
Abstract

Metabolism is a  set of chemical  reactions, used
by  living  organisms  to  process  chemical  com-
pounds  in  order  to  take  energy  and  eliminate
toxic compounds, for example. Its processes are
referred  as  metabolic  pathways.  Understanding
metabolism is imperative to biology, toxicology
and medicine, but the number and complexity of
metabolic  pathways makes this  a  difficult  task.
In  our  paper,  we  investigate  the  use  of  causal
Bayesian  networks  to  model  the  pathways  of
yeast  saccharomyces  cerevisiae  metabolism:
such a network can be used to draw predictions
about the levels of metabolites and enzymes in a
particular  specimen.  We,  propose  a  two-stage
methodology  for  causal  networks,  as  follows.
First  construct  a  causal  network  from  the  net-
work  of  metabolic  pathways.  The  viability  of
this  causal  network  depends  on  the  validity  of
the  causal  Markov  condition.  If  this  condition
fails,  however,  the  principle  of  the  common
cause motivates the addition of a new causal ar-
row or a new `hidden' common cause to the net-
work (stage 2 of the  model formation process).
Algorithms  for  adding  arrows  or  hidden  nodes
have  been developed separately in  a  number of
papers,  and  in  this  paper  we  combine  them,
showing how the resulting procedure can be ap-
plied  to  the  metabolic  pathway  problem.  Our
general approach was tested on neural cell mor-
phology  data  and  demonstrated  noticeable  im-
provements in both prediction and network accu-
racy.

1 Introduction
Functional  genomics  is  the  search  for  understanding of
the functionality of specific genes, their relations to dis-
eases, their associated proteins and their roles in biologi-
cal processes. In functional genomics, a cell can be seen
as  a  biochemical  machine  that  consumes  simple
molecules to generate more complex ones by chaining to-
gether biochemical reactions into long sequences; its 
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processes are referred to as metabolic pathways[4]. Genes
play an essential role in these networks by providing the
information to synthesize the enzymes that catalyze bio-
chemical reactions. Understanding metabolism is an im-
portant problem for biology, pharmacology (in particular
toxicology)  and  medicine  but  the  size,  complexity  and
uncertainty  of  the  network  of  pathways  has  made  this
task difficult.
Lately, Friedman  et al.  used Bayesian nets to model gene
expression data  [9,10] and justified their use by their rich
graphical  and  probabilistic  representation  of  gene  expres-
sion data and their ability to explain relations among gene
variables.  They reported many biologically plausible con-
clusions from real expression data of Spellman et al. by de-
ploying  heuristic  search  algorithms  and  statistical  confi-
dence measurements [17]. They proposed adopting continu-
ous variables to capture precise local probabilities and im-
proving the heuristic search algorithm as topics for further
study. Imoto et al. applied a non-parametric regression mod-
el in Bayesian networks for constructing genetic networks
from gene expression data [12]. They claimed to have suc-
cess  in  microarray  gene  expression  data  and  generalized
method to deal with more general cases in the future. 
In this paper, we demonstrate how causal networks can be
used to model  and  predict  yeast  metabolism whose  path-
ways essentially form a causal graph, one component of a
causal net. Causal nets depend on the causal Markov condi-
tion as a primitive assumption and we propose a  two-stage
methodology to deal with any failure of the condition. First
construct a causal net from the net of metabolic pathways;
second alter that net to ensure the causal Markov condition
is satisfied by adding new causal  arrows or new `hidden'
common  causes.  In  section  2,  we  illustrate  issues  in
metabolic pathway in yeast described in KEGG. In section
3, we review causal Bayesian networks and present a causal
Bayesian network modeling an aromatic amino acid path-
way of yeast  saccharomyces cerevisiae. In section 4 and 5,
we discuss the case where the causal Markov condition fails
and propose our two-stage method to deal with the problem.
In section 6, we illustrate the effectiveness of adding hidden
nodes in a real biological domain.  In section 7 and 8, we
discuss our approach and issues to be studied in the near fu-
ture.
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2 Metabolic Networks
Metabolism is a set of chemical reactions, used by living or-
ganisms to process chemical compounds in order to take en-
ergy,  extract  building  blocks  and  eliminate  toxic  com-
pounds.  Most  of  these  reactions  would  not  be  executed
without  specialized proteins  called  enzymes, whose  func-
tion is to catalyze these chemical reactions. 
Metabolism was previously seen as a combination of dis-
tinct pathways, such as glycolysis, citrate cycle, urea cycle,
amino acid biosynthesis and many others. All these path-
ways  are  connected  to  each  other.  In  recent  years,
metabolism has started to be studied in a network approach.
Information about the structure of metabolic networks can
now be partially extracted and represented in graphical form
using KEGG, WIT and MetaCyc. For example, the data of
the  Kyoto  Encyclopaedia  of  gene  and  Genomes  (KEGG)
consists of  information on interacting molecular  and gene
pathways. Related to KEGG are the Biochemical Pathways
(BP) index of Boehringer Mannheim and the Encyclopaedia
of E. Coli Genes and Metabolism (EcoCyc). 
Enzymes are proteins encoded by genes and these genes
can  be  expressed  at  will.  Therefore  some subgraphs  of
the network or pathways can be activated or inactivated.
In prokaryotic cells, a  whole  subgraph  can be activated
or inactivated at once, this is the notion of operons; and
in eukaryotic cells which do not have operons, genes can
be controlled individually allowing an even thinner regu-
lation. The  whole  network is  very dynamic, responding
to the environment and the cell's  needs, and some parts
of the network can be activated in mutually exclusive or
inclusive  way.  If  we  look  at  the  level  of  a  single  bio-
chemical reaction in the network, its activation depends
on the  presence of  the  reaction substrates, therefore de-
pends on the  previous  step.  It  also depends on whether
the  gene  coding  for  the  enzyme  is  activated,  and  of
course what activates the gene, which can be one of the
substrates or some external stimuli.

3 Constructing Causal Networks
A Bayesian network is a tool for representing a probability
function. It is defined over a finite domain V of variables,
each of which may be discrete or continuous - for ease of
exposition  we  will  restrict  attention  to  discrete  variables
which take a finite number of values. A Bayesian network
consists of a DAG G whose nodes are the variables in V; a
probability  specification  S  which  contains  the  probability
distribution p(Vi|Pari) of each variable Vi ∈ V conditional on
its parents Pari in G; and an assumption, called the Markov
condition, which states that each variable  Vi ∈ V is proba-
bilistically independent of its non-descendants,  NDi, condi-
tional on its parents, written Vi - NDi | Pari. 
A causally interpreted Bayesian network, or causal network,
is a Bayesian network in which the graph  G represents the
causal relations amongst the variables in V, with an arro-

w from Vi to Vj if Vi is a direct cause of Vj [14]. There are ar-
guments to the effect that, if a Bayesian network is causally
interpreted  then  the  Markov  condition  -  now  called  the
causal Markov condition  - is a  valid  assumption:  i.e.  that
any variable is probabilistically independent of its non-ef-
fects, conditional on its direct causes [15, 20]. Thus in cases
where causal relations are known, the graphical structure G
in a  Bayesian network can just be taken to be the causal
graph. This reduces the problem of constructing a Bayesian
network to that of determining the probability specification
S, and  this  is  normally done by taking  the  corresponding
sample frequencies from a database of past case data, or by
eliciting degrees of belief from experts. 
In  the  case  of  yeast  saccharomyces  cerevisiae
metabolism  the  network  of  aromatic  amino  acid  path-
ways takes the form of a causal graph (Figure 3.1). The
direction of causation (i.e. the direction of the reaction)
is from the top to the bottom of the diagram. The rectan-
gular  nodes  are  enzymes  and  the  circular  nodes  are
metabolites.  The  red  circular  nodes  are  the  aromatic
amino acids - phenylalanine (C00079), tyrosine (C00082)
and tryptophan (C00078) whose values we are interested
in predicting. The values that the variables take are their
concentrations  (by  mass).  C00079  is  produced  by
C00166 and C00025 under enzyme 2.6.1.7. There is a pe-
riod of flux before each reaction settles down to an equi-
librium  during  which  the  reaction  often  takes  place  in
both directions. There is inevitably a single overall direc-
tion to the  reaction however, which  is  determined after



equilibrium is reached.  To complete the causal  network
all  that  remains  is  to  add  probability specifiers, i.e.  the
probability  distribution  of  each  node  conditional  on  its
direct  causes.  In  KEGG, the  metabolic  pathways  repre-
sent all known pathways in a given organism. However,
when, in some case, enzymes could not be located, a sim-
ple deductive rule was used to uncover alternative reac-
tion  paths  from an  initial  substrate  and  a  final  product
[11].  However, Goto describes difficulties in  path  com-
putation from a given list of enzymes - there still exists a
number  of  unknown  pathways  for  secondary
metabolisms  and  metabolisms  that  are  revealed  under
stressful conditions.

4 Two-Stage  Methodology
As mentioned above, taking the graph  of a Bayesian net-
work to be the  causal  graph  can simplify the  problem of
network construction. However there is a potential difficulty
with this strategy: the causal Markov condition, which is re-
quired  to  hold  if  the  causal  network  is  to  coincide  with
physical probability (frequency, propensity, chance), may in
fact fail.  There are a number of ways in which the causal
Markov condition may fail [18]: 1. Causal information may
be missing: some causal relationships amongst the variables
may simply not be known; some common causes of vari-
ables in V may be omitted from V. 2. Probability specifiers
may be poor estimates of physical probabilities: if specifiers
were  determined from a  database  of  past  case  data  there
may be too little data to determine the required probabilities
accurately, or the database may represent a biased sample
from the population at  large; if specifiers be elicited from
experts,  the  experts’  degrees  of  belief  may  poorly  reflect
physical  probabilities. 3. Probabilistic dependencies which
contradict the causal Markov condition may be induced by
non-causal  relationships  amongst  the  variables:  variables
may have  overlapping  meaning, they may be logically  or
mathematically related, they may be related by non-causal
physical  laws  or  by problem constraints,  or  they  may be
subject  to  accidental  correlations.  Although  the  causal
Markov condition may fail,  it  remains a  good default  as-
sumption, in the following sense. If an agent’s background
knowledge consists just of the two components of a causal
network, a causal graph and the associated probability spec-
ifiers, then the agent’s personal probabilities (her degrees of
belief)  ought  to  satisfy the  causal  Markov  condition  [20,
21].  Thus  the  causal  network  is the  best  model  available
given just causal  knowledge and  knowledge of the condi-
tional  probability distribution of  each  variable conditional
on its parents.
This  suggests  a  two-stage  methodology  for  employing
Bayesian networks:  Stage One: Construct a causal network
from causal knowledge and corresponding probability spec-
ifiers. This is a good default model.  Stage Two:  If the net-
work fails to perform well (this is indicative of failure of the
causal Markov condition), modify the network so that it bet-
ter approximates physical probability. 

5 Network Modif ication
If a Bayesian network is to be modified to better repre-
sent  physical  probability,  one  can  either  change  its
graphical  structure, or its  probability specifiers or both.
Changing probability specifiers to better approximate the
corresponding physical probabilities is a statistical prob-
lem. We shall assume here that this problem is solvable -
i.e.  a  mechanism  is  available  for  determining  physical
probabilities  -  and  focus  our  attention  on  the  graphical
problem.  Two  routes  are  available  for  changing  the
graph in a Bayesian network: one can change the nodes
in  the  graph  (add, delete  or  combine  nodes)  or  change
the arrows in the graph (add, delete or re-orient arrows)
or  both.  We shall  present  an  example  of  each  strategy:
adding arrows and adding hidden nodes.

5.1 Adding Arrows
The adding-arrows approach is conceptually very simple.
If one adds an arrow from Vi  to Vj  in a Bayesian network
(and change the corresponding probability specifiers ac-
cordingly) then the new network will be no worse an ap-
proximation to physical probability than the old network,
and will be a closer approximation if and only if Vi and Vj

are  probabilistically  dependent  conditional  on  the  other
direct causes of Vj[18]. So a simple strategy for changing
a network to better approximate physical probability is to
add arrows corresponding to conditional dependencies. If
at  each  stage  one  adds  the  arrow  corresponding  to
strongest  conditional  dependence then  one achieves  the
closest approximation at each stage.  Moreover this sim-
ple greedy algorithm finds networks that are close to the
global best approximation [18,21,22].

5.2 Symmetric Hidden Node Method
The  hidden  node  approach  was  originally  proposed  by
Pearl and Verma [13]. Whenever two nodes B & C with
no  arrow between  them  are  probabilistically  dependent
conditional  on  a  common  parent  A  (a  violation  of  the
causal  Markov  condition),  then  a  ‘hidden  node’  H  is
added as a new parent of B and C, with the arrows from
A  to  B  and  C  redirected  through  H.  Then  probability
specifiers for H, B and C will be learned from data using
the  symmetric  propagation  algorithm  called  Symmetric
Hidden  Node  Method  (SHNM) [1].  In  neural  cell  mor-
phology,  SHNM  improved  the  prediction  accuracy  in
Bayesian networks up to 42% (from 59% to 84%) [2,3].
Comparative  analysis  on  other  machine  learning  tech-
niques also showed the strength of SHNM. These includ-
ed  neural  networks  and  C4.5.  The  neural  networks  had
one hidden layer (with up to 5 hidden nodes). The num-
ber  of  learning  cycles  was  in  the  range  10,000  to
500,000, compared to 800 cycles for learning neural net-
works  and  Bayesian  networks,  respectively.  The  C4.5
weights were set in the range 2 to 4. It  showed that  the
C4.5  method  gave  a  comparable  performance  to  the
naive Bayesian network, but  neural networks were con-
siderably worse in this case. This paper also details how
to systematically identify the place to add a hidden node,



using a conditional dependency measure to test for viola-
tions of the Markov condition.

5.3 A Combined  Approach
In this paper we advocate a combination of these two strate-
gies for network modification. According to the principle of
the common cause a  probabilistic dependency which  vio-
lates the causal Markov condition indicates that either a di-
rect causal relation between the dependent nodes, or a com-
mon  cause  of  the  two  nodes,  is  missing  from the  causal
graph [18]. Thus to generate a causal network that satisfies
the causal Markov condition we need the flexibility to add
either  a  new  arrow  or  a  new  common  cause  (a  hidden
node). The new graph can be treated as a new causal hy-
pothesis, and can motivate closer scrutiny to verify the new
posited causal connections [20]. 
In  deciding  whether  to  add  an  arrow  or  add  a  hidden
node to modify a  network, there are two key considera-
tions to take into account. First the new network should
be plausible when construed as a hypothesis about causal
relations.  Thus  if  it  is  implausible  that  two  dependent
variables are directly causally related, one ought not add
an arrow between them - one ought to add a hidden node
(interpreted as a common cause) to account for their de-
pendency. Second, (Occam's razor) one ought  to pursue
the  option  that,  other  things  being  equal,  increases  the
complexity of the network least. The complexity of a net-
work can be measured in terms of the number of proba-
bility  specifiers  required  in  the  network.  In  most  situa-
tions adding an arrow will increase complexity least, but
in cases where two or more nodes share a large number
of parents, adding a hidden node can even decrease com-
plexity.

6 Application To Yeast Metabolism
Our methodology for network modification has two objec-
tives: Firstly, to significantly improve the prediction accura-
cy of the causal network. Secondly, to suggest new common
causes  (chemical  reactions)  and  causal  relations  (reaction
pathways between substrates and products) in the network.
Our algorithm is as follows 
1. For each pair of variables (substrates and products)  B
and  C  in  the  network,  check  their  probabilistic  depen-
dence conditional on the parents  A of C, via  the mutual
information formula

      )A|C,B(MIc ∑ 







=

C,B
)a|c(P)a|b(P

)a|c,b(P
log)a|c,b(P

2.  If  there  are  any  such  dependencies  then  the  causal
Markov condition has  failed.  Choose the maximal  depen-
dency  and  generate  two  new  causal  hypotheses:  one  by
adding  a  hidden  node  and  the  other  by  adding  an  arrow
from B to C. 
3.  The  corresponding  probability  specifiers  need  to  be
learned.  In the case of the model with  added arrow these
can  be equated  with  the corresponding frequencies  in the

database. In the case of the model with hidden node, exe-
cute a learning process in that particular local structure [1]. 
4. Try to find the referent of a hidden node  H  as follows.
Regenerate a data set for H relevant to the original data set.
Using a pattern matching techniques with correlation calcu-
lation, try to locate a variable with unknown functionality
that scores the highest mark. 
5. Try to verify a new arrow by checking that it corresponds
to probability raising of the effect by the cause, conditional
on the effects other direct causes. If so, check that interven-
ing to fix the value of the cause fixes the values of the ef-
fect, controlling for the effect's other direct causes.
6. Eliminate a hypothesis if it has no plausible causal inter-
pretation.  If  both  hypotheses  remain,  then  eliminate  the
most complex hypothesis. Proceed to step 1.
Consider  the  following  example.  Suppose  enzyme  e  cat-
alyzes a chemical reaction with substrate mi and product mj

where  i  = 3 and  j  = 3. Figure 6.1a shows an example of a
highly connected causal graph in a single chemical reaction.
We start by examining conditional dependency between the
substrates and products to identify the location by deploying
systematic  search  (step  1).  If  a  dependency is  found,  we
spawn new hypotheses, test their causal interpretation and
eliminate one (steps 2-6). We see how adding a hidden node
(Figure 6.1c) can in some cases offer a hypothesis of lower
complexity than  that  generated by adding  arrows (Figure
6.1b).  A mixed  approach  (Figure  6.1d)  is  likely to  result
however.

7 Conclusion
In this paper we have shown how causal networks can be
used to model and predict yeast metabolism. A network of
metabolic pathways is essentially a causal graph.  By aug-
menting this  causal  graph  with  probability specifiers  (the
probability distribution of each  variable  conditional  on its
direct causes) we construct a causal network. The viability
of a  causal network depends on the validity of the causal
Markov condition. If this condition fails, the principle of the
common cause motivates the addition of a new causal arrow
or  a  new  `hidden'  common  cause  to  the  network.  Algo-
rithms  for  adding  hidden  nodes  and  adding  arrows  have
been developed separately in a number of papers, and in this
paper we combine them, showing how the resulting proce-
dure can be applied to the metabolic pathway problem. 
The next step in this line of research is clearly to test the re-
sulting methodology on real yeast metabolism data. We plan



to  use  data  from  Biochemistry  group  (Prof.  Jeremy  K.
Nicholson) at  Imperial  College.  Having developed one  or
more causal networks which model the data well, we intend
to examine their plausibility as causal hypotheses. i.e.  we
intend to see whether new common causes and causal con-
nections that have been posited in these models really do
correspond to causes and causal connections. This will be
done by collecting further observational  and experimental
data, to see whether each new posited cause raises the prob-
ability of its effects and whether intervening to change the
value of causes changes the values of their effects. 
In sum, our two-stage methodology for causal networks has
a double goal: to model probabilistic relations amongst the
variables involved in the metabolic pathways and to model
the causal connections amongst these variables. In this pa-
per  we  present  the  biological  problem  and  modeling
methodology; in future papers we intend to assess our pro-
posed solution. 
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