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Objective Bayesianism

3 Principles of Rationality (a subjective belief function of a
rational agent ought to satisfy):

1 Probabilism – Beliefs should satisfy the axioms of probabil-
ity.

2 Calibration – Beliefs should satisfy constraints imposed by
the available evidence.

3 Equivocation – “Choose probability function consistent with
evidence which is most open-minded.”
(Equivalently: maximize Shannon Entropy among calibrated
probability functions)
With asterisk
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Justifying Objective Bayesianism

The usual story
1 Probabilism - Dutch Book (one single bet)

Avoidance of sure loss.
2 Calibration - Repeated betting

Avoidance of expected loss.
3 Equivocation - Repeated betting

Avoidance of worst-case expected loss.

Our current goal: Give one single justification for OB.
No need to appeal to three different types of loss
avoidance.
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Scoring Rules - Basic Notation

Idea: Ask agent for a her beliefs, i.e. bel : SL → [0,1].

Denote by Ω the set of worlds (elementary events, atoms).
If ω ∈ Ω obtains, then DM will suffer loss L(ω,bel).
Expected loss then leads to the notion of a scoring rule

S(P,bel) :=
∑
ω∈Ω

P(ω) · L(ω,bel) .

Low score is good! – Avoid loss.
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Interpreting the Functions

S(P,bel) :=
∑
ω∈Ω

P(ω) · L(ω,bel) .

bel is the belief function DM announces.
Suppose P = bel∗, private subjective beliefs.
A DM minimizing S(bel∗,bel) should announce a probabil-
ity function, because her personal beliefs satisfy the axioms
of probability.
No justification of the probability norm nor the calibration
norm!
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Interpreting the Functions 2

S(P,bel) :=
∑
ω∈Ω

P(ω) · L(ω,bel) .

It makes much more sense to interpret P as the objective
chance function P∗ — if you believe in such a thing.
Then, minimizing score can be interpreted as minimizing
inaccuracy; with respect to L.
However, DM does not know P∗, all she knows is P∗ ∈ E ⊆
P. Minimizing worst case loss makes sense:

sup
P∈E

S(P,bel) := sup
P∈E

∑
ω∈Ω

P(ω) · L(ω,bel) .
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Local Scoring Rules

Let us revisit the expression P(ω)L(ω,bel).
Imagine we want to implement our scoring rule by penaliza-
tion (weather man).
In case ω, it would be very strange, if forecaster’s loss de-
pended the forecast for ω′ 6= ω.

Thus, we desire that our scoring rules are local, i.e.

L(ω,bel) = L(bel(ω)).

Brier score is not local.

Jürgen Landes Centre for Reasoning Justifying Objective Bayesianism with Scoring Rules
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Scoring Rules on Worlds

Minimizing

sup
P∈E

S(P,bel) = sup
P∈E

∑
ω∈Ω

P(ω) · L(ω,bel)

= sup
P∈E

∑
ω∈Ω

P(ω) · L(bel(ω))

still falls well short for justification of probability norm!
bel(ω1 ∪ ω2) does not appear in S(P,bel)!
Instead, consider minimizing extended score

sup
P∈E

S(P,bel) : = sup
P∈E

∑
F⊆Ω

P(F ) · L(F ,bel)

= sup
P∈E

∑
F⊆Ω

P(F ) · L(bel(F )) .
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Constraining L(F ,bel)

We aim to justify adopting the P† which maximizes

HΩ(P) =
∑
ω∈Ω

−P(ω) · log(P(ω)) .

So our loss function will have to be logarithmic.
Axioms L1 – L4 imply that L(F ,bel) = − log(bel(F )).

L(F ,bel) = L(bel(F )) is interpreted as the loss distinct to
F , if F obtains.
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Local Scoring Rules for Probability function

A scoring rule S is called strictly proper, if and only if S(P,X ) is
uniquely minimized by X = P.

Theorem – Savage 1971
L(ω,BEL) = −λ · log(BEL(ω)) is the only
strictly-BEL ∈ P-proper scoring rule. (λ ∈ R>0)

Theorem – Us 2012
There is no strictly-BEL ∈ BEL-proper local extended scoring
rule.

Jürgen Landes Centre for Reasoning Justifying Objective Bayesianism with Scoring Rules



...

13 / 22

Introduction
Scoring Rules

Belief Functions
Results

Locality
Normalization

Local Scoring Rules for Probability function

A scoring rule S is called strictly proper, if and only if S(P,X ) is
uniquely minimized by X = P.

Theorem – Savage 1971
L(ω,BEL) = −λ · log(BEL(ω)) is the only
strictly-BEL ∈ P-proper scoring rule. (λ ∈ R>0)

Theorem – Us 2012
There is no strictly-BEL ∈ BEL-proper local extended scoring
rule.

Jürgen Landes Centre for Reasoning Justifying Objective Bayesianism with Scoring Rules



...

14 / 22

Introduction
Scoring Rules

Belief Functions
Results

Locality
Normalization

Proof of no-locality for Belief Functions

Proof: Assume that S(P,BEL) =
∑

F⊆Ω P(F )L(F ,BEL) is
a strictly proper extended scoring rule.
Locality implies S(P,BEL) =

∑
F⊆Ω P(F )L(BEL(F )).

It is best to adopt B(F ) = x where x ∈ [0,1] minimizes L(x)
– regardless of P! �
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The loss function L for general beliefs

Our story is along the lines: Minimize (...) logarithmic loss!
If bel(F ) = 1 for all F ⊆ Ω, then L(F ,bel) = − log(1) = 0.

Thus, Slog
g (P,bel) =

∑
F⊆Ω g(F )P(F ) · 0 = 0.

So, bel ≡ 1 minimizes loss! This is BAD.
Houston, we have a problem!
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Normalize!

Let Π be the set of partitions of states of our language.
For example for Ω = {ω1, ω2, ω3, ω4}, π = 〈(ω1, ω2, ω4), (ω3)〉
is a partition.
Let M := maxπ∈Π

∑
F∈π bel(F ).

Given a belief function bel : {F ⊆ Ω} −→ R≥0 (bel not zero
everywhere), its normalisation B : {F ⊆ Ω} −→ [0,1] is
defined as B(F ) := bel(F )/M.

Set of normalized belief functions

B := {B : {F ⊆ Ω} −→ [0,1] :
∑
F∈π

B(F )≤1 for all π ∈ Π

and
∑
F∈π

B(F ) = 1 for some π}.
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g-Score

For a loss function L and a weighting function g : Π → R>0
define expected g-loss

SL
g(P,B) =

∑
F⊆Ω

(∑
π∈Π
F∈π

g(π)
)

P(F )L(F ,B) .

With L(F ,B) = − log(B(F )) this becomes

Slog
g (P,B) = −

∑
F⊆Ω

(∑
π∈Π
F∈π

g(π)
)

P(F ) log(B(F )) .

g-entropy is defined as

Hg(P) = Slog
g (P,P) .
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Good News Everyone!

Theorem – Norm 1, 2

Slog
g (P, ·) is strictly proper on B. For convex E ⊆ P

arg inf
B∈B

sup
P∈E

Slog
g (P,B) = arg sup

P∈E
Hg(P) = {P†g} .

Theorem – Norm 1, 2, 3

If P= ∈ Ē and if g is symmetric, then

arg inf
B∈B

sup
P∈E

Slog
g (P,B) = arg sup

P∈E
Hg(P) = {P=} = arg sup

P∈E
HΩ(P).
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Mixed News

Conjecture – Norm 3?
For all (reasonable) g there exists a convex E such that

arg inf
B∈B

sup
P∈E

Slog
g (P,B) 6= arg sup

P∈E
HΩ(P) .

Theorem – Norm 3 asterisk

For fixed E let P†g be the unique g-entropy maximizer, then

P†Ω ∈ {P
†
g | g senisble} .
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Thank You. Questions?
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The loss function L – Axiomatic Characterization

L1 L(F ,bel) = 0, if bel(F ) = 1.
L2 Loss strictly increases as bel(F ) decreases from 1 to-
wards 0.
L3 L is local. L is called local, if and only if L(F ,bel) =
L(bel(F )).

L4 Losses are additive when the language is composed of
independent sublanguages.
L1 – L4 imply that L(bel(F )) = − logb(bel(F )) for some
b ∈ R>0.
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