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Abstract Objective Bayesian probability is often defined over rather simple
domains, e.g., finite event spaces or propositional languages. This paper investiga-
tes the extension of objective Bayesianism to first-order logical languages. It is argued
that the objective Bayesian should choose a probability function, from all those that
satisfy constraints imposed by background knowledge, that is closest to a particu-
lar frequency-induced probability function which generalises the λ = 0 function of
Carnap’s continuum of inductive methods.
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1 Objective Bayesianism

Objective Bayesianism is an epistemological theory that encapsulates the following
three tenets. (i) Your degrees of belief should be representable by probabilities. (ii)
Your degrees of belief should be compatible with your empirical evidence, in the sense
of being calibrated with known frequencies and chances. (iii) Where such evidence
does not fully determine your degrees of belief, they should be as equivocal as possible.

In the simplest case there is a well worked-out formalism underpinning these tenets
(see, e.g., Williamson 2005a, Chap. 5, 2007b). If you represent your domain by a finite
partition � of elementary outcomes, apply the Maximum Entropy Principle (maxent
for short): (i) your degrees of belief should be representable by a probability function
p over the subsets of �; (ii) if you know that the chance function p∗ lies in a set
P

∗ of probability functions on this domain then p should lie in the closed convex
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hull [P∗] of P
∗; (iii) you should then choose a probability function p in [P∗] that is

closest to the maximally equivocal function p= which assigns equal probability to
each ω ∈ �. Here distance between probability functions is measured using cross
entropy, d(p, p=) = ∑

ω∈� p(ω) log p(ω)/p=(ω), where 0 log 0 is taken to be 0.
(It is not hard to see that in this simple case the function that is closest to p= is
the function p that has maximum entropy, H = −∑

ω∈� p(ω) log p(ω), and that
there is a unique maximum entropy probability function p. Consequently the entropy
of a probability function is often taken as a measure of its uncertainty or lack of
commitment. The Maximum Entropy Principle requires that your degrees of belief be
representable by this maximally non-committal probability function).

Alas this simple domain structure is not rich enough to cover many interesting
problems to which we might like to apply objective Bayesianism. This simple case
would apply to an agent whose language is a finite propositional language: here � is the
set of atomic states ±r1∧· · ·∧±rn involving propositional variables r1, . . . , rn , and the
probability of a sentence θ is p(θ) = ∑

ω∈�,ω|�θ p(ω). However, there are interesting
questions—such as how to learn from experience, how to assess scientific theories—
that need to be formulated using more expressive languages. This motivates extending
objective Bayesianism to uncountable domains and to countable logical languages
that go beyond propositional languages.

Consider first uncountable domains. Cross entropy can be straightforwardly
extended to measure the distance between probability functions defined over a con-
tinuous partition: one just integrates instead of sums when calculating the distance.
Thus the general recipe goes through as before: choose p ∈ [P∗] that is closest to the
maximally equivocal probability function p=. However there may be no unique maxi-
mally equivocal probability function. There may be more than one way to equivocate,
as witnessed by Bertrand’s paradox (Keynes 1921, §4.7; Gillies 2000, pp. 37–49). Or
there may be a unique way to equivocate but one which is not representable using a
probability function—this is case with the problem of improper priors encountered by
objective Bayesian statisticians (Kass and Wasserman 1996, §4.2). In this latter situa-
tion there are typically many probability functions that are closest to the improper
equivocator. This non-uniqueness is not a show-stopper for objective Bayesianism;
it just means that on uncountable domains objective Bayesianism admits a certain
amount of subjective choice as to which degrees of belief to adopt.1

The problems facing predicate languages are, at first sight, more formidable. One
might try to treat predicating statements, such as Ra, Sb, as if they were propositio-
nal variables, ra, sb.2 This determines a countable propositional language; one can
then apply maxent to finite subsets of this language and take limits to extend the

1 This is a point of difference between objective Bayesianism and the logical interpretation of probability
of Keynes (1921) and Carnap (1950) which does require full-blown uniqueness of probability.
2 A first-order predicate language contains predicate and relation symbols R, S, T, . . . , constant symbols
a, b, c, . . . , and variable symbols x, y, z, . . . , as well as the logical connectives ¬, ∧, ∨,→, ↔ and exi-
stential and universal quantifiers ∃,∀. Often function symbols f, g, h, . . . and an equality symbol = are
included too, and brackets are used to enable parsing. Sentences are constructed using strings of these
symbols; thus ∀x∃y(Px → (Q(y, a) ∨ ¬ f b = c)) can be read ‘for all x there is some y such that if P
holds of x then either y stands in relation Q to a or it is not the case that c is the result of applying function
f to b.’

123



Synthese (2008) 163:341–356 343

resulting probability function to the language as a whole (Paris and Vencovská 2003).
Unfortunately when there is no background knowledge the resulting probability func-
tion (which corresponds to λ = ∞ in Carnap’s continuum of inductive methods)
suffers from an inability to capture learning from experience. An agent who is obser-
ving ravens will initially believe that the next raven is black to degree 1/2. But even if
she goes on to observe 100 ravens, all black, she will only believe the next raven will
be black to degree 1/2. Thus she is unswayed by evidence.

In sum, if objective Bayesianism is to be applied to the question of learning from
experience, a more sophisticated analysis is required. The goal of this paper is to put
forward the principal elements of such an analysis. The plan is to consider successively
richer predicate languages. The case of a finite language with a single unary predicate
symbol is discussed in Sect. 2. The lessons learned from this case will then be applied to
more complicated languages: languages that contain several unary predicate symbols
in Sect. 3, languages with relation symbols in Sect. 4, infinite languages in Sect. 5, and
languages with quantification in Sect. 6.

It is worth pointing out at an early stage that objective Bayesianism is not
subjective Bayesianism. There are important differences between the two positions
and one should draw analogies with caution. Subjective Bayesianism embodies tenet
(i), that degrees of belief be probabilistic, as a core, though many ‘empirically-based’
subjective Bayesians go further by advocating tenet (ii), that beliefs be calibrated with
evidence.3 In a sense then, objective Bayesianism differs just in degree, adopting the
further constraint (iii), that degrees of belief be otherwise equivocal. But this diffe-
rence of degree veils important qualitative methodological differences. In particular
(i) and (ii) are rather weak constraints: subject only to (i) and (ii), one may choose
a belief function p and then, on a minor change in one’s evidence, formulate a new
belief function p′ that is radically different to p. On account of this weakness, sub-
jective Bayesians tend to advocate a further constraint, Bayesian conditionalisation:
when your evidence changes by the addition of e your new belief function p′ should
be set to p(·|e), your old function conditional on the new evidence. This principle is
notoriously problematic. It requires, for instance, that one must be able to formulate
all future evidence as propositions in one’s initial language; that one must totally spe-
cify one’s initial belief function by asking oneself to what extent one believes each
proposition conditional on each possible subsequent sequence of evidence; and that
one never changes one’s degrees of belief in the propositions that one believes to
degree 0 or 1. Objective Bayesians need not be (and, in the version espoused here,
are not) bound by Bayesian conditionalisation. By adopting (iii) in conjunction with
(i) and (ii), objective Bayesian degrees of belief are highly if not fully constrained.
On minor changes in evidence one’s new degrees of belief will not admit changes as
radical as under (i) and (ii) alone. For example, if the new evidence is in the domain
of the probability function, this probability function gives non-zero probability to the

3 Of course the word ‘Bayesian’ is used in different senses according to whether one is describing a theory
of epistemology (concerning the strengths of our beliefs), an interpretation of probability (interpreting
probabilities as degrees of belief), a branch of statistics (which advocates the use of prior probabilities),
or a theory of confirmation (which explicates confirmation in terms of the probability of the hypothesis
conditional on the evidence). Epistemology is our concern here.
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new evidence, and learning the new evidence imposes the constraint that the evidence
should be fully believed and no further constraints, then the maximum entropy update
will agree with the results of conditionalisation (Williams 1980). Thus there is no need
for a separate diachronic principle like conditionalisation. Without such a principle,
objective Bayesians have certain freedoms not enjoyed by subjectivists: one’s lan-
guage can change in line with one’s evidence (Williamson 2005a, Chap. 12); a belief
function need not be fully specified (which has important computational advantages
and makes it easier to maintain consistency); extreme probabilities can be revoked
in the light of new evidence. Hence objectivism and subjectivism differ in important
methodological respects.4

2 One predicate

In this section we shall consider the extension of objective Bayesianism to a very
simple predicate language: a language which has a single unary predicate symbol, a
large but finite number of constants and the usual logical connectives. This case is
considered in detail in Williamson (2007a); the key strategies of that paper will be
presented here, and defended in the face of some criticisms.

Recall the problem of learning from experience. Suppose one is examining ravens
to see whether they are black. There is a single predicate symbol B, signifying is
black, and constants a1, . . . , ak that refer to ravens in the order in which they are
examined, where k > 100. Taking � = {±Ba1 ∧ · · · ∧ ±Bak} and applying the
Maximum Entropy Principle under no constraints yields p(Ba101) = 1/2. While this
seems reasonable enough, consider next the case in which the first hundred ravens
have been observed to be black, Ba1 ∧ · · · ∧ Ba100. This imposes the constraint
p′(Ba1 ∧ · · · ∧ Ba100) = 1, but maximising entropy under this constraint alone gives
p′(Ba101) = 1/2—no change, despite the overwhelming positive evidence.

While the problem of learning from experience might seem at first sight to reveal
a flaw in the Maximum Entropy Principle, this is not in fact the case. Rather, the prin-
ciple has been misapplied in this instance. To derive the problem it is assumed that
initially there are no constraints, and that, once the ravens have been observed, there
is a single constraint induced by the evidence. This overlooks important knowledge
that is implicit in the language, namely that Ba1, . . . , Bak are all related inasmuch
as they are all applications of the same predicate. If this information is not taken into
account then no connection between the observations can be made. If this informa-
tion is to be ignored then maxent rightly renders the observations probabilistically
independent—not a flaw after all.

4 Note that some argue against objective Bayesianism on the grounds that there are cases in which objective
Bayesian degrees of belief differ from those that would be obtained by Bayesian conditionalisation if one
were to enlarge the probability space (see, e.g., Friedman and Shimony 1971; Dias and Shimony 1981;
Seidenfeld 1979). Such arguments clearly beg the question: any difference does not in itself provide grounds
to reject either prescription. A full discussion of this criticism of objective Bayesianism will be found in
Williamson (2008).
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Of course this implicit information should not simply be ignored. The question is,
how should it be taken into account? What constraints does it impose on the agent’s
belief function p?

Arguably there are two types of constraint. First, learning that there will be a further
observation ak+1 should have no effect on one’s degrees of belief concerning the first
k observations. More formally

pk+1
�k = pk,

i.e., one’s probability function on the new language involving a1, . . . , ak+1 should,
when restricted to the language involving only a1, . . . , ak , be equal to the function one
should adopt if one just had this latter language. (In the terminology of Williamson
(2005a), ‘observed before’ is an influence relation).

Second, past observations of the same predicate should be a guide to future
observations: the greater the number of positive observations in the past, the stron-
ger one should believe the next observation will be positive. Consider sequences of
evidence of the form Bε1a1 ∧ · · · ∧ Bεn an , where εi ∈ {0, 1}, B1ai is just Bai , and

B0ai is ¬Bai . Let ε = (ε1, . . . , εn), and let xε
n+1

df= p (Ban+1|Bε1a1 ∧ · · · ∧ Bεn an).
Note that xε

n+1 = pε(Ban+1), the degree to which one should believe Ban+1 having
observed only Bε1a1 ∧ · · · ∧ Bεn an—in such cases maxent agrees with Bayesian

conditionalisation.5 Define ε+ df= ∑n
j=1 ε j , the number of observed positive instances.

Then the second kind of constraint can be explicated thus:

xε
n+1 ≥ xε′

n+1 + τn, if ε+ > ε′+,

where τn ≥ 0 is called the nth inductive influence threshold.
Assuming for the moment that appropriate inductive influence thresholds are known,

maximising entropy subject only to these two constraints yields

xε
n+1 = 1 + τn(ε+ − ε−)

2
,

where ε− df= n − ε+ is the number of observed negative instances and where τ0 = 0.
Note that this determines the joint probability distribution p via the identity

p
(
Bε1a1 ∧ · · · ∧ Bεk ak

) =
k−1∏

n=0

p
(
Bεn+1an+1|Bε1a1 ∧ · · · ∧ Bεn an

)
.

5 This identity is derivable where the conditioned statement has non-zero probability. When

p
(
Bε1 a1 ∧ · · · ∧ Bεn an

) = 0 one can simply define p
(
Ban+1|Bε1 a1 ∧ · · · ∧ Bεn an

) df= pε

(
Ban+1

)
.

123



346 Synthese (2008) 163:341–356

In the absence of any further background knowledge, we can deduce plausible
values for the inductive influence thresholds. If we assume (I) that p(Ba1) = p(Ba2) =
· · · = p(Bak) = x say, and (II) that the inductive influence thresholds vary
continuously with x , then τn = 1/n for n ≥ 1 (Williamson 2007a, §9). Consequently,

xε
1 = p(Ba1) = 1/2, (1)

xε
n+1 = freqn(B)

df= ε+

n
, ifn ≥ 1, (2)

where freqn(B) is just the frequency of B in the first n observations. (Note that these
two equations imply that

p(Bε1a1 ∧ · · · ∧ Bεk ak) =
{

1/2 : ε1 = · · · = εk

0 : otherwise

Interestingly, the induced probability function corresponds to λ = 0 in Carnap’s
continuum of inductive methods xε

n+1 = (ε+ + λ/2)/(n + λ), not to λ = ∞ as
suggested by the original problem of learning from experience.

By means of this analysis we see that objective Bayesians can, after all, learn from
experience: given evidence just of a 100 ravens, all black, the agent should be certain
that the 100 and first raven will be black.

One might object to this resolution, arguing that we have just replaced an inability
to learn from experience by the other extreme, namely a tendency to be led astray by
experience. Thus if only a single raven is observed, and that raven is observed to be
black, the recommendation seems to be that one should be certain that the next raven
will be black, p(Ba2|Ba1) = 1. This appears to be rather over-hasty.

In response one should note that the above analysis depends on there being no
further background knowledge. Of course, this is almost never the case in practice. In
the example we know that ravens are involved and that they are tested to see whether
they are black. Even if we know nothing about the colour of ravens, if we know a
bit of biology then we know that colour may vary widely over a species, and even
if it does not, if ravens were normally black there would be the distinct possibility
of albino ravens. Even if it is not known to what the predicates refer, we know that
for natural languages the chance of picking a population and a predicate R such that
freq(R) = 1 is rather slender. Such items of generic knowledge should lead to more
cautious assignments of belief than p(Ba2|Ba1) = 1. (When background knowledge
takes this rather vague form it is not clear what precise constraints it imposes on an
agent’s degrees of belief. This challenge of knowledge imprecision affects objective
Bayesianism and empirically-based subjective Bayesianism alike, and of course all the
sciences. The most one can ask of objective Bayesianism is that, when input precisely
formulated background knowledge, it can derive precise degrees of belief).

The above response sounds rather hollow without a well-defined procedure for
determining degrees of belief when one does have (precisely-formulated) knowledge
that goes beyond the two constraints imposed by the structure of the language. In
that case, it is not clear how to determine the inductive influence thresholds. But
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progress can nevertheless be made by re-framing the problem as follows. Thus far it
has been argued that the structure of the language imposes two constraints on degrees of
belief; in the absence of further constraints an agent’s belief function is determined by
frequencies, xε

n+1 = ε+/n. To put it another way, on a logical language with a single
unary predicate and finitely many constants, the most equivocal probability function
p= is that determined by these frequencies via Eqs. 1 and 2 (p= is equivocal in the
sense that condition I holds above). This reformulation suggests a more general solu-
tion that applies to the case in which there is further knowledge: in the presence of
further constraints, choose the probability function, from all those that satisfy these
constraints, that is closest to p=, the maximally equivocal function with respect to this
language. Since the further constraints narrow down a closed convex set of probability
functions and cross entropy distance is a strictly convex function, this process will
determine a unique probability function. (There is a technicality here: under the usual
definition of cross entropy distance, uniqueness requires the assumption that there is
some probability function satisfying the constraints that is zero wherever p= is zero; at
the end of this section we shall see how the definition of cross entropy distance can be
modified to avoid this assumption). Thus the procedure for determining a probability
function under no further constraints induces a general procedure for determining a
probability function under arbitrary constraints. In sum, both objections—the objec-
tion that the objective Bayesian cannot learn from experience and the objection that
the objective Bayesian learns too quickly from experience—can be countered.

There is a further objection that is closely related to this latter charge of over-hasty
learning. Carnap’s λ = 0 function, which coincides with the maximally equivocal
function advocated here, has often been criticised on the grounds that it gives pro-
bability 1 to all future observations being the same as the first. This seems to clash
with intuition. Three responses are particularly pertinent. First, the previous reply app-
lies equally here: typically there is knowledge that rules out this maximally equivocal
function, such as knowledge that in the past the first observation has been a rather poor
guide to the outcome of subsequent observations. Hence in the framework advocated
here the λ = 0 function is a reference point rather than a representation of the degrees
of belief that a realistic agent should adopt. Second, since the objective Bayesian upda-
tes degrees of belief by maxent rather than Bayesian conditionalisation, probability 1
statements are defeasible. So when it turns out that observations are not all the same
as the first, one can simply revise one’s degrees of belief accordingly. This is not an
option for the advocate of Bayesian conditionalisation. Third, probability theory often
clashes with intuition: if darts are thrown uniformly at random at a dartboard then
then there is probability 0 of a dart hitting a particular point of a continuous dartboard,
whatever the point, even though there is probability 1 of the dart hitting some point
of the dartboard; a subjective Bayesian must give probability 1 to the proposition that
in the long run her degrees of belief will tend to become perfectly calibrated with
frequency, however ridiculous her prior (Dawid 1982); probabilistic considerations
imply that a solid ball can be taken apart into finitely many pieces which can then be
rearranged to construct a ball twice as large as the original (see, e.g., Wagon 1985).
Further examples of probabilistic violations of intuition abound in the psychology
literature (see, e.g., Tversky and Kahneman 1974). So if intuition is to be a deciding
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factor then it decides against all flavours of Bayesianism, and indeed against the use
of probability at all.

Before proceeding to languages with more than one predicate, we turn to the
technical point mentioned above. Cross entropy distance is normally defined as d
(p, p=) = ∑

ω∈� p(ω) log p(ω)/p=(ω). This is infinite if there is some ω ∈ � such
that p(ω) > 0 but p=(ω) = 0. In the case of a propositional language the equivo-
cator, which sets p=(ω) = 1/|�|, is never zero so this case never arises. However
the frequency-induced equivocator advocated above is zero on several ω. Now if the
constraints force p(ω) > 0 for some ω such that p=(ω) = 0, then every probability
function that satisfies the constraints is infinitely far from the equivocator, so distance
from the equivocator cannot be used to further narrow down the choice of p. This
is a limitation of using cross entropy as a measure of distance between probability
functions: it provides a poor measure in such cases.6 However, this limitation can be
overcome by modifying the definition of distance, as follows. First observe that

d(p, p=) =
k−1∑

n=0

∑

ε=(ε1,...,εn)

dε
n+1(p, p=),

where

dε
n+1(p, p=)

df=
1∑

εn+1=0

p
(
Bε1

1 a1 · · · Bεn+1
n+1 an+1

)

× log
p

(
Bεn+1

n+1 an+1 | Bε1
1 a1 ∧ · · · ∧ Bεn

n an
)

p= (
Bεn+1

n+1 an+1 | Bε1
1 a1 ∧ · · · ∧ Bεn

n an
) .

dε
n+1(p, p=) can be thought of as a local contribution to the total distance. It is a

good measure of this local contribution, except where p=(
Bεn+1

n+1 an+1 | Bε1
1 a1 ∧ · · · ∧

Bεn
n an

) = 0 for some εn+1 ∈ {0, 1}. In that case the measure is obviously too coarse:
dε

n+1(p, p=) = ∞ unless p
(
Bεn+1

n+1 an+1 | Bε1
1 a1 ∧ · · · ∧ Bεn

n an
) = p=(

Bεn+1
n+1 an+1 |

Bε1
1 a1∧· · ·∧Bεn

n an
)
. On the other hand it is intuitively clear what should happen in this

situation: the closer p
(
Bεn+1

n+1 an+1 | Bε1
1 a1∧· · ·∧Bεn

n an
)

is to p=(
Bεn+1

n+1 an+1 | Bε1
1 a1∧

· · · ∧ Bεn
n an

)
, the smaller the local contribution to the total distance. This motivates

the use of a better distance measure in such cases. For example, we might define

d ′ε
n+1(p, p=) =

[
p

(
Bεn+1

n+1 an+1 | Bε1
1 a1 ∧ · · · ∧ Bεn

n an
)

− p= (
Bεn+1

n+1 an+1 | Bε1
1 a1 ∧ · · · ∧ Bεn

n an
) ]2

.

6 There are other technical limitations: cross entropy is not a distance function in the usual mathematical
sense because it is not symmetric and does not satisfy the triangle inequality. Note though that one can take
d(p, q)+ d(q, p) as a symmetric measure of distance; this is the Kullback–Leibler divergence of Kullback
and Leibler (1951, p. 81).
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This would generate a new distance measure:

Dε
n+1(p, p=) =

⎧
⎨

⎩

dε
n+1(p, p=) : dε

n+1(p, p=) < ∞
d ′ε

n+1(p, p=) : otherwise

D(p, p=) =
k−1∑

n=0

∑

ε∈{0,1}n
Dε

n+1(p, p=).

Clearly D(p, p=) ≥ 0 with equality iff p = p=. Moreover, there is no p for which
D(p, p=) is infinite, and the new distance function agrees with the old where the
old is finite. D is by no means an attractive general measure of distance because
of the discontinuity in D(p, q) as q

(
Bεn+1

n+1 an+1 | Bε1
1 a1 ∧ · · · ∧ Bεn

n an
)

reaches 0.
But because the second place of the distance relation is fixed to p= and because we
are only interested in comparative distance relations (minimising distance rather than
using exact magnitudes of distance), it is quite adequate here. Nothing much hinges
on the exact choice of d ′ε

n+1 since different measures agree as to comparative distance
relations in the local binary situation to which it applies.

3 Multiple predicates

Having dealt with the case of a language with a single unary predicate symbol, in this
section we shall see how the approach might be extended to cover more predicates.

This situation is more complicated in the following respect. In the single-predicate
case there is a connection between all the observations—they are all applications of
the same predicate. In Sect. 2 it was suggested that this connection imposes two cons-
traints: an invariance in degrees of belief under knowledge that there will be further
observations, and a dependence imposed by the need for the past to be a guide to the
future. With multiple predicates, though, there is another type of connection to be taken
into account. Not only is it the case that Bam and Ban are connected (being instantia-
tions of the same predicate), but also Ban and Ran are connected because they both
concern the same individual. Unlike the intra-predicate constraints—in which ear-
lier observations influence later observations but not vice versa—this inter-predicate
connection is symmetric.

Despite this added complexity, the strategy for dealing with the single-predicate case
carries over to the multiple-predicate case. Thus far we have seen that not only should
objective Bayesian degrees of belief be calibrated with long-run frequency via tenet
(ii) of Sect. 1, but in the absence of further constraints degrees of belief should also be
calibrated with frequency in the short run (Sect. 2). For a single predicate B there is an
equivocator p= induced by frequency considerations, and one should set one’s belief
function to be as close as possible to this equivocator, subject to the constraints imposed
byone’sotherbackgroundknowledge.Nowif thereare twopredicates, R for ‘raven’and
B for ‘black’, consistency with the single-predicate case requires that the equivocator
on the extended language give probabilities that coincide with those of Sect. 2. Perhaps
the most natural candidate for such an equivocator is the following frequency-induced
function (further justification for this choice will be provided in Sect. 4):
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xδ,ε
n+1

df= p
(
Ran+1|Rδ1a1 ∧ · · · ∧ Rδn an ∧ Bε1a1 ∧ · · · ∧ Bεn an

)

= pδε (Ran+1) = freqn(R) = δ+

n
,

yδ:i,ε
n+1

df= p
(

Ban+1|Rδ1a1 ∧ · · · ∧ Rδn an ∧ Ri an+1 ∧ Bε1a1 ∧ · · · ∧ Bεn an

)

= pδ:i,ε (Ban+1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

freqn(B|R) =
(

n∑

i=1

δiεi

) /

δ+ : i = 1

freqn(B|¬R) =
(

n∑

i=1

(1 − δi )εi

) /

δ− : i = 0

Here δ : i = (δ1, . . . , δn) : i
df= (δ1, . . . , δn, i) for i ∈ {0, 1}, and freq0(X) is taken to

be 1/2, so that p(Ra1) = 1/2 = p(Ba1|Ri a1). Then

p
(
Rδ1a1 ∧ · · · ∧ Rδk ak ∧ Bε1a1 ∧ · · · ∧ Bεk ak

) =
k∏

i=1

xδ,ε
i yδ,ε

i .

More generally, if there are r (unary) predicates R1, . . . , Rr then the frequency-
induced equivocator is defined by

xε, j
n+1

df= p

(

R j+1an+1|Rε1
1

1 a1 ∧ · · · ∧ R
ε1

n
1 an ∧ · · · ∧ R

εr
1

r a1 ∧ · · · ∧ R
εr

n
r an

∧R
ε1

n+1
1 an+1 ∧ · · · ∧ R

ε
j
n+1

j an+1

)

= freqn

(

R j+1|Rε1
n+1

1 · · · R
ε

j
n+1

j

)

where this is taken to equal 1/2 if n = 0. Note that this is undefined if the condition

has probability zero, freqn

(

R
ε1

n+1
1 · · · R

ε
j
n+1

j

)

= 0; in that case it is natural to set

xε, j
n+1

df= 1

m

∑

M

freqn(R j+1|M),

where the M range over the m maximal subsets of
{

R
ε1

n+1
1 · · · R

ε
j
n+1

j

}
for which

freqn(M) 
= 0.

4 Relations

Relations can be treated analogously to predicates. In fact the above procedure may be
taken to characterise the equivocator p= in the case in which R1, . . . , Rr are predicate
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or relation symbols and the ai are tuples of constant symbols. The objective Bayesian
recipe is then to adopt as a representation of one’s degrees of belief the probability
function that is closest to this equivocator, from all those that satisfy constraints
imposed by background knowledge.

There are, however, some considerations that are peculiar to relations.
First, it is rare to repeatedly sample m-tuples ai for m > 1. Normally when we

learn from experience using relations we fix all but one place in the relation and
perform monadic induction: if of five things sampled, all have been more-slithy-than
the Jabberwock, I’ll strongly believe that the next thing will also be more-slithy-than
the Jabberwock. Here, although more-slithy-than (x, y) is a binary relation, monadic
learning takes place with more-slithy-than (x , Jabberwock). Thus we must admit the
possibility that tuples of constants ai and a j have members in common when i 
= j .
This has two consequences. For one thing, the same tuple may be examined more
than once: if an+1 = ai for i < n + 1 then xε, j

n+1 ∈ {0, 1} and so may differ from

freqn

(

R j+1|Rε1
n+1

1 · · · R
ε

j
n+1

j

)

. Having raised this possibility we shall not consider it

further—for ease of exposition we shall assume that ai and a j differ in some respect for
i 
= j . The other consequence is that for a language with constant symbols a1, . . . , ak ,

the space of elementary outcomes is � =
{ ∧r

i=1
∧

a R
εi

a
i a : εi

a ∈ {0, 1}
}

, where the

a range over all sequences (a1, . . . , am) where m is the arity of the corresponding
relation. Cross entropy distance between probability functions is summed over these
elementary outcomes, which are usually known as state descriptions.

A second peculiarity concerns order relations. Some relations are used to order the
elements of the domain, and one can normally tell this syntactically, from the use of
prefixes such as ‘more’ or ‘less’. Thus one can tell syntactically that ‘more-slithy-than
(x, y)’ denotes an order relation, despite not knowing the meaning of ‘slithy’ and
hence the precise order relation that is denoted. When the order yields a total order,
one would expect the relation to be instantiated in around 50% of samples from a
large domain: choosing a and b at random, it is as likely as not that more-slithy-than
(a, b). Hence if neither x nor y is fixed to a constant such as Jabberwock, one should
not learn from experience on more-slithy-than (x, y): if in five samples of x and y, x
was more-slithy-than y, I’d attribute that to a freak sample and would not conclude
that of the next two things I sample the first will be more-slithy-than the second.
Properties and non-order relations, on the other hand, don’t admit such obvious sym-
metry between positive and negative instantiations. Clearly, when it is known that a
relation R yields a total order, this knowledge should be factored into the calculation
of objective Bayesian degrees of belief, perhaps via a default constraint of the form
p(Ra) = 1/2. More generally, relations often have some structure—e.g., transitivity,
irreflexivity—that is known from the outset (Bar-Hillel 1951; Carnap 1951). This infor-
mation must be taken into account when determining objective Bayesian degrees of
belief, by imposing the appropriate constraints and choosing the probability function,
from all those that satisfy these constraints, that is closest to the frequency-induced
equivocator.

The choice of the frequency-induced function as the equivocator p= is inevitable
(modulo what to do when the conditioned event has probability zero) in the following
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respect. In Sect. 2 we required that the past be a guide to the future in the sense that
xε

n+1 ≥ xε′
n+1 + τn where τn is the nth inductive influence threshold. Suppose we

require further of a potential equivocator p= that these thresholds are strictly positive
(condition II of Sect. 2 achieves the same thing), and that the following principles hold:

SX: (Spectrum exchange ability) p=(σ ) depends only on the spectrum of the state
description σ , i.e., the multiset of the sizes of the equivalence classes of the
indistinguishability relation (two constants are indistinguishable in σ if they
satisfy the same predicates and stand in the same relations to other constants).

GJSP: (Generalised Johnson’s sufficientness postulate) p=(σn+1|σn) depends only
on n and the number of constants that are indistinguishable in σn+1 from
an+1, where σn+1 is a state description involving a1, . . . , an+1 and σn is its
restriction to a1, . . . , an .

Then the frequency-induced function is the only possible choice for an equivocator. In
the case of a language with relation symbols that are all binary and with no predicate
symbols this follows directly from the proof of Vencovská (2006, Theorem 4); the
same method can be used to demonstrate the general case.7 Both SX and special cases
of GJSP have been investigated in depth and found to be plausible—for the former
principle see Nix (2005), Nix and Paris (2007), Paris and Vencovská (2007), Landes
et al. (2007); for the latter see Johnson (1932), Carnap (1952), Hill et al. (2002),
Vencovská (2006).

Finally note that m-ary functions can be construed as (m + 1)-ary relations. Thus
functions with a finite domain and range fit into the framework developed above.

5 Infinite languages

Next we turn to the extension of this framework to the case in which there is a countable
infinity of predicate symbols, relation symbols and constant symbols. At this point we
depart from the simple situation in which the set of elementary outcomes is finite.

Consider an ordering α1, α2, . . . of the atomic sentences of the language—each αi

is of the form Ra for some predicate or relation R and for some tuple a of constant
symbols. Let Ri be the predicate or relation symbol occurring in αi and ai be the tuple
of constants in αi , so αi can be written Ri ai .

The set of elementary outcomes is � =
{
ε

df= (ε1, ε2, . . .) : εi ∈ {0, 1}, i =
1, 2, . . .

}
= {0, 1}∞. Here εi signifies a value attaching to αi . A cylinder of rank n

is a subset of elementary outcomes of the form A = {ε ∈ � : (ε1, . . . , εn) ∈ H}
where H ⊆ {0, 1}n . The set C0 of cylinders of all ranks is a field of subsets of � and a
probability measure can be defined over this field. Every finitely additive probability
measure defined on C0 is in fact countably additive (Billingsley 1979, Theorem 2.3),
determined by its values on the thin cylinders {ε ∈ � : (ε1, . . . , εn) = H} where
H ∈ {0, 1}n , and uniquely extendible to the sigma field C generated by C0 (Billingsley
1979, Theorem 3.1).

7 I am grateful to Jürgen Landes for this last point.
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Any sentence θ in our extended language corresponds to a cylinder Cθ in C
(Williamson 2002, §2). If the elementary outcomes are thought of as truth valuations
of the atomic sentences αi , then Cθ is the set of valuations under which θ is true. Given

a probability measure p on C, one can define p(θ)
df= p(Cθ ). Conversely a function p

that assigns a value in [0, 1] to each sentence of the language is a probability function

if p(Cθ )
df= p(θ) defines a probability measure on C.

The state descriptions in our extended language are expressions of the form Rε1
1 a1∧

· · · ∧ Rεn
n an . Each such state description σn corresponds to a thin cylinder Cσn in

C. Since its values on the thin cylinders determine a probability measure on C, its
values on the state descriptions determine a probability function on the language and
p(θ) = ∑

σn |�θ p(σn), where n is chosen large enough that all the αi in θ occur
in α1, . . . , αn . A function p that assigns a value in [0, 1] to each state description
determines a probability function if (a)

∑
σ1

p(σ1) = 1 and (b) if m < n then p(σm) =∑
σn |�σm

p(σn).
The frequency-induced equivocator for the language is determined exactly as before:

p= (
Rε1

1 a1 ∧ · · · ∧ Rεn
n an

) =
n∏

i=1

freqi−1
(
Rεi

i | Rε1
1 · · · Rεi−1

i−1

)
,

with qualifications as described at the end of Sect. 3.
The definition of distance from the equivocator needs extending to cope with an

infinite language. Previously, D(p, p=) = ∑k−1
n=0

∑
ε Dε

n+1(p, p=); now we require
that D(p, p=) = ∑∞

n=0
∑

ε Dε
n+1(p, p=). Note that this extension changes some of

the properties of D. For instance, there are now probability functions p for which
D(p, p=) = ∞, e.g., p defined by p

(
Rεn+1

n+1 an+1 | Rε1
1 a1 · · · Rεn

n an
) = 1 for the

sequence ε1 = 0, εi+1 = 1 − εi (i = 1, 2, . . .) and for all n = 0, 1, . . .. If the
constraints only admit probability functions that are infinitely far from the equivocator
then there will be nothing to choose between these functions; objective Bayesian
probability will not be uniquely determined. Having said that, such a situation seems
rather far-fetched—it would be a surprise if realistic background knowledge induced
this kind of pathological set of constraints.

6 Quantifiers

Finally we extend the language further by including variables and the quantifiers ∃,∀.
The probability space remains as defined in Sect. 5, and we have that8

p(∃xθx)
df= p(C∃xθx ) = sup

n
p

(
n∨

i=1

θai

)

,

p(∀xθx)
df= p(C∀xθx ) = p(¬∃x¬θx).

8 Note that these definitions are only plausible under the assumption that each element of the domain is
picked out by some constant in the language.
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Any probability function over the whole language is uniquely determined by its values
on the quantifier-free sentences of the language, which are in turn determined by its
values on the state descriptions (Gaifman 1964; Paris 1994, Chap. 11), because as
mentioned above a probability measure on the sigma field C of cylinders is determined
by the probabilities of the thin cylinders.

Since the probability space remains the same, the frequency-induced equivocator
is just as defined above, as is the measure of distance between probability functions.

Note that an agent’s degrees of belief should satisfy all the axioms of probability,
including countable additivity (Williamson 1999). Now limiting frequency does not
necessarily satisfy countable additivity: suppose that unary predicates R1, R2, . . . are
mutually exclusive and exhaustive and Ri holds only of ai ; then freq∞(Ri ) = 0 for
all i , contradicting countable additivity. But the frequency-induced equivocator p=
is defined on the field of cylinder sets, and, as described above, we get countable
additivity for free here for all finitely-additive probability measures on this domain.
Consequently, unlike in the case of uncountable domains (Sect. 1), we do not have
non-uniqueness of potential belief functions arising from a non-countably-additive
equivocator.

7 Conclusion

We have seen that there is a plausible objective Bayesian strategy for handling pre-
dicate languages: choose as a representation of your degrees of belief the probability
function, from all those that satisfy constraints imposed by background knowledge,
that is closest to the frequency-induced equivocator. This fits well with (i) objective
Bayesianism on finite propositional languages, which advocates choosing a belief
function closest to the equivocator on such languages (though in this case the equi-
vocator is the function that assigns equal probability to each atomic state). It also fits
well with tenet (ii) of objective Bayesianism which advocates calibrating degrees of
belief with best available estimates of frequencies and chances; any other choice of
equivocator on a predicate language would apparently conflict with this tenet.

While this proposal overcomes the objection that objective Bayesianism cannot
account for learning from experience, there is clearly more to do before a convin-
cing case can be made that objective Bayesianism can handle the assessment of
scientific theories. Of course, objective Bayesianism inherits challenges that face
other flavours of Bayesianism: in particular, how to delimit background knowledge
and render it precise, and how to determine the constraints imposed on degrees of
belief by precisely-formulated background knowledge. It also faces its own challen-
ges (Williamson 2007c)—e.g., how to compute the objective Bayesian probability
function (objective Bayesian nets may be of some help here—see Williamson 2005b).
But objective Bayesianism has certain advantages over other varieties of Bayesianism:
it seems better set to account for the apparent objectivity of scientific confirmation, and,
since Bayesian conditionalisation is avoided, it avoids objections that are attributable
to this principle. Objective Bayesianism also has advantages over the logical interpre-
tation of probability—uniqueness of objective Bayesian probability is not essential,
and, unlike many of the classic approaches to inductive logic, it does not merely apply
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to the case in which an agent has no background knowledge at all (e.g., as described
in Sect. 4, objective Bayesianism can handle known relational structure).
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