be derived from prefer-
ences among options that are constrained by certain putative consistency
principles.)

A solution to the objection of arbitrariness is attempted by empirically-
based subjectivism and also by the objective Bayesian interpretation of
probability. These interpretations require that further constraints beyond
coherence be satisfied before an agent’s degrees of belief can be considered
rational. The former approach, empirically-based subjectivism, was advo-
cated e.g., by Salmon (1967, 1990). This approach requires that empirical
information constrain degrees of belief: if, for instance, an agent knows that
60% of people with a certain type of cancer recover, knows that a particu-
lar patient has this type of cancer, but knows nothing else pertinent, then
she should believe that the patient will recover to degree 0.6. The latter
approach, objective Bayesianism, was put forward by Jaynes (1957) and
goes beyond empirically-based subjectivism. According to this view, lack of
knowledge should also constrain degrees of belief: in the absence of evidence
the agent should be as equivocal as possible, e.g., if the agent does not have
any knowledge at all pertinent to a cancer patient then she should believe
that the patient will recover to degree 0.5; if her knowledge constrains her
degree of belief to fall in the interval [0.6, 0.8] then she should chose the point
that most equivocates between recovery and non-recovery, i.e., 0.6.11 Thus
both information and lack of information about the world should be taken
into account in shaping epistemic probabilities. Information-theoretic con-
siderations motivate the use of entropy as a measure of the extent to which a
probability function equivocates; consequently Jaynes put forward the max-
imum entropy principle, which provides a formal framework for objective
Bayesianism: the agent’s belief function should be a probability function,
from all those that satisfy constraints imposed by evidence, that has maxi-
mum entropy. In this framework, on a finite domain an agent’s background
knowledge fully determines the degrees of belief that she ought to adopt.!?

Note that degree-of-belief interpretations—including subjectivism, em-
pirically-based subjectivism, and objective Bayesianism—interpret single-
case rather than generic probabilities: degrees of belief are associated with

' Note that the interval [0.6,0.8] is not a confidence interval. If a study indicates that
70% of people recover and provides a confidence interval [0.6,0.8], then the best (albeit
defeasible) evidence is that 70% of people recover and the agent should simply set her
degree of belief in recovery to 0.7. Rather, the interval constraint might be generated
by two studies, one of which finds a 60% recovery rate, the other of which finds 80%,
and neither of which is to be preferred over the other (on the grounds of sample size,
specificity etc.)—then it is reasonable to place one’s degree of belief somewhere in the
ordered interval generated by the frequencies.

12(Williamson, 2005, §5.3). Note that this is not necessarily the case on infinite
domains—see Williamson (2006¢, §19).
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betting, and a bet in a generic outcome makes little sense.

In §5 we will argue that generic causal claims demand a frequency inter-
pretation, while single-case claims require an empirically-based or objective
Bayesian interpretation. In §6 will go further in arguing that an objective
Bayesian interpretation should be chosen.

5 Desiderata

In this section we shall put forward some requirements that an interpretation
of probability should meet.
A philosophical theory of probability should:

Objectivity: account for the objectivity of probability,

Calculi: explain how we reason about probability,

Epistemology: explain how we can know about probability,

Variety: cope with the full variety of probabilistic claims that we make,
Parsimony: be ontologically parsimonious.

We shall discuss each of these desiderata in turn, paying special attention
to the application to causal models of cancer.'3

Objectivity

Many applications of probability invoke a notion of probability that is ob-
jective in a logical sense: there is a fact of the matter as to what the
probabilities are; if two agents disagree about a probability, at least one of
them must be wrong.!* For example, the probability that a patient’s breast
cancer will recur after treatment is supposed to depend on features of the
cancer (e.g., whether it is metastatic, whether it is HER2 positive, its ER
status), of the treatment, and of the patient. It is not simply a matter
of personal opinion: if two prognostic probabilities differ, at least one of
them must be wrong. A philosophical theory of probability should yield a
notion of probability that is objective in this logical sense—otherwise it is
not meeting the demands of these particular applications.

Clearly the subjective interpretation of probability suffers in this respect.
According to the subjective theory, probabilities are degrees of belief and
one can adopt any prior probabilities one likes as one’s degrees of belief.
According to the subjective theory, then, one agent can give probability

13Gee Williamson (2006a) for discussion of similar desiderata as requirements of a
philosophical theory of causality.

141 0gical objectivity contrasts with the ontological sense of objectivity: probabilities
are ontologically objective if they exist as physical entities.
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0.9 to the patient’s breast cancer recurring, another agent with the same
knowledge of the situation can give probability 0 to the same event, and
neither agent can be considered wrong.'® Empirically-based subjectivism
also suffers, but to a lesser extent: if frequencies are known then probabil-
ity assignments are not arbitrary, but where frequencies are not known an
agent can choose her degrees of belief arbitrarily. The classical and logical
interpretations can also suffer at the hands of Objectivity, since different
agents can construe different partitions of events as equipossible.

In contrast, frequency, propensity and objective Bayesian interpretations
all yield objective probabilities of varying forms. A frequency is objectively
determined by a reference class; a propensity is objectively determined by
the history of the universe up to the present time; under objective Bayesian-
ism a probability is objectively determined by an agent’s knowledge. Thus
these interpretations fare better with respect to this desideratum.

Calculi

Probabilities are manipulated and inferences are drawn from them by means
of the probability calculus. This mathematical apparatus, based on axioms
put forward by Kolmogorov (1933), has by now become well entrenched.
Consequently a philosophical theory of probability should yield a notion
that satisfies the axioms of probability. Otherwise it is not a theory of
probability, but a theory of something else.

Some theories suffer in this respect. According to some accounts, prob-
abilities are not real numbers but are intervals of numbers, pairs of real
numbers, or qualitative entities.'® According to other accounts probabili-
ties satisfy some axioms but not others—the frequency theory of von Mises
(1928), for instance, does not satisfy the axiom of countable additivity;
the propensity theory has problems with conditional probabilities.!” With
respect to this desideratum, then, degree-of-belief interpretations (subjec-
tivism, empirically-based subjectivism, and objective Bayesianism) fare bet-
ter than these other approaches.

15Proponents of the subjective account tend to respond in two ways: by saying that the
subjective theory can account for objectivity in the long run as different agents’ beliefs
converge to frequencies, and by saying that there is no further objectivity to be found.
While the first claim is notoriously problematic (Williamson, 2005, §2.8), the second
claim is simply dangerous. If the subjectivist has no knowledge that bears on recurrence
of breast cancer and awards a degree of belief 0.9, instead of the objectively-determined
middling value 0.5, then she may initiate unnecessarily aggressive treatment rather than
collect further evidence—see §6. Thus there is further objectivity—derived from the need
to equivocate in the absence of evidence—that the subjective account ignores.

16See e.g., Keynes (1921); Kyburg Jr (2003); Walley (1991).

17 (Humphreys, 2004)
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Epistemology

We come to know about probabilities in various ways: we measure popula-
tion frequencies, we appeal to symmetry arguments or scientific theories, we
make educated guesses, we derive some probabilities from others using the
probability calculus. A philosophical theory of probability should explain
how we can use such techniques to discover probabilities. If the theory re-
jects some of these techniques it should say where they go wrong and why
they are apparently successful.

This desideratum is a stumbling block for several theories. The classical,
logical and subjective theories can not account for the widespread use of
frequencies, while the frequency theory can not explain how degrees of be-
lief can offer access to probabilities. The propensity theory is oft criticised
for being metaphysical: it connects probability with scientific theories and
even degrees of belief,!® but struggles to identify a precise link with fre-
quency. However the empirically-based subjectivist and objective Bayesian
approaches allow background knowledge of any form—frequencies, symme-
tries, scientific theories included—to constrain an agent’s rational degrees
of belief; by design these theories admit a variety of sources of probabilistic
knowledge.

Variety

Probabilistic claims are extremely varied. For instance, claims are made
about single-case probabilities (e.g., the probability that a particular pa-
tient’s cancer will recur) and generic probabilities (e.g., the probability of
recurrence among those who receive radiotherapy). Moreover, probabilities
are attached to a variety of entities, including events, sets, variables, sen-
tences, propositions and hypotheses. A philosophical theory of causality
should be able to cope with this variety—it should account for each use of
probability, or, if some uses are to be viewed as illegitimate, it should say
how such uses should be eliminated in favour of the legitimate uses. Oth-
erwise, the theory is at best a partial theory, a theory of some of the uses
of probability.

This desideratum is a problem for many of the interpretations of proba-
bility. The frequency and propensity theories can not ascribe a probability
to a given hypothesis, but only yield the probability of observing a sample
if the hypothesis is true—on this point see Courgeau (2004). Moreover,
the frequency theory is a generic theory; it views single-case probabilities
as illegitimate but provides no means of interpreting single-case claims in
terms of frequencies. If single-case probabilities are to be abandoned the
theory really ought to explain why their use, if so erroneous, is apparently

18 (Lewis, 1980)
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so successful. Other interpretations ascribe probabilities to single cases,
and do not provide a means for interpreting population-level probabilities.
It seems that pluralism is the only option: have one interpretation for the
single-case and another for generic claims. But then work needs to be done
to explain why we apparently have a single concept of probability when in
fact there are at least two. The empirically-based subjectivist or the objec-
tive Bayesian route is perhaps most attractive here: use frequencies in the
generic case, and use these frequencies to constrain single-case degrees of
belief. The two notions of probability, frequency and degree of belief, are
tightly connected under these accounts and do not seem so disparate after
all.

Parsimony

Arguably a philosophical theory of probability should not make unwarranted
ontological commitments: if one can reduce probabilities to something else
in one’s ontology then one should do that rather than take probabilities as
primitive. This is just Ockham’s razor; it may be viewed as a methodological
or psychological requirement and as such subsidiary to the other desiderata.

Parsimony tells against the propensity interpretation, which usually takes
probabilities to be primitive. Keynes (1921) in his development of the logical
view also takes probabilities to be primitive. In contrast a frequency is a
feature of a sequence of observed outcomes and so presumably reducible to
entities already in a natural ontology. Similarly rational degrees of belief, the
entities of the subjective, the empirically-based subjective and the objective
Bayesian interpretations, will already be included in an ontology and do not
count as an ontological extra. Of course all this depends on ontology; an
ontology that contains only propensities may be more parsimonious than
one that contains rational degrees of belief among other things.

We see then that these desiderata help to isolate a viable interpretation
of probability. The propensity theory falls foul of Calculi, Epistemology,
Variety and Parsimony; the frequency theory of Calculi, Epistemology and
Variety; the classical, logical and subjective theories of Objectivity, Epis-
temology and Variety. The empirically-based subjective theory does well,
though perhaps suffers with respect to Objectivity. The objective Bayesian
interpretation seems to offer the most promise, when twinned with a fre-
quency interpretation of generic probabilities. This combination is a partic-
ularly attractive way of interpreting probability in causal models for cancer:
crucially, perhaps, the epistemology desideratum is satisfied—we can know
about generic probabilities as well as single-case probabilities; moreover this
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combination makes sense both of generic causal inferences where probabil-
ities can be interpreted as frequencies, and of single-case causal inferences
where objective Bayesian probabilities are determined by empirical knowl-
edge including frequencies.

6 Objective Bayesianism

Clearly frequencies are required to make sense of generic probabilities, e.g.,
the probability of surviving more than five years given metastatic breast
cancer is 0.4. We have also suggested that degrees of belief constrained by
frequencies should be used to make sense of the single case: if one knows
only the aforementioned generic probability then one should believe that
Audrey, who has metastatic breast cancer, will survive more than five years,
to extent 0.4. This ties the two levels together in a natural way: generic
knowledge yields predictions about the single case.

As yet though, this leaves two interpretations of probability for the single
case. First, we have empirically-based subjectivism: an agent’s degrees of
belief ought to be constrained by knowledge of frequencies; in the absence
of such knowledge they may be chosen arbitrarily. The second alternative is
objective Bayesianism: an agent’s degrees of belief ought to be constrained
by knowledge of frequencies; in the absence of such knowledge they should
be as equivocal as possible. In our view the latter approach should be
adopted, as we shall now explain.

The main reason for preferring objective Bayesianism over the empirically-
based subjective theory is that objective Bayesianism is on average more
cautious when it comes to risky decisions. In cancer applications, single-
case probabilities are used to make treatment decisions.'® For example, if
the probability of recurrence in a particular patient is very high, aggres-
sive treatments might be used; if the probability of recurrence is very low
then no further treatment is given; otherwise more evidence is garnered
and non-aggressive treatments are given. Now suppose empirical evidence
forces degree of belief in recurrence to lie between 0 and 0.4, say. Under
the empirically-based subjective theory, an agent is free to choose any de-
gree of belief within this interval [0,0.4]. So the agent may set degree of
belief 0, which will trigger abandonment of treatment. But under objective
Bayesianism, the agent must choose the most equivocal—i.e., middling—
degree of belief from this interval. So she must have degree of belief 0.4,
which may trigger the collection of more evidence in order to reach a firmer
opinion, and may trigger a non-aggressive treatment in the meantime. In
general, high-risk decisions tend to be triggered by high or low degrees of
belief; the objective Bayesian protocol ensures that such drastic actions only

19Gee e.g., Williams and Williamson (2006).
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get taken if there is sufficient empirical evidence to force the extreme prob-
abilities required to trigger them. If evidence is lacking then more middling
probabilities must be adopted so that less risky actions can be initiated and
further evidence can be collected.?’

Tim McGrew has posed the following objection to this argument:

Suppose that someone was diagnosed with cancer, underwent
treatment 77, and is being assessed for the success of T7. Unless
there is good evidence that T} was successful, a more radical
treatment T, is indicated. Empirical information indicates a
probability interval [0.6,0.95] for the success of Ty. It would ap-
pear that objective Bayesianism requires us to adopt the proba-
bility 0.6 that T7 was successful, which may lie within the zone
that triggers aggressive treatment 7. There may be a good
answer to this worry, but it does, prima facie, cast doubt on
the idea that objective Bayesianism always errs on the side of
caution, where caution can be equated with a preference for the
less radical treatment over the more radical.?!

In response, the first thing to note is that the most equivocal probability,
in this case 0.6, will not always be the most cautious—this depends on the
particular decision structure. At best we can say that on average with re-
spect to risky decisions the maximum entropy approach is the more cautious
policy—see Williamson (2006b, §8) for a full discussion of this point. We
can see that equivocal probabilities tend to be more cautious when we see
how decision scenarios arise. Consider the above scenario. Here the deci-
sion rule is that T5 will be instigated unless the probability of the success
of Ty is greater than some threshold. Now a middling probability such as
0.6 indicates a lack of evidence and will normally trigger the collection of
further evidence to try to shift the probability to one extreme or the other.
In this case, however, collecting further evidence is not an option; this sug-
gests that the costs and risks associated with collecting further evidence are
greater than those associated with the treatment 75, for otherwise the deci-
sion structure would be different. 75 is triggered by 0.6 because, aggressive
though it is, this treatment is the least risky action available. So even in
this example, the objective Bayesian degree of belief is most cautious. The
fact is that when we set up decision protocols, the risky actions tend to
be triggered by extreme probabilities and conversely equivocal probabilities
tend to trigger the less risky actions; if a middling degree of belief triggers a

20This argument is presented in detail in Williamson (2006b).
21personal communication. We are very grateful to Tim McGrew for this point and
other insightful comments.
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risky action then that is because it is the least risky action overall. We must
not equate caution with a preference for the less radical treatment over the
more radical, but with the choice of a less risky action over a more risky
action (in the absence of evidence that warrants the more risky action).
Objective Bayesianism is then the more cautious policy, on average.

In sum, when we take the applications of single-case probabilities into
account—in particular the application to cancer treatment—it becomes
clear that these probabilities are a guide to action. Some actions are more
drastic than others, and objective Bayesianism ensures that such actions
are not embarked upon lightly.

7 Conclusion

In this paper we have argued that epidemiology can be seen as paradigmatic
of the methodology of the social and health sciences. As far as causal
analysis is concerned, we considered cancer epidemiology for two reasons:
causal models for cancer (i) try to take into account both socio-economic
and biological factors, and (ii) are essentially probabilistic.

The analysis of causal models and of the probabilistic inferences they in-
duce suggests that two levels of inference ought to be distinguished: generic
and single-case. Generic causal statements aim at positing average causal
relations, for instance by claiming that tobacco consumption is a power-
ful carcinogen or that healthy dietary habits can possibly prevent cancer.
Single-case causal statements tend to concern, instead, particular individ-
uals. They are used for diagnosis or for causal attribution, for instance to
assess the probability of recurrence of breast cancer in a particular patient.

As a matter of fact, both generic and single-case inferences are proba-
bilistic and therefore raise the problem of how probability should be inter-
preted. An overview of the leading interpretations—classical and logical,
frequency, propensity, subjective, empirically-based subjective, and objec-
tive Bayesian—shows that if we want to make sense of probabilistic state-
ments at both levels we have to opt for a pluralist interpretation: the fre-
quency interpretation is most appropriate for generic causal claims, and the
single case demands a Bayesian interpretation in which probabilities are
thought of as degrees of belief constrained by frequencies.

Moreover, cancer epidemiology appears to be of particular interest be-
cause it is both concerned with gaining general causal knowledge—e.g.,
about cancer aetiology—and with applying such general knowledge to a
particular individual. This is not true of all social and health sciences.
Many disciplines are more concerned with the general level and only in-
directly with the single-case or the other way around. Demography, for
instance, studies migration behaviour of populations but it is not directly
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interested in the probability that a particular individual will migrate. On
the other hand, it is oft said that in medicine there are not illnesses but only
ill persons to cure. Physicians, then, are more concerned with single-case
probabilities than with frequencies of disease.

Though not directly concerned with individuals, social sciences such as
sociology, demography or economics do have a bearing on the individual
since their results orient and guide public policies, for instance to reduce
unemployment or to discourage tobacco consumption. On the other hand, to
correctly assign single-case probabilities, physicians do need to take generic
probabilities into account. Thus, we’d better have a unified account of
the interpretation of probability that makes sense both at the generic level
and at the single-case. Such an account—we have argued—is objective
Bayesianism twinned with the frequency interpretation.
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A Probabilities, Odds and Risks

The medical and epidemiological sciences often summarise results—e.g., of
logistic regressions or of meta-analyses—by means of risks and odds. Al-
though these are associational measures, arguably they have causal import
insofar as they provide evidence for a generic causal claim—e.g., smoking
causes lung cancer—or inform single-case inferences—e.g., predicting the
survival time of a particular individual-—on the basis of these measures.

In several types of biomedical research, for instance case-control, cohort,
cross-sectional or experimental studies, risks and odds are used to quan-
tify the strength of the relation between two binary variables: a particular
outcome (disease) and presence of factor (exposure). Those results are cus-
tomarily presented in 2x2 contingency tables.
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Let E and D denote two binary or dichotomous variables, each having
only two possible levels. For the explanatory variable (exposure) E: ezposed,
unezposed, and for the outcome (disease) D: yes, no. Results in the table
are presented as counts of observations at each level. A 2x2 contingency
table has thus 4 cells. The table below shows the general layout of a 2x2
contingency table.

Disease
Exposure | Yes | No
Exposed ni | N1

P11 | P12
Unexposed | nop | noo
P21 | P22

The notation n;; refers to the number of subjects observed in the corre-
sponding cell, i.e., to the number of observations in the i-th row (i = 1,2)
and j-th column (j = 1,2); the notation p;; refers to the proportion of
subjects observed in the corresponding cell, where p;; = n;;/n, n being the
total number of observed subjects. The notation P(E) and P(D) will refer
to the marginal probabilities of exposure and disease, respectively.

With this data we can compute relative risks, odds, odds ratios and
estimate probabilities.

Relative risk

The relative risk (RR) is defined as the ratio of risk in the exposed and
unexposed group:

nu/n _pu

n21 / n Pb21
Thus RR measures the incidence of the disease. RR > 1.0 indicates that
the risk of disease is increased when the risk factor (exposure) is present;
RR < 1.0 indicates that the risk of disease is decreased when the risk factor

is present, i.e., the factor is a protective factor or preventative. RR can also
be given a definition in terms of conditional probabilities:

P(D|E)
P(D|-E)’
Odds ratio

The odds ratio (OR) is another way to compare proportions in a 2x2 con-
tingency table. OR is computed from odds: it is the ratio of the odds of
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disease in the exposed group and the odds of disease in the unexposed group.
The odds of an outcome is equal to the probability that the outcome does
occur divided by the probability that the outcome does not occur. In a 2x2
contingency table, the probability of an outcome is equal to the number of
times the outcome is observed divided by the total observations.

Odds o

OR = ——feap
0dds yneay

ni1/(ni +ni2) ni

niz/(ni1 +ni2)  nio

where n11/(n11 + ni12) is the probability that the disease occurs in the ex-
posed group and n12/(n11+n12) is the probability that the disease does not
occur in the exposed group. In terms of conditional probabilities,

Oddsezp =

P(D|E)
Oddsezy = ———=.
"% = P(-DIB)
Similarly,
OddSunemp = n21/(n21 +n22) = @7

 noa/(no1 +n2) oo
where na1/(n21 + nog) is the probability that the disease occurs in the un-
exposed group and ngs/(na1 + n92) is the probability that disease does not
occur in the unexposed group. Again, in terms of conditional probabilities,
P(D|-E)

Oddsunez‘p = m

OR can now be computed as

n11/n21 _ N11Nn22

ﬂ12/n22 N12N21

or, equivalently
P(DIE) y P(—D|-E)
P(-D|E) P(D|-E) -~

It is worth noting that the odds ratio of exposure OR =

to the odds ratio of disease OR =
between odds and probabilities:

Oddsunex,

——2v  There is a mathematical relation
Oddspno

Oddseny -
e s equal
P

Odds cap
POIE) = 1 Oddseny

and
P(D|E)

ddSegy = — 1)
Oddseey = 1 p(p| )
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Interpreting RR, OR and probabilities

Although calculations are fairly easy, the interpretation appears to be more
tricky. For instance, Sistrom and Garvan (2004, p. 16) claim: ‘... an RR
equal to 2.0 means that an exposed person is twice as likely to have an
adverse outcome as one who is not exposed, and an RR of 0.5 means that
an exposed person is half as likely to have the outcome.” Or (ibidem):
‘Odds and probabilities are different ways of expressing the chance that an
outcome may occur.” Here there is a tension between a generic and single-
case interpretation of RR, OR and probabilities.

Similarly, Bland and Altman (2000) on the one hand explain the odds
and odds ratios as means to compare groups, but, on the other, in giving
an example, they talk in terms of individuals: ‘The probability that a child
with eczema will also have hay fever is estimated by the proportion 141/561
(25.1%). ... Similarly, for children without eczema the probability of having
hay fever is estimated by 928/14453 (6.4%).’

Two remarks are in order. Firstly, this last quotation may look puzzling
unless we make clear that the ‘child’ that Bland and Altman refer to is a
statistical individual, i.e., an individual randomly sampled from the popu-
lation. In this case the probability may be construed as generic rather than
single-case.

Secondly, as shown above, the calculation of risks and odds involves pro-
portions—i.e., the numbers of subjects who got/didn’t get the disease and
were/were not exposed to the factor compared to the whole population. Be-
cause calculation involves proportions, RR and OR have a natural generic
interpretation and do not make sense in the single case. Consequently, the
corresponding probabilities need a frequentist interpretation. However, if
the definitions in terms of conditional probabilities are preferred instead,
one might argue that these probabilities are not the frequencies drawn from
the 2x2 table but subjective probabilities. If so, then risks and odds are all
single-case, referring to a single individual, and they do not say anything
about the population. But of course this view is prone to the objections
raised in §5. From a normative point of view, rational degrees of belief
should be based on empirical evidence such as frequencies, and otherwise
maximally equivocal. Thus an objective Bayesian interpretation ought to
be preferred instead for the single case. A further advantage of the objective
Bayesian interpretation is that if a contingency table based on frequencies
is incomplete, one can generate a complete contingency table by filling in
missing values with objective Bayesian probabilities.
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