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ABSTRACT

I present a formalism that combines two methodologies: objective
Bayesianism and Bayesian nets. According to objective Bayesianism,
an agent’s degrees of belief (i) ought to satisfy the axioms of probability,
(ii) ought to satisfy constraints imposed by background knowledge, and
(iii) should otherwise be as non-committal as possible (i.e. have maximum
entropy). Bayesian nets offer an efficient way of representing and updat-
ing probability functions. An objective Bayesian net is a Bayesian net
representation of the maximum entropy probability function.

I show how objective Bayesian nets can be constructed, updated and
combined, and how they can deal with cases in which the agent’s back-
ground knowledge includes knowledge of qualitative influence relation-
ships, e.g. causal influences. I then sketch a number of applications of the
resulting formalism, showing how it can shed light on probability logic,
causal modelling, logical reasoning, semantic reasoning, argumentation
and recursive modelling.
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INTRODUCTION

Any theory of rationality must at some stage address the following key question:

BELIEF REPRESENTATION What is the best way to represent an agent’s rational
belief state?

It is the aim of this paper to sketch a solution to the belief representation
problem.

The proposed solution has two facets. First, objective Bayesianism tells us
which degrees of belief an agent should adopt: she should adopt as her belief
function a probability function, from all those that satisfy constraints imposed
by her background knowledge, that is maximally non-committal, i.e. that max-
imises entropy (§2). Second, recent developments in probabilistic expert systems
tell us how best to represent a probability function: a Bayesian net offers an
efficient, clear and informative representation (§3).

Combining these two facets in §4, we use a Bayesian net to represent the
agent’s optimal belief function—such a Bayesian net will be called an objective
Bayesian net.

The method for constructing an objective Bayesian net given in §4 requires
that the agent’s background knowledge be formulated as a set of quantitative
constraints on her degrees of belief. However knowledge is often qualitative;
the question arises as to how objective Bayesian nets can be constructed in the
presence of such knowledge. In §5 we shall see that qualitative knowledge of in-
fluence relationships (e.g. causal influence) can be transformed into quantitative
constraints on degrees of belief.

An objective Bayesian net is derived from background knowledge. Thus
to understand how to perform an operation on an objective Bayesian net, one
should perform the corresponding operation on background knowledge and de-
rive the associated objective Bayesian net. For instance, when an objective
Bayesian net needs to be updated, the updated net should be the same as the
net generated by updated background knowledge (§6). The combination of two
Bayesian nets should be the same as the net generated by the combination of
their associated knowledge bases (§7).

Having presented the theory of objective Bayesian nets in Part I, we turn
briefly to applications in Part II. We shall see that apart from their use in a
general theory of rationality, objective Bayesian nets also shed light on a number
of specific modes of reasoning. They can be used to perform inference in a
probabilistic logic (§8), to justify the assumptions behind causal models (§9), to
guide logical (§10) and semantic (§11) reasoning, and to develop a framework
for argumentation (§12) and recursive modelling (§13).



PART 1
THEORY

§2
OBJECTIVE BAYESIANISM

Suppose a patient has a high fever, a dry cough and appears confused—to what
extent should one believe that he has Legionnaire’s disease?

Bayesians hold that an agent’s degrees of belief ought to satisfy the axioms of
probability. Thus the above degree of belief has the form of a conditional prob-
ability statement, p(l|fdc) where [ signifies that the patient has Legionnaire’s
disease, f that he has a high fever, d that he has a dry cough and c¢ that he
appears confused. Subjective Bayesians stop there and consider an agent to be
rational whatever probability function he adopts as her belief function. But ob-
jective Bayesians go further, insisting (i) that an agent’s degrees of belief should
also respect background knowledge—they should for example be calibrated with
known frequencies (if she knows only the incidence rate of Legionnaire’s disease
in the population then p(l) should match that rate)—and (ii) that the agent
should commit to outcomes only to the extent warranted by background knowl-
edge (e.g. if she knows nothing concerning ! then she should not commit to I;
instead she should equivocate between | and —I, i.e. set p(l) = p(—l) = 1/2).

More precisely, objective Bayesians suppose that an agent’s background
knowledge 3 delimits a set Pg of probability functions that are compatible with
that knowledge, and that the agent should choose a function p € Pg that max-
imises entropy as her belief function. The entropy of a probability function p

H(p) = = p(v)logp(v), (1)

Ve

where Q is the space of all possible indivisible outcomes, e.g. Q = {+l+f+d+e}.!
Entropy is interpreted as a measure of the uncertainty or lack of commitment of a
probability function: the more middling the probabilities, the higher the entropy
and the higher the uncertainty; the nearer the probabilities are to the extremes
of 0 or 1, the lower the entropy and the more the probability function commits
to certain outcomes.? A probability function in Pg that has maximum entropy
is compatible with background knowledge but is maximally non-committal in
other respects.® Such a probability function is to be desired as a representation
of one’s degrees of belief because it is guided by empirical information yet is on
average maximally cautious when it comes to risky decisions, which tend to be
embarked upon when one has more extreme degrees of belief.*

For a set Q of probability functions we shall write p 1 Q as shorthand for
p € {qeQ: H(q) is maximised}. Objective Bayesians maintain then that one
should take p T Pz as one’s belief function, given background knowledge 3. This
principle is often called the mazimum entropy principle; it considerably narrows

1We shall assume throughout that € is finite. The extension to the infinite is discussed in
Williamson (2005¢, §19).

2(Shannon, 1948)

3(Jaynes, 1957)

4(Williamson, 2005b)
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Figure 1: A directed acyclic graph.

down the values one can ascribe to p(I|fdc).?

Two questions remain: how should one best represent the probability func-
tion p T Pg? how should one calculate probabilities like p(I|fdc)? One can
appeal to Bayesian nets to address these questions: a Bayesian net offers an
efficient and perspicuous representation of a probability function and offers an
efficient way to calculate conditional probabilities.

83
BAYESIAN NETS

Consider a domain V' = {A;, As,..., A,} of finitely many variables, each of
which has finitely many possible values. Let a;@A; signify that a; is an assign-
ment of a value to variable A;. Associated with V there is set Qy = {aja2 - ay, :
a;@QA;,1<i<n} of indivisible outcomes.

A Bayesian net py = (G, S) contains

o a directed acyclic graph G whose nodes are variables in V' (e.g. Fig. 1),

o a probability specification S which contains the probability distribution
of each variable in V' conditional on its parents in G (Table 1 contains
an example distribution—B, C, and D each take two possible values,
superscripted by 0 and 1).

A Bayesian net is also subject to an assumption, the Markov Condition, which
holds that each variable A; is probabilistically independent of its non-descendants
in G conditional on its parents in G, written A; 1L ND; | Par;.

A Bayesian net determines a unique probability function p over £y since
the Markov Condition implies that

n

plaraz---ap) = Hp(ai|pa7”i)»
i=1

where par,QPar; is determined by ajas - - - a,, and since the probabilities in this
product are all contained in S.

5Plausibly Pg will be a closed convex set of probability functions, in which case p 1 Pg is
uniquely determined—see Williamson (2005a, §5.3).



Table 1: The probability distribution of D conditional on B and C.

p(d°16°c%) = 0.7 p(dt[p°?) = 0.3
p(d®p°c!) = 0.9 p(d'|p0ct) = 0.1
p(d°)btc®) = 0.2 p(d*|btc?) = 0.8
p(d°|btet) = 0.4 p(dt|biet) = 0.6

A Bayesian net p offers an attractive representation of a probability function
p for a number of reasons. First, p perspicuously represents probabilistic inde-
pendencies satisfied by p in the sense that one can simply read independencies
off the graph: for XY, Z €V, X L Y | Z if Z blocks each path between X
and Y, i.e., for each path between A; € X and A; € Y, there is some node on
the path in Z whose adjacent arrows meet head-to-tail or tail-to-tail, or there
is a node on the path whose adjacent arrows meet head-to-head and Z contains
neither that node any of its descendants. Second, p is an efficient representa-
tion in the sense that relatively few probability specifiers p(a;|par;) determine
a large number of probabilities p(ajas - --ay) (this depends on the structure
of G: roughly speaking the sparser the graph G, the smaller the specification
S). Third, p admits efficient probabilistic inference: there are algorithms for
quickly determining conditional probabilities from the Bayesian net (again, the
efficiency of these algorithms depends on the structure of the graph).6

Bayesian nets are typically constructed in one of two ways. One is to employ
a machine learning methodology to construct a net that represents the frequency
distribution of a database of past observations of assignments to variables in V.
The other is to elicit a graph and probability specifiers from an expert to con-
struct a net that represents the expert’s (subjective Bayesian) belief function.
Here we are interested in objective Bayesian probability rather than frequency
or subjective Bayesian probability—clearly neither of these two approaches are
appropriate for representing an objective Bayesian belief function. We thus need
a technique for constructing a Bayesian net that represents a probability func-
tion, from all those that satisfies constraints imposed by background knowledge,
that maximises entropy.

84
OBJECTIVE BAYESIAN NETS

An objective Bayesian net, or obnet for short, is a Bayesian net that represents
an objective Bayesian probability function p, i.e. a probability function that
maximises entropy subject to constraints imposed by background knowledge .

An objective Bayesian net can be constructed using the following strategy:

STEP 1 determine conditional independencies that p T Pg must satisfy,

STEP 2 represent these by a directed acyclic graph G that satisfies the Markov
Condition with respect to p,

6 (Neapolitan, 1990)
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Figure 2: Constraint graph.

STEP 3 maximise entropy to calculate the numerical parameters p(a;|par;) in
the probability specification S.

We shall briefly run through each of these steps in turn—this procedure for
constructing an objective Bayesian net is presented in more detail in Williamson
(2005a, §85.6-5.7).

STEP 1: DETERMINE CONDITIONAL INDEPENDENCIES

We shall suppose 8 can be construed as probabilistic constraints 7y, ..., 7, on
the probability function p. For example, m; might be p(ai|a2) = 0.7, and my
might be p(azas) = p(az)’p(az).

Construct an undirected graph, the constraint graph, by taking the variables
in V' as nodes and by connecting two nodes with an edge if they occur in the
same constraint.

Suppose, for example, that V' = {A;,..., A5}, m1 is a constraint involving
Aq and A, 7y involves As, Az, Ay, 73 involves Az, As, and 74 involves A4. Then
the constraint graph is depicted in Fig. 2.

The constraint graph tells us about probabilistic independencies that the
maximum entropy function will satisfy, since the following key property holds:”
it Z separates X from Y in the constraint graph then X 1L Y | Z for p 1 Pg.

In Fig. 2, for example, Ay separates A; from As, A4, and As, so we know
that a maximum entropy function renders A; probabilistically independent of
Az, A4 and As conditional on As.

STEP 2: CONSTRUCT A GRAPH SATISFYING THE MARKOV CON-
DITION

One can transform the constraint graph into a directed acyclic graph G that
satisfies the Markov Condition via the following algorithm:®

o triangulate the constraint graph,

o re-order V according to maximum cardinality search,

o let Dy,...,D; be the cliques of the triangulated constraint graph ordered
according to highest labelled node,

set Bj =D n (U D) for j=1,...,1,

o

o set F; = D;\E; for j=1,...,1,

o take variables in V' as the nodes of G,

o add an arrow from each vertex in Ej; to each vertex in Fj (j =1,...,1),

o ensure that there is an arrow between each pair of verticesin D; (j = 1,...,1).

7(Williamson, 2005a, Theorem 5.3)
8See Williamson (2005a, §5.7) for an explanation of the graph-theoretic terminology.
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Figure 3: Graph satisfying the Markov Condition.

The resulting directed graph often looks much like the undirected constraint
graph—in our example G is depicted in Fig. 3.

STEP 3: DETERMINE PROBABILITY SPECIFICATION

Having found a graph G that satisfies the Markov Condition, to construct an
objective Bayesian net it only remains to determine the probability distribution
of each variable conditional on its parents.

Here it helps to rewrite the entropy equation as H = 3" | H; where

H, = _Z H p(aj|par;) |log p(a;i|par;),
AjeAnc;

(Anc; being the set of ancestors of A; in G.)

One can then use numerical optimisation techniques or Lagrange multiplier
methods to find the parameters p(a;|par;) that maximise entropy. This entropy
maximisation problem will in practice be a smaller problem than the original
problem of maximising entropy over the whole domain (Equation 1) since there
will in practice be far fewer parameters of the form p(a;|par;) than there were
of the form p(v) = p(ayas,...,a,) (this is because in practice there tend to be
few variables in each constraint in comparison with n, as n becomes large, so G
tends to be sparse).

We see then that by pursuing this three-step procedure it is quite straight-
forward to construct an obnet, given a set of probabilistic constraints.

Quantitative probabilistic constraints are clearly required in order to apply
the maximum entropy principle. However background knowledge does not al-
ways take the form of a set of quantitative constraints on degrees of belief—an
agent may know of qualitative causal relationships, for instance. The task of
converting qualitative constraints into quantitative constraints is a significant
challenge for objective Bayesianism.? We shall see next how qualitative knowl-
edge of influence relationships (e.g. causal influences) can be converted into
quantitative constraints on an agent’s belief function p.

85
INFLUENCE RELATIONS
We turn now to the question of how one can construct an objective Bayesian

net when background knowledge includes qualitative knowledge of influence
relationships.

9(Williamson, 2005¢, §18)



We shall take the following to be the defining feature of the notion of in-
fluence: learning of the existence of new variables that are not influences of
the other variables should not change degrees of belief concerning those other
variables.?

The causal relation, for example, is an influence relation. If an agent learns of
a new variable that is known not to be a cause of any the variables she already
knew about, then this new information provides no reason for the agent to
change her degrees of belief concerning those other variables. In the absence of
any reason for change, her degrees of belief should stay the same. (In contrast,
learning of new causes may motivate a change in degrees of belief: at first
glance the flooding of glacial valleys in Kyrgyzstan and the insect population of
southern England seem quite unrelated, but the knowledge that global warming
affects both these variables may warrant an increase in the degree to which one
believes insect populations will rise given that glacial flooding is increasing.)
Causality and other examples of influence relationships will be discussed in
Part II.

Given the above implicit definition of influence, it is straightforward to see
that qualitative knowledge concerning influences can be transferred into quan-
titative constraints on degrees of belief. Suppose V' 2 U is a set of variables
containing variables in U together with other variables that are known not to
be influences of variables in U. As long as any other knowledge concerning
variables in V\U does not itself warrant a change in degrees of belief on U, then
ngU = pgw i.e. one’s belief function on the whole domain V formed on the
basis of all one’s background knowledge (3, when restricted to U, should match
the belief function one would have adopted on domain U given just the part
Bu of one’s knowledge involving U. Thus knowledge of influences is transferred
into equality constraints on degrees of belief.

Once qualitative knowledge has been transferred into quantitative constraints
on degrees of belief, the three-step procedure of §4 for constructing an objective
Bayesian net can be directly applied. However, the fact that the new constraints
are equality constraints leads to a simplification: these new constraints can be
ignored in Step 1 of the process.!! We thus have a slightly modified three-step
procedure:

STEP 1 determine conditional independencies that p T Pg must satisfy from the
constraint graph, ignoring constraints yielded by knowledge of influences,

STEP 2 represent these independencies by a directed acyclic graph G that sat-
isfies the Markov Condition with respect to p,

STEP 3 maximise entropy to calculate the numerical parameters p(a;|par;) in
the probability specification S (remembering to take equality constraints
yielded by knowledge of influences into account).

Thus knowledge of influences does not add to the complexity of an objective
Bayesian net, in the sense that the graph in the net is just as sparse as it would
have been if there were no such knowledge.

A further simplification is possible in the case in which the agent knows
all the influence relationships amongst the variables and has no quantitative

10(Williamson, 2005a, §11.4)
I (Williamson, 2005a, Theorem 5.6)



knowledge that overrides the equality constraints generated by these influence
relationships (n.b. quantitative information regarding the strengths of the influ-
ence relationships will not override the equality constraints).!? As long as the
influence graph—i.e. the directed graph in which there is an arrow from vari-
able A to variable B if and only if A directly influences B—is acyclic, we can go
straight to Step 2: the influence graph itself satisfies the Markov Condition.'3
Step 3 is also simpler in this case: we can maximise entropy by maximising
each component H; of the modified entropy equation sequentially (rather than
maximising their sum).'* This breaks down the entropy maximisation prob-
lem into n smaller problems. In this case, then, the objective Bayesian net
is just the influence graph plus sequentially-determined conditional probability
distributions.

Having discussed the construction of obnets, we now turn to how they might
be updated (§6) and combined (§7).

56
UPDATING

An objective Bayesian net represents the degrees of belief that an agent should
adopt and these rational degrees of belief are determined by the agent’s back-
ground knowledge. So when her background knowledge changes, so too should
the obnet. The extent to which the net changes will depend on the extent to
which background knowledge changes.

If the new knowledge consists of an observation o of the values of some
of the variables, then the new probability function p’ T Pgy s is just the old
function conditional on the observation, i.e. p’ = p(-|o) where p 1 Pg.'> This
type of update is known as Bayesian conditionalisation. It is simple to modify
a Bayesian net to represent its Bayesian conditionalisation update: the graph in
the net remains the same but the probability specification gets updated using
standard propagation algorithms.!6

More generally, when the new knowledge consists of new constraints on the
agent’s degrees of belief that are consistent with the old constraints, the new
probability function p’ T P is the probability function satisfying 4’ that is clos-
est to the old function p 1 Pg in the sense that it minimises the cross entropy
distance to p, d(p',p) = Y, p'(v)logp’(v)/p(v).}" Thus we need to modify the
objective Bayesian net p representing p 1 Pg to form its cross entropy update p’
that represents the p’ € Pg which minimises d(p’, p). This involves reconstruct-
ing the part of the graph of p that involves variables in the new constraints and
their ancestors in the graph and updating the associated conditional probability
distributions; the rest of the net stays the same.'®

12(Williamson, 2005a, pp. 99-100)

13 (Williamson, 2005a, Theorem 5.7)

M (Williamson, 2005a, Theorem 5.8)

15 (Williams, 1980, pp. 134-135)

16 (Neapolitan, 1990, Chapters 6-7)

"Nb. B8 < 3. Here p 1 Pg is the function minimising d(p’,c), where c is the central
function that gives the same probability to each elementary outcome (Paris, 1994, p. 120).
As long as constraints are all affine, this as the same function as that found by minimising
d(p, c) first and then minimising d(p’, p)—see Williams (1980, pp. 139-140).

18(Williamson, 2005a, §12.11)

10



In other cases, the whole net may need be reconstructed. If the new con-
straints are inconsistent with the old, background knowledge can not be simply
augmented, it must change: some element of background knowledge must be
repealed to eradicate the inconsistency. In this case a new objective Bayesian
net must be constructed around the changed constraints, via the three-step pro-
cedure of §4 and §5. Similarly if the new knowledge consists of knowledge of
new variables as well as new constraints, a reconstruction of the net will be re-
quired, unless the new knowledge does not warrant a change of degrees of belief
involving the old variables (in particular if the new variables are known not to
be influences of the old). In this latter case one can just augment the old net by
adding the new variables to the graph, adding arrows to the new variables from
old variables that occur in the same constraints (and amongst new variables
that occur in the same constraints) and adding the probability distributions of
new variables conditional on their parents.

We see then that the updating of an objective Bayesian net hinges on the
updating of background knowledge. This yields a foundational approach to
updating—the warrant for degrees of belief, background knowledge, is the cru-
cial determinant of those degrees of belief; one does not update by cohering with
past degrees of belief but by satisfying constraints imposed by this knowledge.

§7
COMBINING

In certain circumstances it is useful to consider the combination p of two ob-
jective Bayesian nets q and v, written p = q x v. (More generally, given a set Q
of obnets we can denote their combination by p = xQ.) For example, two or
more agents may need to come to some consensus and act as one agent, and the
question arises as to which belief function this group agent should adopt.'®

From the foundational point of view, the combination of a set of obnets
should be determined from the combination of the set of background knowledge
bases that underpin the respective obnets: p = q % v should represent p 1 Pg
where 3 = 7 x §, the combination of the knowledge base v that determines q
and the knowledge base ¢ that determines t.

So the combination of obnets boils down to the combination of knowledge
bases. How should knowledge bases be combined? This is a rather subtle
question that turns on the origins of the constraints in the knowledge bases.
Consider an example. Suppose Quentin’s background knowledge v contains the
constraint g(a) = 0.7, while Ronette’s background knowledge § contains r(a) =
0.8. Clearly these are incompatible assignments of probability if reinterpreted
as constraints on p. But the way this inconsistency is resolved depends on
the origins of the these constraints. Suppose that both constraints originated
from observed frequencies: for Quentin a falls under a reference class which
has observed frequency 0.7 of a-type outcomes, while for Ronette a falls under a
reference class which has observed frequency 0.8 of a-type outcomes. If Ronette’s
reference class is narrower than Quentin’s, then her constraint should override
Quentin’s, and only the constraint p(a) = 0.8 should appear in the combined
knowledge base § = v * 4. On the other hand, if neither reference class is

19(Gillies, 1991)

11



narrower than the other then neither constraint is defeated by the other and
the best one can do is include the constraint p(a) € [0.7,0.8] in 3.2° In general,
we can say that Pg is the smallest closed convex set of probability functions
generated by undefeated constraints in vy U 9.

In sum then, a combination of objective Bayesian nets will depend on defea-
sibility relationships amongst constraints in the associated knowledge bases. If
one agent’s knowledge is better than all the others’ then the group obnet should
match that agent’s obnet. Typically though the combined obnet will need to be
constructed afresh from the combined background knowledge.

PArT 11
APPLICATIONS

We shall now quickly run through some applications of the theory developed
above. A more detailed treatment is given in Williamson (2005a).

§8
PROBABILITY LOGIC

The simplest probability logics are concerned with questions of the form: given
premiss sentences and their probabilities, what probability should attach to a
conclusion sentence?

For instance,

0.3

0.9 0.2 0.7 ?
a1 A —ag, (—ag voag) — ag, o as voag, Cag. ' Eas — ay.

is short for the following question: given that a; A —as has probability 0.9,
(—ay4 v az) — as has probability 0.2, as v az has probability 0.3 and a4 has
probability 0.7, what probability should a5 — a1 have?

Such questions can be given an objective Bayesian interpretation: supposing
background knowledge consists of the constraints p(a; A —az) = 0.9, p((—a4 v
az) — az) = 0.2,p(as v az) = 0.3,p(as) = 0.7, what degree of belief should be
awarded to a5 — a1”

An objective Bayesian net can be constructed to answer this question. The
first step is to determine conditional independencies that must be satisfied by
the probability function, out of all those that satisfy these constraints, that max-
imises entropy. To do this we link variables that occur in the same constraint, as
in Fig. 2; separation in this graph determines conditional independencies. The
second step is to transform this graph into a directed acyclic graph satisfying
the Markov Condition, such as Fig. 3. The third step is to maximise entropy to
determine the probability distribution of each variable conditional on its parents
in the directed graph. This yields a Bayesian net. Finally we use the net to
calculate the probability of the conclusion

plas = a1) = p(—as A ar)+plas A ar) +p(—as A —ay)

p(a1) + p(—as|—a1)(1 = p(a1))

20(Williamson, 2005a, §5.3)

12



Thus we must calculate p(a;) and p(—as|—aq) from the net, which can be done
using standard algorithms.

This application of obnets to probability logic is quite straightforward be-
cause background knowledge is quantitative. Other applications use the appa-
ratus of §5 to exploit qualitative knowledge, as we shall now see.

89
CAUSAL MODELLING

Many types of causal model (e.g. structural equation models) consist of infor-
mation about the qualitative causal relationships amongst a set of variables
together with the quantitative strengths of these causal relationships.

In order to easily infer a causal model from data, a number of fundamen-
tal assumptions are made about connections between causal relationships and
empirical phenomena. Perhaps the key assumption is the following:

CAUsAL MARKOV CONDITION (CMC) each variable is probabilistically inde-
pendent of its non-effects conditional on its direct causes.

A fundamental problem facing proponents of causal modelling is the question
of the justification of the Causal Markov Condition. One approach—taken by
Pearl (2000) for example—is to make a number of other assumptions that are
collectively stronger than the CMC and which together imply CMC. For example
Pearl assumes universal determinism, that variables are functions of just their
direct causes and error terms that are not in the variable set, and that error
terms are probabilistically independent.

Objective Bayesian nets offer a less drastic solution to this conundrum. The
components of the causal model can be thought of as an agent’s background
knowledge (. As we saw in §5, causality is an influence relation, and if (8
contains just causal relationships and their strengths then the graph in the
obnet generated by 3 is just the causal graph. By construction, the Markov
Condition is guaranteed to hold for this graph. But the Markov Condition
for the causal graph is just the Causal Markov Condition. Thus the Causal
Markov Condition must hold, where the probabilities that CMC talks about
are interpreted as the degrees of belief that an agent ought to adopt if all she
knows is the causal model.

Thus objective Bayesian nets offer a framework for causal reasoning. But
obnets can also be applied to other influence relations. We shall turn to other
examples of influence relations now.

§10
LoGIcAL REASONING

A sentence a is a logical influence of sentence b if either a or —a is a neces-
sary component of some set of sentences that logically imply either b or —b,
i.e. +a,d |= +b for some sentence d, and d }= +b.

By analogy with causal influence, logical influence is plausibly an influence
relation: learning of variables that are not logical influences of the others pro-
vides no reason to change one’s degrees of belief concerning those other variables.

13



Figure 4: A logical influence graph.

Hence objective Bayesian nets can be used to represent an agent’s degrees of
belief in sentences given qualitative knowledge of logical influence relationships.
For example, suppose 3 consists of the following proof:

1: ¢ — 1 [hypothesis]
2: 8 —> ¢ [hypothesis]
3 (0> (6 — ) — (0 > 6) — (0 — 1)) [axiom]
£ (6= ) > (0 (6 — ) [axiom)]
5: 0 — (¢ — 1) [by 1, 4]
6: (6 > &) — (0 - ¥) [3, 5]
70 > [2, 6]
This proof provides yields not only qualitative knowledge of logical influ-
ences but also quantitative constraints, namely p(bs|bi1bs) = 1,p(bglbsbs) =

1,p(bz|b2bs) = 1, where variable B; takes assignment b; (respectively —b;) just
when the sentence on line i of the proof is true (respectively false). Then the
graph in the obnet generated by 8 maps the structure of the proof, as in Fig. 4.
The probability specification in the obnet contains the probabilities yielded
by the quantitative constraints p(bs|bi1bs) = 1,p(bglbsbs) = 1,p(br|babs) =
1,p(—bs|b1bs) = 0,p(—bg|bsbs) = 0,p(—br|babg) = 0; all other probabilities in
the specification, e.g. p(bg|—bsbs), will be set to 2 by maximising entropy. This
net can be used to calculate arbitrary probabilities, e.g. p(b1|—br).

611
SEMANTIC REASONING

A concept a is a semantic influence of concept b if a (or its complement) is a b
(or its complement). For example, flu is a semantic influence of virus, because
flu is a virus.

Plausibly, semantic influence is an influence relation. Learning that 'flu and
herpes are both viruses provides no reason to change degrees of belief involving
'flu and herpes: one’s degree of belief that a patient has herpes given that
he has ’flu and that they are both viruses should be the same as it would be
in the absence of the knowledge that they are both viruses. Thus learning of
non-semantic-influences should not change degrees of belief over other variables.
(On the other hand, learning of semantic influences may warrant a change in
degrees of belief: learning of 'flu and that ’flu is a short-term illness and a virus
may increase one’s degree of belief that a patient has virus given that he has a
short-term illness.)

Since semantic influence is an influence relation, objective Bayesian nets
can be used to represent an agent’s degrees of belief given qualitative semantic
knowledge. Suppose the agent’s background knowledge /3 consists of the follow-
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Figure 5: A semantic influence graph.

ing semantic knowledge:

o ’fluis a virus,

o herpes is a virus,

o ’flu is a short-term illness,

o herpes is not a short-term illness.

This consists of qualitative semantic knowledge, but also imposes the con-
straints p(v|fz) = 1,p(v|he) = 1,p(s|fz) = 1,p(—s|hx) = 1, where v signi-
fies virus, f 'flu, h herpes, s short-term illness and z is an arbitrary assign-
ment. The resulting obnet will consist of the semantic graph Fig. 5 (a semantic
graph is sometimes called a semantic network in AI) together with the entropy
maximising probability specifiers e.g. p(v|fh) = 1,p(v|f—h) = 1,p(v|=fh) =
1,p(v|=f—h) = 1/2. One can use the obnet to calculate probabilities such as
p(hlvs).

§12
ARGUMENTATION

A proposition a is an argumentative influence of proposition b if a, or its nega-
tion, is an argument in favour of, or against, b. Plausibly, this is another example
of an influence relationship: learning of propositions that are not argumentative
influences of other propositions does not warrant a change in one’s degrees of
belief involving the other propositions.

If so, an objective Bayesian net can be used to represent an agent’s degrees
of belief given knowledge of argumentation structure. As before, given full
knowledge of argumentation structure, the obnet will consist of an argument
graph together with probability specifiers that maximise entropy.

§13
RECURSIVE MODELLING

In a recursive model the values that variables take may themselves be structured,
containing further variables. Such models can be used to represent nested rela-
tionships. For example, the fact that smoking causes cancer causes governments
to restrict tobacco advertising. This can be represented by a recursive model
of the form SC — A where SC is a variable taking value S — C or value
S #— C, S represents smoking, C' cancer and A advertising, the latter three
variables just take the value true or false, and the arrow represents causal con-
nection. Fig. 4 can also be thought of as a recursive model if each variable B;
takes as one value the sentence on line ¢ of the proof used to generate the graph.
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A variable A is superior to variable B if B occurs at a lower level to A. In
the above causal model, SC is superior to S and C', but not to A. Arguably,
superiority is an influence relation: learning of more structure at lower levels
does not warrant a change in degrees of belief concerning higher levels. Full
knowledge of superiority relationships leads to an obnet which contains arrows
from superiors to their direct inferiors.

In fact a recursive model soon looks quite complicated if all these superiority
arrows are included in the model. But one can eliminate them from the model if
one imposes a new Markov Condition, called the Recursive Markov Condition,
which holds that each variable is probabilistically independent of those other
variables that are neither its inferiors nor at the same level, conditional on
its direct superiors. This yields a recursive Bayesian net, a formalism that is
explored in some detail in Williamson and Gabbay (2005).

§14
CONCLUDING REMARKS

We have explored a new, third way of constructing a Bayesian net: like a sub-
jectively elicited Bayesian net, an objective Bayesian net represents an agent’s
degrees of belief; like a Bayesian net learned from a frequency distribution, an
obnet is objectively determined from data. Objective Bayesian nets combine the
best aspects of the other two methods: an obnet can make use of frequency in-
formation where available, but can also incorporate qualitative knowledge that
is not reflected in frequencies.

A theory of rationality must tell us about knowledge (how it should be
gleaned, updated, combined, and so on), about belief, and about decision-
making, and must also offer a practical framework for their integration. Objec-
tive Bayesian nets provide the belief module: given knowledge, an obnet can be
constructed to represent the agent’s degrees of belief; given an obnet, a decision
theory can advise the agent as to which decisions to make on the basis of her
beliefs. Objective Bayesian nets are thus a crucial component of our normative
toolkit.
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