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Abstract

Expert probability forecasts can be useful for decision making (§1). But levels
of uncertainty escalate: however the forecaster expresses the uncertainty that
attaches to a forecast, there are good reasons for her to express a further level
of uncertainty, in the shape of either imprecision or higher order uncertainty
(§2). Bayesian epistemology provides the means to halt this escalator, by tying
expressions of uncertainty to the propositions expressible in an agent’s language
(83). But Bayesian epistemology comes in three main varieties. Strictly subjec-
tive Bayesianism and empirically-based subjective Bayesianism have difficulty in
justifying the use of a forecaster’s probabilities for decision making (§4). On the
other hand, objective Bayesianism can justify the use of these probabilities, at
least when the probabilities are consistent with the agent’s evidence (§5). Hence
objective Bayesianism offers the most promise overall for explaining how testi-
mony of uncertainty can be useful for decision making.

Interestingly, the objective Bayesian analysis provided in §5 can also be used
to justify a version of the Principle of Reflection (§6).
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§1

To be uncertain or not to be?

In November 2011 the UK Meteorological Office (Met Office) changed the way it
gave weather forecasts, from mainly qualitative expressions of uncertainty—‘rain at
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times’, ‘scattered showers, mainly in the NW’, ‘up to 50mm in places’, ‘risk of heavy
bursts’—to quantitative announcements of probabilities—‘a 10% chance of...’, ‘80%
probability of disruption to...’, ‘a one-in-five chance that Heathrow Airport might
get...’, ‘a 5% risk of... so it is probably worth the risk.”!

The question arises as to whether that was the right thing to do. A previous
attempt to introduce probability into Met Office forecasts did not augur well. In
April 2009 the Met Office announced that a barbecue summer was ‘odds on’.? In
the face of widespread criticism in the UK press during a summer of floods in which
rainfall in June, July and August turned out to be 40% above the long-term average,
the Met Office noted: ‘in April we said there was a 65% chance of temperatures above
average and rainfall below average but that does leave a 35% chance that the opposite
would be true’.? That the British public were not ready for probabilistic forecasting
was confirmed when, on 9th December 2011, the Met Office won a Golden Bull Award
(awards which are meted out to ‘the worst examples of written tripe’) at the annual
awards ceremony of the Plain English Campaign, for their use of ‘probabilities of
precipitation’.*

Even if the public mood was not in favour of probabilistic forecasts, the question
remains as to whether it is nevertheless in the public interest to express uncertainty
this way.

This question was discussed in a Royal Society symposium on Handling un-
certainty in science, and the editors of the resulting proceedings gave the following
defence:

if the public were more exposed to weather prediction as inherently
probabilistic, perhaps there would be more acceptance of the simple
fact that one’s view about the risk of dangerous climate change should
not be framed in the black and white terms of ‘belief” and ‘scepticism’.
For one thing, belief should have no real role in science, and, in truth, all
good scientists are inherently sceptical people. (Palmer and Hardaker,

2011)

This defence is unsatisfactory in two respects. First, there isn’t much uncertainty that
the climate is currently on a dangerous trajectory. Rather, uncertainty attaches to
specific long-range climate predictions, and to the question of which policy interven-
tions can best mitigate climate change. Neither of these latter forms of uncertainty
have yet yielded to probabilistic forecasts about which one can be very confident.
Hence there is a danger that probability is just being invoked to give a false sense of
objectivity. The second questionable feature of this defence is the claim that belief
should have no real role in science. While faith—understood as a propositional atti-
tude that is impervious to changes in one’s body of evidence—arguably should have
no real role in science, belief in scientific claims makes scientific progress possible:
scientists would not investigate theories unless they believed that such theories are
likely to be true, or that such investigations are likely to be fruitful. As Ramsey (1926,

1http://research.metofﬁce.gov.uk/research/nwp/ensemble/uncertainty.html.
2http://www.metofﬁce‘gov.uk/news/releases/archive/?009/summer2009.
3http://www.da.ilyma.il.co‘uk/news/a.rticle—1202982/Met—Ofﬁce-left—red—fa.ced—Britains-forecast—
barbecue-summer-turns-washout.html. Toulmin would argue that the Met Office is using probability
assertions precisely to guard against such comebacks: ‘If they unreservedly forecast cloud later today and
the skies remain clear, they can justifiably be rounded on by the housewife who has put off her heavy
wash on account of their prediction.” (Toulmin, 1958, p. 47.)
4http://www.plainenglish.ca.uk/awards/golden—bull—awards/golden—bull-winners—QOll.html.
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p- 183) pointed out, ‘whenever we go to the station we are betting that a train will
really run, and if we had not a sufficient degree of belief in this we should decline
the bet and stay at home’. It is important—in the context of climate change and
elsewhere—to deliberate about how much belief to apportion a scientific hypothesis,
and not to sweep the very idea of belief under the carpet.

This defence, then, merely serves to highlight the dangers of probabilistic fore-
casts: at worst, they can be used a rhetorical device to convey a false sense of ob-
jectivity, replacing apparently more subjective terms such as ‘belief’. So the question
remains as to whether it is appropriate to announce probabilistic forecasts.

In contrast to the line taken by the Royal Society symposium, the Met Office
responded to public unease as follows:

Often people want to make a decision, such as whether to put out their
washing to dry, and would like us to give a simple yes or no. However,
this is often a simplification of the complexities of the forecast and may
not be accurate. By giving PoP [Probability of Precipitation] we give
a more honest opinion of the risk and allow you to make a decision
depending on how much it matters to you. For example, if you are just
hanging out your sheets that you need next week you might take the risk
at 40% probability of precipitation, whereas if you are drying your best
shirt that you need for an important dinner this evening then you might
not hang it out at more than 10% probability. PoP allows you to make
the decisions that matter to you. (Press Release, 9th December 2011.)5

Thus the Met Office defence is that decision making requires uncertainty reports.
This seems essentially right. Arguably, Bayesian decision theory currently provides
the best general guide to decision making. Bayesian decision theory requires making
the range of possible acts explicit, as well as their utilities and the probabilities of
the different outcomes pertinent to the decision problem. Acts and utilities vary
according to the interests of the decision maker and there is not much advice the
Met Office can offer in that regard. Therefore, if Met Office reports are to be relevant
to decision making, they need to report probabilities.

Thus a prima facie case can be made for experts publicly quoting their probabil-
ities to express the uncertainty that attaches to their forecasts. However, as we shall
now see, probabilistic forecasts are the thin end of the wedge.

§2

The uncertainty escalator

Having established a need for explicit uncertainty reports, the next question that
arises is: how uncertain do we need to be?

The Met Office could simply give single probability reports such as, ‘a 40% prob-
ability of rain’. Such an expression of first order probability is required to get Bayesian
decision theory off the ground. It might mean one of two different things. The stan-
dard Bayesian take is that this figure is the Met Office’s degree of belief in rain;
the infamous Dutch book argument, which develops Ramsey’s connection between
beliefs and bets mentioned above, is used to conclude that such degrees of belief
ought to obey the laws of probability. But this 40% figure can alternatively be taken
as the Met Office’s best estimate of the physical probability of rain; the argument

5 http://www.metoffice.gov.uk/news/in-depth/science-behind-probability-of-precipitation.
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being that decision makers are interested in the objective prospects of rain, not in
the subjective opinions of those who work at the Met Office.

In fact, the Met Office provides some of its customers with a confidence range,
rather than a point-valued probability. Thus one might report ‘a 34-46% probability
of rain’. This expression of imprecise first order probability admits of two interpre-
tations. An epistemological interpretation takes this to be an expression of partial
belief; this position can be motivated by a Dutch book argument where the bettor
is allowed to buy and sell bets at different rates. Or this expression can be viewed
as providing bounds on the physical probability of rain, the thought being that a
point estimate is almost always wrong, so it makes more sense to provide an interval
estimate, which might be right on say 95% of occasions. Either way, the idea is that
typically there is some uncertainty attached to a precise (point-valued) first order
probability report, and providing an imprecise first order probability instead can al-
low one to quantify this uncertainty. This is important in a decision-making context
if the decision to be taken depends on where in the interval a precise probability lies.
One may decide to hang out one’s laundry at 40% probability of rain but not at 45%,
and knowing that the decision taken is not robust under changes of the probability
within the confidence range 34-46% may actually help one take the decision: it may
lead one to be more cautious in this case, for instance, and not hang the washing
out.’

Of course, not all values within the confidence range are equal. Normally, some
will be more plausible than others. Thus a 40% probability of rain might be a much
more plausible estimate than a 45% probability of rain, and if the difference between
one’s confidence in the two values is substantial enough, one might decide to hang
out one’s washing after all. The way to provide information for this nuance in the
decision-making process is to report a probability distribution over the first order
probability of rain. This second order probability would normally be construed as
epistemological: as a belief about one’s degree of belief in rain, or as a belief about
the physical probability of rain. A second reason for moving from imprecise first
order probability to second order probability is that the end-points of an imprecise
first order probability interval are often somewhat arbitrary; a second-order prob-
ability distribution can give positive weight to all first order probabilities and so is
not subject to arbitrary cut-offs (Good, 2003).

There are also reasons to move directly from first order probability to second
order probability. In fact, de Finetti’s representation theorem shows that under
certain circumstances one’s first order degrees of belief can be thought of as having
been produced by a second order probability distribution over first order physical
probabilities: if X; is a sequence of binary random variables that take possible values
0 or 1 and that are exchangeable with respect to one’s first order belief function P,

6Some Bayesian decision theorists argue that this uncertainty about the probability of rain should not
influence decision making: all decisions should be made on the basis of precise first order probabilities.
But this is a controversial line to take. In practice our decisions are influenced by considerations to do with
their robustness under plausible alternative first order probabilities, and this is apparently reasonable. If
one’s threshold for not hanging out one’s laundry is a 45% probability of rain and one is very confident
that the probability of rain is less than 45% then one can be confident that one’s decision is the right
one in the circumstances. But if one knows that the first order probability is to some extent an arbitrary
representation of first order uncertainty, or a poor estimate of physical probability, and that the value
could well be higher than the threshold for the decision, then one cannot be confident that the decision is
the right one. Thus there is at least a prima facie case for taking imprecision into account. The Bayesian
position will be revisited in §3.
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where r, =37, x;, where z may be thought of as ranging over possible values of first
order physical probability P*(X; = 1) for X; IID with respect to physical probability
P*, and where F may be thought of as a probability distribution over these physical
probabilities. Moreover, this second order probability distribution is determined by
the first order belief distribution: F(z) = P(X o <z) where X =lim, .o Z;‘ZlXi/n is
the limiting relative frequency of X; (see, e.g., Schervish, 1995, §1.4; Williamson, 2011,
§7.4.2). Hence there is a sense in which a first order belief distribution is equivalent to
a second order probability distribution over first order physical probability, in which
case moving from first order probability to second order probability is a trivial step.”

Note that second order probabilities can be rather speculative. Confidence inter-
val estimation methods might make the Met Office 95% confident that the probability
of rain is between 34% and 46%, and 60% confident that there is a 39-41% probabil-
ity of rain, leading it to announce a second order probability distribution that fits
these two constraints. But they might just as well have announced a different second
order distribution that fits these constraints; there is often substantial leeway in de-
termining higher order probabilities. So it is more sensible to announce, instead of a
single second order distribution, the whole set of second order distributions that fit
the available constraints. Moreover, announcing this imprecise second order probability
can be beneficial for decision making. If some distributions in the set of second
order probability functions make it quite probable that the chance of rain is at least
45% then one might justifiably be cautious and refrain from putting one’s washing
out to dry after all. Thus, announcing an imprecise second order probability can
allow one to perform a useful robustness analysis that determines the sensitivity of
the decision taken to the precise second order probability measure chosen. Such a
robustness analysis can, and often does, influence decision making.

Of course, not all second order probability distributions within this set of dis-
tributions are equal. It tends to be the case that some probability functions from
within a set of functions will be more plausible or natural than others: a normal dis-
tribution, for example, often stands out as being particularly probable in the context
of certain convergence results, and so-called concentration results show that there is
a high probability that a physical probability distribution is close to the maximum
entropy distribution (see, e.g., Jaynes, 1982, §3).

It should be clear by now where this is leading. The Met Office should advertise
a third order probability function, since that might show that the caution resulting
from the imprecise second order probability was too hasty. But it is hardly plausible
to suggest that a single such third order distribution stands out to the exclusion of all
others—if we consider imprecise third order probability, other plausible distributions
can influence our decision. But how plausible? Plausibility is a matter of degree and
some of these third order probability functions will be more plausible than others.
What we need is fourth order probability ...

"Thus formulated, de Finetti’s theorem invokes an exchangeability condition—degrees of belief about
a sequence of events are independent of the order of those events. This condition would not normally
be satisfied in the context of beliefs about rain on consecutive days, since the order matters here (rain on
two consecutive days followed by a dry day may be more likely than rain followed by no rain followed by
rain). It is however possible to weaken the exchangeability requirement to yield an analogous result that
is more applicable to weather forecasting (Diaconis and Freedman, 1980).
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We end up with an escalation in levels of uncertainty. If we admit the need
for reports of uncertainty for decision making, then there are compelling reasons
for progressing to the next level—moving to the next level might, after all, war-
rant choosing a different act in the decision problem that motivated the need for
uncertainty in the first place.

This uncertainty escalator is a problem. As we have seen, there may be no
stable answer to the question of whether we should put our washing out to dry, if at
each level of uncertainty some higher level leads to a different decision. Moreover,
whether or not there is a stable answer, decision making gets harder as we ascend
the escalator. First, it becomes pragmatically harder, as there are more kinds of
uncertainty that need to be taken into account in order to make a decision. Second,
every other level up the escalator we reach imprecision, and this poses its own
difficulties. In standard Bayesian decision theory, a precise probability function will
normally trigger one or other of the acts available, as there will normally be only one
act that maximises expected utility. But when we admit imprecision, i.e., when we
consider a range of probability functions, it will often be the case that some of these
functions trigger one act while others trigger other acts. There are then two options.
One response is to say that we do not have the tools to make a decision in such cases.
Then we may end up in a situation in which we alternate between being able to make
a decision and not being able to make a decision as we progress up the escalator.
The second option is to appeal to some further rule in order to allow one to make a
decision in such cases. For example, one might choose the act that maximises worst-
case expected utility, where one considers the full range of probability functions to
determine this worst case. The problem is that a great many such rules have been
put forward in the literature, and no doubt many more will be put forward, all of
them plausible in one way or another (see, e.g., Troffaes, 2007). This introduces a
new kind of uncertainty—uncertainty as to which rule to apply to make a decision.
Should one consider robustness of the decision made under a range of such rules?
Of course, not all the rules will be equal with regard to the desiderata in play or
the particular context of the decision problem, so perhaps one should favour some
rules over others. What this amounts to is weighing more highly those rules that fare
better with respect to the chosen desiderata so as to provide to a linear ranking of
the available acts, in order that one might embark upon the act that is most highly
ranked. Formally, such a weighting would correspond to a function that maps a
decision problem to a linear ordering of acts. Now, it would be astonishing to think
that the constraints would uniquely determine a single such weighting, so one had
better consider a range of weightings. But not all weightings are equal .... In short,
imprecision yields its own set of difficulties for decision making, and arguably even
generates an escalator analogous to the uncertainty escalator introduced above.

The moral of this story is that we need some way to halt the uncertainty es-
calator, to stop us from indefinitely ascending levels of uncertainty. Any theory of
uncertainty, if it is to be relevant to decision making, had better take a principled
stance as to which level is the right place to stop. Otherwise we will never get to the
dinner tonight for want of being able to decide whether to dry our shirts indoors or
outdoors.

Those who think that one should avoid any use of epistemological probabilities
and only consider physical probabilities will want to say that we should stop at the
first level: feed in only (first order) physical probabilities to the decision problem.



The difficulty with that view is that it requires that all the relevant outcomes be the
sorts of things to which physical probabilities attach, and that the decision maker
has access to all these physical probabilities. In most cases in which there is limited
evidence of physical probabilities it will be hard to make a decision at all. This makes
the epistemological view, which we shall examine next, apparently indispensable for
decision making.

§3

Bayesian epistemology

One response to the uncertainty escalator is to take the epistemological view of
Bayesianism seriously. According to the epistemological view, probabilities measure
the strengths of an agent’s beliefs. (More precisely, the core tenet of Bayesian episte-
mology is that if the strengths of the agent’s beliefs are apportioned in an appropriate
way, they are probabilities.) The object of a belief is a proposition. Hence Bayesian
degrees of belief are defined over the propositions that the agent can express. It is
the agent’s language that determines which propositions she can express, so Bayes-
ian probability can be thought of as defined over those propositions expressible via
sentences of the agent’s language. Setting aside those grammatical sentences that
fail to express propositions—sentences like ‘Get up!’, ‘Colourless green ideas sleep
furiously.’, and perhaps ‘This sentence is false.”® —, we can think of Bayesian proba-
bility as defined over those sentences 01,02, ... of the agent’s language that succeed
in expressing propositions when used by that agent.

This fixes the domain of the probability function, and gives a clear answer to pre-
cisely where on the uncertainty escalator the Bayesian comes to a stop. If the agent’s
language cannot express propositions about first order probabilities, then Bayesian
probability is first order. Thus in practice many Bayesian decision-support systems
invoke only first order uncertainty, because it is often the case that an artificial agent
can only express propositions about, e.g., possible financial states and transactions
or possible medical symptoms and prognoses, and not propositions about the prob-
abilities of those states or transactions. On the other hand, if the agent’s language
can express propositions about at most n-th order probability (precise or impre-
cise), then Bayesian probability is (n + 1)-st order. Human agents, for instance, can
typically express high order uncertainty.

The advantage of this epistemological stance is that it gives a principled response
to the problem outlined in §2, and thus renders decision making possible. But there
are also several apparent disadvantages. First, it seems set to render decision mak-
ing rather intractable for agents like us who can express very high order uncertainty.
Second, it makes the decision taken depend on the agent’s language, and it is by
no means obvious that whether one should hang out the washing should depend on
one’s linguistic capabilities. Third, the epistemological approach to Bayesianism does
not fit well with the uses of Bayesianism in statistics—where Bayesian probability is
normally second order, where the domain of the probability function is tailored very
much to the individual application, and where Bayesian probability is increasingly
treated as a pragmatic tool rather than as a particular interpretation of uncertainty
(Kass, 2011; Gelman and Shalizi, 2013). Fourth, the dominant epistemological view of
Bayesianism takes Bayesian probabilities to quantify subjective opinion, and takes sat-
isfying the axioms of probability to be the only synchronic normative constraint on

8See, e.g., Goldstein and Blum (2008) on this last kind of sentence.



degrees of belief. This strict subjectivist position would deem rational the forecaster
who announced a probability of 99% for a barbecue summer in the total absence
of any evidence in favour of a sunny summer—a view that would act as a red rag
to a bull to arbiters of public standards like the UK Daily Mail, which was quick
to condemn Met Office probabilities that were based on evidence. Fifth, the strict
subjective view of Bayesianism is in danger of making the very act of announcing
forecast probabilities incomprehensible: why should Met Office probabilities be of
relevance to my decision problems, if I am supposed to be making my decisions on
the basis of my own subjective probabilities and there is no normative imperative to
let my own degrees of belief be guided by someone else’s?

The first three worries can perhaps be alleviated by taking the agent’s language
to vary with her operating context. An agent who is an obstetrician by day and a
carpenter by night might be taken to move between two languages, one of which
contains terms such as ‘cardiotocograph’ and the other of which contains terms such
as ‘gimlet’. Similarly, in the context of reading this paper one will be operating with
a language in which high order uncertainties are expressible, but in the context of
hanging out the washing, one operates in a context in which domestic and meteoro-
logical possibilities are entertained, but not—normally—higher order uncertainties.
It is of course hard to say exactly what the limits are of a language which is contex-
tual in this sense. But this move does bring Bayesian epistemology a step closer to
the practice of Bayesian statistics, where considerable effort is required to determine
a language in which to express a particular problem. Regarding dependence on
language, the statistician can admit that her inferences do depend somewhat on the
way in which the problem is formulated, but point out that some ways of formulating
a problem are better than others—ways in which, for example, one can describe the
phenomena of interest and the other variables that are explanatorily or predictively
relevant and exclude as much as possible that is irrelevant to the problem solution.
If higher order uncertainties are relevant to a decision, one may then decide that
they should be expressible in the problem’s ‘language’.

One might worry that this way of looking at things makes choice of language
a decision problem that needs to be solved before we can start thinking about the
original decision problem of whether to hang out our washing, a move which could
lead to regress. But one can, on the contrary, put language first: start off with one’s
default language—the language in which one would normally express the propo-
sitions required to state and solve the problem—and test the sensitivity of one’s
results to small changes in that language. If conclusions and decisions are not ro-
bust under such changes then the sensitivity analysis provides grounds to move to
a new language—perhaps a language in which one can express a higher level of
uncertainty.

We shall now focus on the remaining two problems outlined above, which are
concerned with subjectivity and the motivation behind paying attention to expert
forecasters’ probabilities.

§4
Objectivity and Calibration

Why should we use Met Office probabilities for decision making? This only makes
sense if its probabilities are better than our own. There are two main ways in which
one might try to say how another agent’s probabilities could be better than our own.
One might think that they could be better because we have made some mistake in



the way we’ve apportioned our probabilities—perhaps we have given 6 probability
0.6 instead of 1, not realising that 8 is implied by our evidence. But then it would not
make sense to use Met Office probabilities for decision making: once we realise we
have made a mistake, we ought to correct the mistake, not borrow the probabilities
of someone else, since the other agent’s probabilities are likely to be grounded on
different evidence and not qualify as rational given our own evidence. The second
and more promising avenue is to say that Met Office probabilities could be better
than our own because they know things that we don’t about the weather: they have
better evidence and this better evidence makes their probabilities better calibrated
to the world.

Bayesian epistemology tends to cash out the idea of calibration in two very differ-
ent ways. One kind of calibration is indirect, long-run calibration: a strict subjectivist
Bayesian such as de Finetti would argue that, if prior probabilities are exchangeable,
updating degrees of belief by Bayesian conditionalisation leads to asymptotic cal-
ibration with empirical frequencies (see, e.g., de Finetti, 1937). Another kind of
calibration is direct, short-run calibration: some Bayesians impose a further norm
on degrees of belief—often called the Straight Rule (Miller, 1966, p. 60), Miller’s
Principle (Miller, 1966) or the Principal Principle (Lewis, 1980)—which says that if
an agent knows just the physical probability of a proposition, then she should directly
set her degree of belief in that proposition to the physical probability.

Indirect calibration is not applicable to our problem, for two reasons. First,
Met Office probabilities are not themselves calibrated in this way—they are not
produced by long-run conditionalisation on exchangeable priors. Rather, this sort
of forecast is produced by considering the predictions of a collection of plausible
models, produced by simulations run over a variety of plausible initial conditions
(see, e.g., Slingo and Palmer, 2011). To the extent that a high proportion of these
simulations predict rain, a forecast of rain will be given a high probability.’

The second reason why indirect calibration is not suited to the context of this
paper is that it offers slender grounds for the decision maker to use Met Office
probabilities for her decision problem. If she follows the norms of strict subjec-
tive Bayesianism, then her probabilities—modulo exchangeability—will automati-
cally calibrate in the long run; she should update her probabilities by conditional-
ising on her new evidence, not by directly adopting Met Office probabilities. Under
strict subjective Bayesianism, the only way decision maker D can match forecaster
F’s probabilities is if she has made such a commitment in her prior probabilities:
Pp(@ | ¢ APR(0) = x) = x, for all relevant propositions 6 and all suitable evidence
bases ¢. But under strict subjective Bayesianism there is no normative imperative
to adopt these prior conditional probabilities, given that the agent is free to choose
whichever probabilities she fancies for her prior. So this particular coincidence of
probabilities should be thought of as a measure-zero possibility. Worse, if F is a fore-
caster like the Met Office that is known not to abide by the norms of strict subjective
Bayesianism, agent D might be (subjectively) inclined to avoid F’s probabilities rather
than match them.

While indirect calibration is not applicable to our problem, direct calibration

9Moreover, as noted in footnote 7, exchangeability is rarely plausible in the context of this sort of
forecasting: the probability of rain on any particular day is higher if there is rain the day before. However,
long run calibration is possible under weaker conditions than exchangeability (see, e.g., Gaifman and
Snir, 1982, §2). Note that where long-run calibration cannot be guaranteed through conditions such as
exchangeability, it can be forced by adopting further norms on Bayesian probability; this is sometimes the
strategy of statistical approaches to forecasting (Skouras and Dawid, 1999).



appears to be more promising. First, expert forecasters validate their models by
ensuring that they are directly calibrated to physical probabilities: if it is known to
rain on 30% of days and a model forecasts rain on 70% of days, then the model will
be thrown out or its parameters will be changed to ensure better calibration. Indeed,
to the extent that Met Office probabilities are calibrated, they are directly calibrated.
Second, direct calibration appears to offer some scope for setting one’s degrees of
belief to those of the forecaster. If one should directly calibrate to physical prob-
abilities, then it seems plausible that one should directly calibrate to a forecaster’s
probabilities that are themselves directly calibrated to physical probabilities.

So far we have seen that there are two kinds of Bayesianism. One kind—strict
subjectivism—maintains that the only norms on degrees of belief are that they should
be probabilities and they should be updated by Bayesian conditionalisation. This
kind of Bayesianism pins its hopes on indirect calibration, but it does not seem to
have the wherewithal to explain why a decision maker should need to make use of
expert probabilities. A second kind of Bayesianism admits a further norm, direct
calibration, which does seem to offer more scope in this regard.

It should be noted, though, that this second kind of Bayesianism itself admits
two versions. One, which is sometimes called empirically-based subjective Bayesian-
ism, says that direct calibration is the only further norm on strength of belief. This
kind of Bayesianism maintains that, to the extent that the agent knows empirical
probabilities, her degrees of belief should be directly set to those probabilities, but
otherwise she is rational to adopt any probabilities that she pleases. Another sort
of Bayesianism— objective Bayesianism—adopts a further norm on strength of belief,
which deems an agent’s belief function to be irrational if it attaches strong belief or
disbelief to a proposition in the absence of evidence that forces such strong commit-
ment. Since entropy is a natural measure of the lack of commitment of a probability
function, this norm is sometimes explicated using the Maximum Entropy Principle:
an agent’s belief function should be one, from all those that are directly calibrated
with evidence of chances, that has maximum entropy (Jaynes, 1957; Williamson,
2010).

It turns out that empirically-based subjective Bayesianism has mixed success in
accounting for the use of expert probabilities in decision making. If decision maker
D learns that Pr(0) = x and that x is a good estimate of the corresponding physical
probability, then x might become D’s best estimate of the physical probability and
it can be rational to set Pp(f) to x. However, this requires learning not just the
expert’s probability but also the fact that that probability is closely calibrated to
empirical probability. This is very demanding. More typically, D will learn just that
Pr(0) =x. If D assumes that F' follows the norms of empirically-based subjectivism,
she cannot infer that x is a close estimate of physical probability, for that would
suppose that F' knows the physical probability, which may not be true. The most
D can infer is that x has been arbitrarily chosen by the expert from some set of
probabilities compatible with the data that is available to F. Perhaps F only knows
another physical probability P*(0 A ¢) = w, where w <x <1, in which case Pr(0)
is only constrained to lie in the interval [w,1]. Perhaps F' only has a confidence
interval [w,y] for P*(6), where w <x <y; again, this would lead to a constraint
Pr(0) € [w,y]. Then learning just that Pr(6) = x may tell D next to nothing about
P*(0), because D does not know how wide the interval is from which Pz(6) has been
chosen. To be sure, D does know that F' is an expert, and can assume that F has
more evidence than she has, in which case F’s intervals are perhaps narrower than
her own. But that alone does not provide grounds for D to switch her probabilities



to those of F, because she may yet have some important evidence that F does not
have. The Met Office, for example, only has evidence about the current weather
obtained from certain weather stations at certain times of the day, and often makes
false claims about the current weather, let alone the future weather. So, if you can see
a shower about to blow over your garden then that evidence will be more pertinent
in the short term than any Met Office forecast. Overall, then, while empirically-
based subjectivism appears more promising than strict subjectivism in accounting
for the use of expert probabilities for decision making, the grounds that it offers for
matching expert probabilities are typically rather paltry.

In sum, one would want to say that there are some circumstances under which
one ought to pay attention to an expert forecaster’s probabilities (e.g., when that
expert is likely to have more substantial evidence than one does oneself). Unfortu-
nately, strict subjectivism doesn’t seem able to say that. For the strict subjectivist,
anything goes: while the principle of total evidence says that expert forecasts should
be added to one’s stock of evidence, as far as strict subjectivism is concerned there
is no normative imperative to have them influence one’s degrees of belief. Even
empirically-based subjectivism, which does admit direct calibration to physical prob-
abilities, struggles to make this claim: a forecaster’s reported probability does not on
its own provide enough information about the physical probability to warrant direct
calibration.

Interestingly, however, in certain well-defined circumstances objective Bayesian-
ism does offer more scope in this regard, as we shall now see.

§5
Matching objective Bayesian probabilities

In this section we focus on the specific question as to when, if two agents follow the
norms of objective Bayesianism, it can be rational for one to adopt the probabilities
of the other.

9 An objective Bayesian analysis. We saw that for the objective Bayesian there are
three norms on rational belief. These norms can be explicated as follows (Williamson,
2010). The Probability norm says that a belief function should be a probability func-
tion: D’s belief function Pp € P, the set of all probability functions defined on the
sentences of the agent’s language of the moment. The Calibration norm says that a
belief function should be directly calibrated with evidence of physical probabilities:
Pp € Ep, the convex hull of the set of probability functions that satisfy constraints
imposed by evidence.!” The Equivocation norm says that a belief function should
otherwise be equivocal: Pp should be as close as possible to the equivocator proba-
bility function P- which gives equal probability to each possible state of the world
that the agent can express, where closeness of probability function to the equivoca-
tor is measured using Kullback-Leibler (KL) divergence. (A probability function in
Ep that is maximally equivocal in this sense is the one that has maximum entropy.)
In the case in which the agent can only represent three possible states w1, w2, w3 of
the world (e.g., signifying respectively rain, shine and overcast weather at a specific
location and a specific point in time), this procedure is depicted as follows:

10Throughout this section, we shall assume for ease of exposition that constraint sets such as Ep are
closed as well as convex. This is the case, for example, with equality constraints or non-strict inequality
constraints.



w2 w3

With the forecaster F following the same procedure we have the following picture:

Ep

Were decision maker D to learn the forecaster’s evidence, she would be able to
derive Er and then revise her belief function to point Pb € Ep NnEg that is closest to
the equivocator function P—:



But in the case of probabilistic forecasting considered in this paper, the decision
maker learns only the forecaster’s probability function Pr defined over the partition
{w1, w2, ws} of interest, or some values of that function. Suppose that the agent learns
the forecaster’s probability function Pg. In this case D can infer that there is some
convex set Er whose most equivocal member is Pg. Since Pr is the closest member
of Ef to the equivocator P, the set Er must be in the region of P that is at least as
far from the equivocator as Pr. Le., Er cannot lie inside the dashed curve below:




In fact, because Er is convex, it must lie beyond the tangent at Pr to that curve,
i.e,, in region F which may be defined as the largest convex set of probability func-
tions that contains Py but contains no probability function closer to the equivocator
than Pg:

Learning P, therefore, is tantamount to learning that there exists evidence that
constrains degree of belief to lie in region F. D’s new evidence is thus such as to
constrain her belief function to lie in E}, = Ep NF, as long as this set is non-empty.
Her new belief function Py, is then the maximally equivocal member of Ej):



Pp

Thus when Ep NF is non-empty, [E’D =Ep NF. On the other hand, if the new
evidence is inconsistent with the old, Ep NF = @, then some consistency maintenance
procedure must be invoked. One simple procedure is to take Ej, = (Ep UF), the
convex hull of the functions that fit either the new evidence or the old (Williamson,
2010, §3.3.1). We shall adopt that procedure here.

In the diagram above, P}, # Pr and the decision maker does not simply adopt
the forecaster’s probabilities. The question arises as whether there are circumstances
in which the decision maker ought to switch to the forecaster’s belief function. The
answer is that the switch is justified precisely when the forecaster’s belief function is
consistent with the decision maker’s prior evidence:

Theorem 1 Pp, = P iff P € Ep.

Proof: First we shall see that Pr € Ep implies Pb =Pp. Now Pp € Ep implies that F
is consistent with Ep, so [E’D =Ep NF. Note that KL-divergence from the equivocator
has a unique minimiser in a closed convex set of probability functions, and Ep,[F
and E}, are all closed and convex. P is the unique function in F that is closest to
the equivocator P—, so there is no other function in FNEp that is as close to the
equivocator as Pp. Hence P}, = Pp.

Next we shall see that Pb = Pr implies Pr € Ep. There are two cases.

(i) F is consistent with Ep, so Ej, = Ep NF. Suppose that Pj, = Pr. Since Pp =
Pj, € E}, =Ep NFF, we have that Pr € Ep.

(ii) F is inconsistent with Ep, so [Eb =(Ep UF). In this case Pr ¢ Ep and we need
to show that P}, # Pr. Geometrically this can be seen as follows:



Since Ep lies outside F, some part of the line segment between Py and Pp will lie
inside the contour of probability functions that are equally far from P— as Pp (the
dashed curve above). This part of the line segment contains points in E}, = (Ep UF)
that are closer to the equivocator than Pp, so it is not possible that P}, = Pp.

This picture generalises to higher dimensions. As long as Pr is not on the
boundary of the probability simplex, it lies on a locally smooth convex surface of
points that are the same distance from P— as Pr, and region F is bounded by the
hyperplane tangential to this surface at Pr. Call this case (a). Since the line segment
between Py and Pp does not lie on that tangent plane (nor indeed in region F), and
the tangent plane is the only supporting plane at Py of G={P € P: P is at least as
close to the equivocator as P}, the line segment must intersect the contour surface
and contain points that are closer to the equivocator than Pp, so P}, # Pp.

On the other hand, if Pr is on the boundary of the probability simplex then there
is no tangent plane in the usual sense. Case (b): if P is a vertex of the probability
simplex then G is the simplex itself and any non-vertex is more equivocal than Pg.
In particular, any point sufficiently close to Pr on the line segment from Pp to Pp
is more equivocal than Pp, so Pb # Pp. Case (c): otherwise PF is on the boundary
but not a vertex and the contour surface meets the boundary at Pr. This case is
pictured in two dimensions below:



Here we have a combination of the previous two cases, as there are two or more
supporting hyperplanes to G: the faces of the simplex on which Pg lies, and the
‘one-sided’ tangent plane of the contour surface at Pr defined as the limit of a
sequence of tangent planes to the contour surface at points on the surface (but not
on the boundary of the simplex) that approach Pr. These planes also bound F.
Then, depending on the location of the line segment between Py and Pp, it either
crosses the contour surface as in (a), or else passes through a region of points closer
to the equivocator as in (b). Either way, P, # PF, as required. O

Thus objective Bayesianism does provide grounds for adopting a forecaster’s
probability function when that function is consistent with the decision maker’s evi-
dence.

1 Presuppositions. We shall now examine how three of the presuppositions behind
the above analysis can be relaxed.

While we have thus far supposed that the forecaster reveals her whole probability
distribution Pr over the partition of outcomes of interest, this supposition is not es-
sential. Suppose instead, for example, that outcomes wy,...,wgn are the atomic states
+Aq1A---A+A, of a propositional language with propositional variables Aq,...,A,,
and that forecaster F' reveals only that Pr(01) = x1,...,Pr(8;) = xp, for sentences
01,...,0r of the propositional language. So the forecaster reveals that Pr € Pg,

1ope might worry whether Theorem 1 is consistent with the Obstinacy Principle of Paris (1999), which
says, ‘receiving evidence supporting what one already thinks should not cause one to alter one’s views’
(Paris, 1999, p. 80). If FNEp # @ then the decision maker’s new evidence is compatible with her prior
evidence and one might worry that Obstinacy demands that her belief function should not change, i.e.,
that Pb should be Pp rather than Pg. (I am grateful to Hykel Hosni for raising this concern.) But in fact
there is no inconsistency here. In the set-up of this paper, Obstinacy implies that Pb =Pp if Pp eF. On
the other hand, Theorem 1 implies that Pb =Pp if Pp € Ep. These are consistent because if Pp € F and
Pg €Ep then Pr =Pp.



where Py £{P € P: P(61) = x1,...,P(0p) = x3} is a closed convex set of probability
functions (in fact it is an affine subspace of the simplex). Decision maker D can infer
that there is evidence that constrains the forecaster’s probability to lie in region Eg
that is itself contained in the region F determined by the tangent to the contour line
at the point Pp £ the function in P that is closest to the equivocator P—. Theorem 1
then implies that Pb = ﬁp iff ﬁp € Ep. In particular, if D has no evidence relevant
to 01,...,0), then Py € Ep so Pj = Pp and Pj(61) = x1,...,P},(0f) = xy, ie., the
decision maker adopts the forecaster’s announced probabilities:

Corollary 2 If F reveals that Pp(01) = x1,...,Pr(0r) = xp and D has no prior evidence
bearing on 01,...,04, then Pp(61) = x1,...,PL(0;) = xp.

A second presupposition underlying the above discussion is that closeness to the
equivocator is to be measured using KL-divergence. KL-divergence is the natural
measure of closeness when the loss function in the decision scenario is not known
in advance; however, a case can be made for using other measures given particular
loss functions (Williamson, 2010, §3.4.4; Griinwald and Dawid, 2004). It should be
apparent that the key features of the closeness measure that were required in the
proof of Theorem 1 were that a closed convex set of probability functions should
have a unique member that is closest to the equivocator, and that tangent planes
should be definable at each point on a contour surface (a set of probability functions
that are equally close to the equivocator), which normally requires differentiability of
the contour surface. Other divergence functions that have these properties can be
substituted for KL-divergence in the above analysis.

A third presupposition is that the decision maker’s prior evidence still counts
for something after the forecaster’s probabilities are revealed. Thus [Eb is EpNF or
(Ep UF), which are symmetrical with respect to the agent’s prior evidence region Ep
and the inferred region [F containing the forecaster’s evidence. If, on the other hand,
D defers to F’s evidence by abandoning her own previous evidence and setting E}, =
F, then switching to the forecaster’s probabilities will always be justified: P’D =Pp
simply because P is the most equivocal function in F. (The difference between these
two policies corresponds to the distinction between belief merging and belief revision
in the theory of qualitative belief change.)

9 Caveats. Admittedly it is debatable whether the Met Office follows the norms of
objective Bayesianism sufficiently closely for an objective Bayesian decision maker
to apply the above justification and adopt Met Office probabilities. While the Met
Office certainly does not follow the norms precisely as explicated above, it does
directly calibrate its models to frequency data, and it does equivocate insofar as it
doesn’t announce extreme probabilities in the absence of evidence that forces them
to be extreme. (The Met Office does announce ‘weather warnings’ in situations in
which extreme weather is consistent with evidence.) In any case, this concern is not
exclusive to objective Bayesianism. Whatever one’s theory of uncertainty, the decision
maker needs to be confident that the forecaster is forecasting in a rational way in
order to justify using the forecaster’s probabilities for decision making. While strict
subjective Bayesianism and empirically-based subjective Bayesianism have difficulty
providing such a justification even where the forecaster is following the appropriate
norms, we have seen that the objective Bayesian can provide such a justification.

A second caveat should be borne in mind. The discussion of this paper is based
on the situation in which a single forecaster gives a single forecast. The picture



obviously becomes more complicated when multiple forecasters are introduced, and
also when the decision maker has some grounds (such as the long-term forecasting
history of each forecaster) for assessing the reliability of forecasts. There is already a
substantial literature offering treatments of the more complicated situation from the
perspectives of statistics and machine learning (see, e.g., Skouras and Dawid, 1999;
Cesa-Bianchi and Lugosi, 2006). How these complications relate to the discussion
of this paper is left as an interesting question for further research. The focus is
on the single-forecast case here because there remains a need for a satisfactory
interpretation of this more simple situation. From the philosophical perspective, at
least, one needs to walk before one can run.

§6

Conclusions

The main conclusions of the paper are as follows. While probability forecasts are
indeed useful for decision making, there is a natural escalation in the level of un-
certainty at which those forecasts should be pitched: however one expresses the
uncertainty that attaches to a forecast, there are good reasons for expressing further
uncertainty about that uncertainty, either by invoking imprecision or higher-order
uncertainty. Bayesian epistemology provides the means to avoid rising endlessly up
this escalator, by tying expressions of uncertainty to the propositions expressible in
an agent’s language. But Bayesian epistemology comes in three main varieties. Strict
subjective Bayesianism and empirically-based subjective Bayesianism have difficulty
in justifying the use of a forecaster’s probabilities for decision making. On the other
hand, objective Bayesianism can justify the use of such probabilities, at least when
they are consistent with the agent’s evidence. Hence objective Bayesianism offers the
most promise overall for explaining how testimony of uncertainty can be useful for
decision making.

Some of the lessons of this paper carry over to a rather different concern: that of
justifying the Principle of Reflection, which says roughly that one ought to set one’s
current degrees of belief to one’s future degrees of belief, should one know them.
Here one’s future self stands in the place of the forecaster. Subjective Bayesians
often adopt this principle by fiat, as it is closely connected with Bayesian condi-
tionalisation which plays a central role in subjective Bayesianism.”” But Bayesian
conditionalisation plays a less central role in objective Bayesianism: in many circum-
stances new objective Bayesian probabilities obtained by the procedure outlined in
§5 concur with what might have been obtained by Bayesian conditionalisation, but
in certain cases they do not (Williamson, 2010, Chapter 4). The question then arises
as to whether a Principle of Reflection should be adopted and, if so, what form it
should take. Corollary 2 shows that objective Bayesians should endorse a Principle
of Reflection: in the absence of any prior evidence bearing on the relevant proposi-
tions, if an agent learns some of her future degrees of beliefs then she ought to set
her current degrees of belief to those future degrees of belief right away. Moreover,
one can drop the qualification about prior evidence if the agent is prepared to defer
to her future evidence.

The Principle of Reflection is usually formulated using conditional probabilities:
P(6|P'(0) = x) = x. As Howson (2012, §5) notes, this formulation is inconsistent with

2There is some debate as to what the precise connection between the two principles is. While van
Fraassen (1995, §§5-6) argues that conditionalisation implies reflection, this is disputed by Weisberg
(2007).



the axioms of probability: if P(6) =1, P(P'(0) = x) > 0 and x < 1, the axioms of prob-
ability imply that P(6|P'(0) = x) = 1 # x. Mirroring the less central role played by
Bayesian conditionalisation in objective Bayesianism, conditional probabilities also
play a less central role, and the objective Bayesian would avoid such a formulation
(Williamson, 2010, §4.4.2). If the agent had no prior evidence concerning 6, then
learning that P'(6) = x would tell her that she will receive evidence that the phys-
ical probability P*(0) is no more equivocal than x, so she can set P(0) = x since
that is the most equivocal value compatible with her new evidence (Corollary 2). If,
however, her prior evidence forced P(0) =1 then the new value P'(6) = x <1 does
not satisfy prior evidence. Everything then depends on how the prior evidence is
treated. If the prior evidence were retained, then the method of §5 would apply and
Theorem 1 would ensure that P(6) # x. On the other hand, if she were to defer to
her later evidence, she would switch to P(0) = x.

While the objective Bayesian approach to reflection provides a principled re-
sponse to Howson’s concern, it also overcomes other problems that beset reflection.
For example, I believe to degree 1 that I ate a sandwich for lunch today, 8, but I re-
alise that in a year’s time my degree of belief in 8 will be much lower, because I will
no doubt forget what I ate today long before then (Talbott, 1991, §2). Given that I eat
a sandwich for lunch about four times a week, I am confident that my future degree
of belief that I ate a sandwich for lunch today will be ‘71. Rather dubiously, the usual
principle of reflection would seem to require that I should now adopt degree of belief
% in 8. But objective Bayesianism would not require this. Let us apply the analysis
of §5. My current evidence forces P(0) =1, so EC {Q € P:Q(6) = 1}. I then realise
that my evidence in a year’s time will, by the Calibration norm, force P'(0) = 4/7,
so FS{Q € P:Q(0)=4/T7}. Setting aside changes of evidence in the intervening year
that are unrelated to 0, it is plausible that ENF = E. Hence I should continue to
adopt degree of belief 1 in 8 for the time being, as seems rational.

We see, then, the although objective Bayesianism does admit a version of the
principle reflection, it is not the usual version. In fact, neither does the objec-
tive Bayesian version coincide with van Fraassen’s General Reflection Principle (van
Fraassen, 1995, §4), which can be formulated in our framework as follows. Consider
what one’s current evidence tells one about a future belief function P’. Clearly, as far
as current evidence is concerned, P’ € P, the set of all probability functions. Suppose
that Q is the smallest convex set of probability functions such that, as far as one’s
current evidence is concerned, P’ € Q. Then one’s current belief function should lie
in that set, i.e., P € Q.

Again, the approach of §5 reveals the extent to which objective Bayesianism con-
forms to such a principle. Since current evidence implies P’ € Q, it implies something
about one’s future evidence, namely that that E' = F, where F is determined by the
most equivocal function @ € Q as in §5. Now ENF # @ for otherwise E = (EUF) which
implies that F S E, a contradiction. So E=ENF. Hence E<F. What does this imply
about one’s current belief function P, the most equivocal function in E? There is
clearly no general guarantee that P € Q. Nor does there seem to be good reason to
insist that P € ) as a new norm on objective Bayesianism.

On the other hand consider this slightly different formulation of the General Re-
flection Principle: suppose that Q is the smallest convex set of probability functions
that, as far as one’s current evidence is concerned, contains the set E' of probability
functions compatible with one’s future evidence; then one’s current belief function
should lie in that set, i.e., P € Q. In this case, current evidence implies more than
E' F: it implies that ' = Q. Applying similar reasoning to that used above, ENQ # @



so E=ENQ and hence E € Q. In particular, then, P € Q. So this version of the Gen-
eral Reflection Principle does hold for objective Bayesian degree of belief.
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