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Abstract. Bayesian probability is normally defined over a fixed language or event space. But in
practice language is susceptible to change, and the question naturally arises as to how Bayesian
degrees of belief should change as language changes. I argue here that this question poses a serious
challenge to Bayesianism. The Bayesian may be able to meet this challenge however, and I outline a
practical method for changing degrees of belief over changes in finite propositional languages.
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1. Introduction

The problem that I wish to address in this essay was identified by Imre Lakatos in
his critical analysis of inductive logic:

What is wrong with ‘Bayesian conditionalisation’? Not only that it is ‘atheo-
retical’ but that it is acritical. There is no way to discard the Initial Creative
Act: the learning process is strictly confined to the initial prison of the lan-
guage. Explanations that break languages and criticisms that break languages
are impossible in this set-up (Lakatos, 1968: 347).

Colin Howson concurs:

An objection, which in my opinion is a considerable one, to this procedure
of representing his changes of belief is that it involves, as I remarked, the
specification within a fixed language of his total possible future experience,
and it commits him for all subsequent times to the way at some initial time he
considered this range of possibilities as bearing on the set of events upon whose
occurrence he will bet. This seems to me, as it has done to others, unrealistic
(Howson, 1976: 296).

These passages relate to two quite distinct problems that beset Bayesianism.
First, Bayesian conditionalisation requires that an agent always remain consistent
with a prior probability distribution. Specifically, by Bayes’ theorem the proba-
bility awarded to hypothesis h at time t + 1 is fixed by the evidence e arriving
between times t and t + 1 and the prior probabilities of h and e and of e given
h: pt+1(h) = pt(h | e) = pt(e | h)pt(h)/pt(e). However, the agent may decide
that her prior pt did not adequately assess the hypothesis or the evidence (perhaps
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because she did not take sufficient notice of background knowledge)� or the re-
lationship between the hypothesis and the evidence (perhaps she did not realise
that the evidence follows logically from the hypothesis).�� Thus there may be good
reasons to break out of the constraints imposed by a strict adherence to Bayesian
conditionalisation.

The second problem is that Bayesian probability is normally defined on a fixed
language or event space. Given this fixed framework, Bayesianism gives advice as
to what degrees of belief to award sentences or events: having fixed a prior one
should fix future degrees of belief by Bayesian conditionalisation. But in practice
an agent’s language often changes over time. There may be new sentences or events
which were not even considered when formulating a prior, in which case Bayesian
conditionalisation cannot be applied and Bayesianism fails to offer any guidance
as to what degrees of belief to ascribe.‡

There are various possible solutions to the first problem. One strategy is to
play down the role of Bayesian conditionalisation. One can accept that there are
situations in which Bayesian conditionalisation is inappropriate, and allow other
ways of updating beliefs.‡‡ Another strategy is to play down the role of the prior.
Strict subjectivists deny the coherence of physical interpretations of probability
(frequency, propensity or chance interpretations), and consequently they reject any
principle which asserts that physical probability should constrain an agent’s de-
grees of belief. Such Bayesians often hold that prior beliefs are washed out, that
is, as agents with different priors conditionalise on the same new evidence their
belief functions converge, and consequently their priors have less of a bearing on
their current beliefs.¶ Hence for strict subjectivists the problem of having to remain
consistent with a prior becomes less of an issue as time progresses.

The second problem has not been adequately addressed in the literature, as far
as I know. It is this problem of language change that I shall consider here.

The problem of language change is particularly relevant today. This is because
Bayesian theory is increasingly applied to artificial intelligence (AI) (see Pearl,
1988) and within AI the automated learning of new linguistic terms is an increas-

� Jaynes (1998) stresses the importance of ensuring that priors take background knowledge into
account, and of correcting or reformulating a prior if it is realised that the prior does not adequately
encode features of the background knowledge.

�� A Bayesian is usually presumed to be logically omniscient, and Earman (1992: 196) argues
that belief changes that do not conform to Bayesian conditionalisation may be appropriate when this
assumption fails.

‡ I shall henceforth discuss only the case in which probability is defined over a language. An
event-space framework can be treated analogously, as is shown in Williamson (2002a: §2).

‡‡ As mentioned above, Jaynes and Earman follow this line by advocating a reassessment of priors.
Howson claims that Bayesian conditionalisation should not be universally adopted because it can lead
to inconsistencies (see Howson, 1997, 2001), and argues in Howson and Urbach (1989: §13.e) that
beliefs may be updated by setting them to frequencies where they are known.

¶ See de Finetti (1937) and Gaifman and Snir (1982) for convergence theorems, and Chapter 5 of
Jaynes (1998) for a contrary view.
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ingly important task.� The question now arises: how should the degrees of belief of
an artificial agent change as its language changes?

Another key application of Bayesianism is within the philosophy of science, to
confirmation theory (Howson and Urbach, 1989; Earman, 1992). In this context
the problem of language change is crucial: competing scientific theories are often
formulated in different scientific languages, and one must somehow bridge these
languages in order to decide which theory is most confirmed by available evidence.
Scientific theorising is often viewed as a special case of abduction, which may be
thought of as the problem of formulating a plausible explanation of some given
data (see Williamson, 2001a). Often one needs to change one’s language in order
to formulate a plausible explanation, either by adding new theoretical terms or by
more radical reconceptualisations, yet one needs to evaluate the explanation in the
light of the data which prompted it and any new data. Bayesianism is an important
evaluatory framework – the most plausible hypothesis is usually considered to be
that with maximum probability conditional on the data – hence Bayesianism must
be extended to cope with changing language if it is to play a role in the abductive
process, and scientific theorising in particular.��

These applications to AI and the philosophy of science pull Bayesianism in
opposite directions. AI requires a formalism that is computationally practical, and
this usually leads to a simple framework and strong assumptions – witness the
theory of Bayesian networks applied to causal reasoning (Pearl, 1988; Neapolitan,
1990; Spirtes et al., 1993). But the philosophy of science often aims to be true
to science as it is practised and this leads to an expressive linguistic formalism
without restrictive assumptions: here probability is often used informally over nat-
ural language statements (Howson and Urbach, 1989; Earman, 1992) and may
even be qualitative rather than quantitative (Polya, 1954: Chapter XV). But despite
this methodological divergence the two disciplines are mutually supportive: the
philosophy of science often motivates developments in AI and assesses AI assump-
tions, while AI systems can be used to empirically test philosophical accounts of
scientific reasoning (see Thagard, 1988; Gillies, 1996; Williamson, 2001b). Con-
sequently I shall pursue an integrated approach here. I shall first, in Part I, make
some rather general comments on the problem of language change, arguing that
an agent’s choice of language expresses factual knowledge. This will motivate an

� There are various recent lines of development here. Concept learning is progressing at pace
within statistical learning theory: See Vapnik (1995) and Cristianini and Shawe-Taylor (2000). New
causes and effects are now automatically learned to improve the reliability of Bayesian networks:
see Kwoh and Gillies (1996) and Binder et al. (1997). Multi-agent systems now evolve their own
languages in order to communicate to solve problems (Jim and Giles, 2000). In the near future
linguistic learning may also prove to be important in abductive logic programming (Kakas et al.,
1998), inductive logic programming (Muggleton and de Raedt, 1994), and computational linguistics
(Hausser, 1999), www.ling.ed.ac.uk/evolang2002/

�� Note that in order to apply Bayesianism to science, one must also apply it to the mathematical
theories on which the science depends (Corfield, 2001) and the comparison of mathematical theories
in different mathematical languages is a significant problem in its own right (Kvasz, 2000).
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AI-style solution to the problem in Part II, where I investigate the consequences of
several assumptions within the restrictive linguistic framework of the propositional
calculus.

Part I: THE GENERAL PROBLEM

2. Language Contains Implicit Knowledge

The problem of language change has rarely been discussed in the philosophy of
science literature. But where it has been discussed, it has usually been in the context
of an appeal to language invariance.� This is the claim that any assignment of
prior probability should only depend on an agent’s background knowledge, not
on the underlying language. Or in the context of the current problem: an agent’s
probability function should not change when her language changes, unless she
learns new facts at the same time.�� I shall argue, however, that language contains
implicit knowledge. This creates a problem for the principle of language invariance,
namely, language invariance is vacuous in the context of the language change
problem. For whenever an agent’s language changes she will simultaneously gain
new knowledge, in which case language invariance offers no constraint on her
new probability function. To get over this problem we will (in Section 7) replace
the language invariance principle with a conservativity principle: when an agent’s
language changes her new degrees of belief should be as close as possible to her
old degrees of belief, given her new knowledge. To apply this new principle we
will need to choose an appropriate notion of closeness, make the implicit linguistic
knowledge explicit, and specify how that knowledge constrains belief change. The
formalities will be dealt with in Part II. For now I shall focus on the claim that
language invariance cannot be applied naively.

There are two main ways that language represents knowledge. The choice of
predicates in the language says something about those predicates themselves (Sec-
tion 3) and about how the predicates relate to each other (Sections 4 and 5).

3. Goodman’s New Problem of Induction

Nelson Goodman’s new problem of induction shows us one way in which inductive
inference is not language invariant. Goodman pointed out that some predicates (like

� See §G of the preface to the second edition of Carnap (1950), Carnap (1971: §§2.A.2-4 and
6.T6-1), Rosenkrantz (1977: §3.6), Forster (1995: §5), Halpern and Koller (1995), Jaynes (1998).
Paris (1994, 1997) adopt a notion of language invariance that is weaker than that considered here;
the ‘representation independence’ of Paris and Vencovská (1997) corresponds more closely to the
concept of language invariance in this paper.

�� Strictly speaking, if the domain of the agent’s probability function changes then her proba-
bility function changes. Thus a precise formulation of the language invariance principle must say
something like: the probability of any sentence of the new language should be the same as the
probability given to its translation into the old language, if such a translation exists, and if no new
factual knowledge is gained in the transition between languages.
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“green”) are amenable to inductive generalisation while others (such as “grue:”
green before time t and blue after t) are not (Goodman, 1954: §3.4). Predicates
of the former variety are called projectible and often refer to what are called nat-
ural kinds. We tend to include projectible predicates in our natural and scientific
languages in order to facilitate inductive reasoning. Hence a natural or scientific
language implies certain facts about what the natural kinds are, and a change in
language implies a corresponding change in background knowledge.

If languages get better at latching on to natural kinds as they evolve, then there
is good reason to reject any straightforward application of the language invariance
principle. Suppose for example that an agent’s current language contains predicates
“grue” and “bleen” rather than “green” and “blue.” The agent believes “all emeralds
are grue” to degree 0.99 (the changeover time t is some time in the future). But then
her language changes, with “green” and “blue” replacing “grue” and “bleen.” If, as
I maintain, this change implies that the new predicates latch on to natural kinds
better than the old predicates, then the change alone may warrant giving a lower
value than 0.99 to “all emeralds are green before t and blue after t ,” the translation
of the old sentence into the new language. On the other hand, the previous belief
may be enough to warrant a value of 0.99 given to “all emeralds are green,” even
though the sentence in the old language “all emeralds are grue before t and bleen
after t” may have had a much lower value.

The lesson to be learned here is that the principle of language invariance can
only be applied if there is no change in knowledge as language changes. The prin-
ciple should take all background knowledge into account, even implicit knowledge
betokened by choice of language, such as that of natural kinds. This clearly limits
the applicability of the principle.

I should mention that Howson and Urbach have cast Goodman’s example in a
different light (Howson and Urbach, 1989: §7.k). They argue that the new problem
of induction is a case of underdetermination of theory by evidence, since for future
t “all emeralds are green” and “all emeralds are grue” have the same empirical
consequences up to the present. Howson and Urbach claim that it is the choice of
prior that distinguishes the confirmation given to these two hypotheses: an agent
may have given a higher prior probability to “all emeralds are green” in which case
she will still believe that hypothesis to a greater degree after evidence is collected.
None of this is incompatible with what I have said. However, there does appear
to be a fact of the matter about which predicates are projectible – this is not just
a subjective issue – and so an agent who has evidence that “green” is projectible
while “grue” is not, will surely be irrational to give a higher prior probability to
“all emeralds are grue.” Bayesianism should reflect this: perhaps by invoking a
constraint on priors to the effect that projectible concepts are awarded higher prior
probability than non-projectible concepts. Now at first sight it appears that no agent
can have evidence before t that “green” is projectible but “grue” is not. It seems at
first sight that no constraint on priors which appeals to the syntax of expressions
will be able to differentiate between “all emeralds are green” from “all emeralds
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are grue.” But, I claim, language evolves to latch on to projectible predicates,
and so if one and not the other of the predicates “green” and “grue” occurs as a
primitive predicate of the language, then that alone is evidence of its projectibility.
I claim that there is a sortal division in the language between projectible and non-
projectible concepts: predicates in the language are likely to be projectible, while
ad hoc concepts like “green before t and blue after t” constructed from primitive
linguistic predicates are unlikely to be projectible. This gives a syntactic basis on
which a prior constraint could operate, and it is clear that language invariance is
wildly inappropriate given such a prior constraint.�

4. The Principle of Indifference

Howson formulates a version of the principle of indifference whereby each model
(up to isomorphism) of a formal language is given equal probability, and the prob-
ability of a sentence is the number of models satisfying that sentence multiplied
by the probability of a model (Howson, 2001: 145). This formulation is not lan-
guage invariant and Howson takes this fact as ground to reject the principle of
indifference. But there is another way of looking at this. We can accept that choice
of language conveys knowledge about which partition of models the principle of
indifference should be applied to, in which case we should not expect applications
of the principle of indifference to be language invariant. If we accept that reasoning
by indifference is a mode of reasoning analogous to inductive generalisation then
it will be the evolution of language, in the face of selective constraints generated
by the quality of our decision-making, that decides the partition of indifference. In
many cases where the principle of indifference can be applied in conflicting ways,
there is one way which seems intuitively correct, or leads to better predictions
(Jaynes, 1973). In such cases there is a fact of the matter as to which language
leads to better inferences. In other cases different languages may lead to different
belief assignments but the ensuing decisions may be of the same quality. In these
cases it does not matter that the principle of indifference can be applied in different
ways: agents with the same explicit background knowledge but different languages
may adopt different belief functions yet remain equally rational.

One possible objection to this view is that internal application of the principle
of indifference remains problematic. The problem is that within a language there
may be two partitions of sentences over which we can apply the principle of in-
difference but which give conflicting conclusions. The answer, I think, is not to

� In other cases of underdetermination, simplicity is an issue. The problem is that given any hy-
pothesis one can gerrymander a more complicated hypothesis with the same empirical consequences.
Some Bayesians maintain that simpler hypotheses should be given higher priors or that they receive
higher likelihoods (Rosenkrantz, 1977: Chapter 5; Howson and Urbach, 1989: §15.i.2). See also
Sober (1975), Forster and Sober (1994), Forster (1995), and some notions of simplicity may be
amenable to syntactic definition. But simplicity may itself be language-relative. Such constraints
may also depend on the makeup of the agent under consideration: what is simple for a human agent
is sometimes complicated for an artificial agent and vice versa.
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apply the principle of indifference over partitions of sentences within a language,
but to stick to external applications, exemplified by Howson’s partition of models
of the language. There is a grue-some analogy. Our language may have predicates
“green” and “blue,” but we may construct within our language the predicate “grue,”
by defining it in terms of green and blue. However, an application of inductive
generalisation to both “grue” and “green” will give conflicting conclusions. If we
accept that it is the language itself that contains the facts about projectibility then
the solution is to avoid inductive generalisations on predicates constructed within
the language.

5. Indirect Evidence

Choice of language can also imply the existence of relationships and connections
amongst the referents of the linguistic terms. Lakatos argued that a language is a
part of any scientific theory, since it implies connections:

The choice of a language for science implies a conjecture as to what is relevant
for what, or what is connected, by natural necessity, with what. For instance,
in a language separating celestial from terrestrial phenomena, data about ter-
restrial projectiles may seem irrelevant to hypotheses about planetary motion.
In the language of Newtonian dynamics they become relevant and change our
betting quotients for planetary predictions (Lakatos, 1968: 362).
This is especially true of artificial languages, which are often constructed with

a single application in mind. In an expert system for liver diagnosis, for example,
most of the events or propositions referred to will be causally connected. This
remains true even if the causal structure is uncertain or unknown: identifying a
suitable set of variables that may be causally related is a crucial first step to iden-
tifying the causal connections that actually pertain. If new terms are added to the
language of the expert system it is because they are causally related, or are likely
to be causally related, to the terms already present. One should thus be cautious
when applying any constraint on rational belief which renders variables probabilis-
tically independent when no explicit connection has been asserted – the choice of
language may implicitly connect the variables.

Lakatos also observed that introducing new terms into a language may change
beliefs on the old terms:

the problem of “indirect evidence” (I call “indirect evidence relative to L in
L∗” an event which does not raise the probability of another event when both
are described in L, but does so if they are expressed in a language L∗). In
the examples given by Putnam and Nagel L was Carnap’s “observational lan-
guage” and L∗ is the superseding theoretical language. But a situation of the
same kind may occur whenever a theory is superseded by a new theory couched
in a new language. Indirect evidence – a common phenomenon in the growth
of knowledge – makes the degree of confirmation a function of L which, in
turn changes as science progresses. Although growth of evidence within a fixed
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theoretical framework (the language L) leaves the chosen c-function unaltered,
growth of the theoretical framework (introduction of a new language L∗) may
change it radically.�

In general when language changes there is often implicit knowledge which both
guides the ascription of degrees of belief over the new terms, and warrants a change
in the beliefs over the old terms. We see this when we examine the ways in which
language can change.

6. Types of Language Change

Perhaps the simplest form of language change occurs when the language expands
to include new terms. There may be some feature of the world that one cannot
describe in the current language, and so one needs to add a new propositional
variable, constant, relation or function in order to do so. Typically the inadequa-
cies of language are realised during abductive reasoning, that is, the search for an
explanation or hypothesis. For instance, when Mendeleev developed the periodic
classification of the elements, a theory was hypothesised which posited elements
corresponding to each atomic weight – the referents of these new linguistic con-
stants were only gradually discovered in the world. Similarly one may search for
some causal explanation of a set of symptoms, find none in the current language,
and so invent a syndrome which refers to the particular combination of symptoms,
and invent a new causal term to signify whatever actually causes the syndrome.
Further investigation then yields a clearer idea as to the properties of the new
hypothesised cause. Note that new variables are often likely to be relevant to,
and even indirect evidence for, old variables: on discovering a common cause of
two symptoms, for example, one may judge the symptoms more dependent than
previously thought.

Languages also contract. Non-referring or redundant terms are often eliminated:
a new cause may be invoked to explain a syndrome, but then a cause in the old
language may be found, leading to elimination of the new term. Alternatively a new
cause may be found to refer, but to be irrelevant to the variables under consideration

� Lakatos (1968: 363). Here Lakatos refers to Putnam’s argument that Carnapian degree of con-
firmation cannot be defined on a language rich enough for science (Putnam, 1963), and Nagel’s
objection to Carnap (Nagel, 1963). Nagel observes that Carnap assumes a fixed language which is
complete in the sense that it expresses all scientific terms, past, present and future (see Carnap, 1950:
§18, 74–76). This is required because Carnap’s degree of confirmation c∗ depends on the number
of terms in the language, and language variance is deemed counter-intuitive. Nagel argues that such
an assumption is inappropriate, because it is doubtful as to whether we shall ever have a complete
language for science, since theoretical (as opposed to observable) scientific terms undergo frequent
changes. Nagel also argues that language variance is also a problem for Carnap in that a translation
of one theory that involves polyadic primitives into an alternative language may change the number
of primitives required, and therefore the confirmation function. (This is not so if the primitives are
all monadic.) See Gillies (2001) for a further argument to the effect that Bayesianism requires fixity
of the theoretical framework.
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in the old language. Thus a variable may be eliminated if it is not indirect evidence.
Similarly, if a relation is found always or never to obtain then it may be considered
uninteresting and removed.

Of course language change can be more complicated. Languages may amal-
gamate, for instance. Alternatively there may be a non-trivial embedding of the
old language into the new language. For example with the introduction of a dis-
tinction a propositional variable a may be replaced by b and c, in which case the
transition from old to new language will be accompanied by the knowledge that
a ↔ b ∨ c. One interesting case is where the syntax of the language is the same,
but the meaning of some of the terms changes. As Thomas Kuhn notes

The need to change the meaning of established and familiar concepts is cen-
tral to the revolutionary impact of Einstein’s theory. Though subtler than the
changes from geocentrism to heliocentrism, from phlogiston to oxygen, or
from corpuscles to waves, the resulting conceptual transformation is no less
decisively destructive of a previously established paradigm. We may even come
to see it as a prototype for revolutionary reorientation in the sciences. Just
because it did not involve the introduction of additional objects or concepts, the
transition from Newtonian to Einsteinian mechanics illustrates with particular
clarity the scientific revolution as a displacement of the conceptual network
through which scientists view the world (Kuhn, 1962: 102).

Standard formulations of logic do not take into account the change in meaning
of terms; thus a logical reconstruction of such cases may demand a change of
syntax when meaning changes, so that, instead of a single mass term m being
reinterpreted, Newtonian mass mN is replaced by Einsteinian mass mE .

According to Kuhn, two scientific theories may be incommensurable and it may
be difficult to find grounds to prefer one over the other. Part of the problem is that
it may be difficult for a proponent of one theory to translate the other theory into
her own language.� This is a genuine problem for Bayesianism: how can an agent
evaluate another theory if she cannot formulate that theory in her own language?
Perhaps the only solution is to expand her language to formulate the new theory and
update her beliefs on the basis of those links between the two languages of which
she is aware. Thus if our agent has a belief function over the language of Newtonian
mechanics and wants to evaluate special relativity, she could extend her language
to include the language in which special relativity theory is formulated, and extend
her belief function to this bridge language in the light of any constraints imposed
by her knowledge of connections between the terms of the two languages.��

� Postscript to Kuhn (1962): pp. 202–204.
�� One can interpret Kuhn’s incommensurability thesis as the stronger claim that there is no com-

mon bridge language into which two theories can be translated. However, as Earman points out in
Earman (1992: §8.2), there is little evidence for this thesis and in examples from the history of science
it does always seem to be possible to contrive a (perhaps rather unnatural) overarching language.
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7. Conservativity

The language invariance principle says that in the absence of any change in factual
knowledge, an agent’s belief function should not change as her language changes.
I have argued that a change in language is accompanied by a corresponding im-
plicit change in factual knowledge. This renders the language invariance principle
inapplicable.

The conservativity principle is more practical. This says that when an agent’s
language changes her new degrees of belief should be as close as possible to her old
degrees of belief, given her new knowledge. I will postpone a precise formulation
of such a principle to Part II. In this section I will discuss the rationale behind
conservativity from a general perspective.

Probability as degree of belief is usually justified by appealing to betting con-
siderations. An agent’s degree of belief in a sentence θ is interpreted as the betting
quotient x she would give, were she to lose (x − τ(θ))S, where truth function
τ = 1 if θ is true and 0 if θ is false, and where S is an unknown stake which
may be positive or negative. In order to avoid the possibility that stakes may be
chosen that lead to loss whatever the true situation turns out to be, the agent’s
betting quotients must satisfy the axioms of probability (Ramsey, 1926; de Finetti,
1937; see also Williamson, 1999). Suppose the agent first adopts betting quotient
x, and later changes her mind, adopting betting quotient y. Her loss function is then
(x − τ(θ))S1+ (y − τ(θ))S2. Now it is possible to choose new stake S2 so that the
agent loses money whatever happens: if S2 > max{−x/yS1,−(1− x)/(1− y)S1}
then the loss will be positive, whatever the value of τ(θ). This fact may be used to
justify the claim that an agent should not change her degrees of belief unless she
has good reason to. But suppose she does have good reason: she discovers that she
will be irrational unless she chooses y ∈ Y , where Y is a closed subset of [0, 1]
such that x 
∈ Y . The agent’s expected loss will be y[(x − 1)S1 + (y − 1)S2] +
(1−y)[xS1+yS2] = (x−y)S1 which is clearly minimised if y is chosen to be the
value in Y closest to x. Thus in order to minimise expected loss, the agent’s new
degree of belief must be as close as possible to her old degree of belief, subject
to the constraints imposed by new knowledge. This gives a simple justification for
conservativity.�

There is little doubt that humans are by nature conservative with respect to belief
change.�� As William James observes

The individual has a stock of old opinions already, but he meets a new experi-
ence that puts them to a strain. Somebody contradicts them; or in a reflective

� Note that this justification assumes that minimisation of expected loss is an important goal
– this may be disputed, especially considering the fact that expected loss is minimised just when
expected gain (where gain is negative loss) is minimised. Note also that the situation becomes more
complicated when we generalise from single degrees of belief to belief functions – see Section 10,
where pointers to more comprehensive justifications are provided.

�� In fact it appears we are often too conservative, holding on to beliefs even when we know them
to be discredited – see Ross and Anderson (1982).
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moment he discovers that they contradict each other; or he hears of facts
with which they are incompatible; or desires arise in him which they cease
to satisfy. The result is an inward trouble to which his mind till then had been
a stranger, and from which he seeks to escape by modifying his previous mass
of opinions. He saves as much of it as he can, for in this matter of belief we
are all extreme conservatives. . . .

New truth is always a go-between, a smoother over of transitions. It mar-
ries old opinion to new fact so as ever to show a minimum of jolt, a maximum
of continuity (James, 1907: 148–149).

Conservativity has mainly been discussed in the context of propositional beliefs.
However, much that has been said carries over to the Bayesian context of numerical
degrees of belief, and it will be useful to examine the main positions.

There are a couple of blind alleys to be wary of. The first picks up on the fact
that conservativity allows the possibility of two agents with the same evidence
holding different beliefs but being equally rational. In the context of propositional
beliefs this has been considered counter-intuitive.� But consider the same point in
the context of numerical degrees of belief. Two agents start off with priors p(θ) =
1/4 and q(θ) = 3/4 respectively. They then both discover evidence that constrains
rational degree of belief in θ to lie in [1/3, 2/3]. Changing their degrees of belief
conservatively they arrive at the new values p(θ) = 1/3 and q(θ) = 2/3. These
degrees are significantly different, yet based on the same evidence. However there
should be nothing counter-intuitive here for a Bayesian. Bayesianism is built on
the premise that different agents can hold different priors, and therefore different
posteriors given the same evidence, yet both remain rational.

The second blind alley is the empirical justification of conservativity (Sklar,
1975: 387–388). Conservativity might be justified inductively if it could be shown
that in the past minimal changes led more often to true theories than did extravagant
changes of belief. This is a difficult line to take however, in view of the fact that we
almost invariably change beliefs conservatively,�� and, according to the pessimistic
meta-induction (Laudan, 1981), our scientific theories are often proved wrong.

The more promising justifications of conservativity are typically pragmatic: it
is a waste of time, energy and resources to continually change our beliefs for no
reason, or to change them more than the minimum amount. William Lycan puts the
point thus:

Mother Nature would not want us to change our minds capriciously and for no
reason. Any change of belief, like any change in social or political institution,
exacts a price, by drawing on energy and resources. A habit of changing one’s
mind on a whim or otherwise gratuitously, like a habit of unrestrained social
experimentation or a national disposition toward political coups or other sudden

� See Goldstick (1971). Sklar (1975) and Lycan (1988) hold a contrary view.
�� Note that an agent does not always need to retain old beliefs in order to satisfy conservativity.

Scientific revolutions may be considered to be instances of conservative belief change, where the
minimal change in beliefs that is feasible in the light of new evidence is a revolutionary change.
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power and real estate grabs, would be inefficient and confusing; the instability
it would create would be poorly suited to a creature whose need for cognitive
organization in aid of sudden and streamlined action is great. (My wife points
out that it does help, in the morning, not to have to reason your way to the
bathroom.) (Lycan, 1988: 161).

Moreover, as Willard Van Orman Quine points out, we need to be conservative
in order to explain new or unexpected phenomena within an existing framework:

Familiarity of principle is what we are after when we contrive to “explain”
new matters by old laws; e.g., when we devise a molecular hypothesis in
order to bring the phenomena of heat, capillary attraction, and surface ten-
sion under the familiar old laws of mechanics. Familiarity of principle also
figures when “unexpected observations” (i.e., ultimately, some undesirable
conflict between sensory conditionings as mediated by the interanimation of
sentences) prompt us to revise an old theory; the way in which familiarity of
principle then figures is in favoring minimum revision.

The helpfulness of familiarity of principle for the continuing activity of
the creative imagination is a sort of paradox. Conservatism, a favoring of the
inherited or invented conceptual scheme of one’s own previous work, is at one
the counsel of laziness and a strategy of discovery (Quine, 1960: 20).

Keith Lehrer takes the opposite view. He argues that conservativity inhibits
discovery.

The primary problem with this proposal is simply that it is a principle of
epistemic conservatism, a precept to conserve accepted opinion. On some oc-
casions, such a precept may provide good counsel, but often it will not. The
overthrow of accepted opinion and the dictates of common sense are often
essential to epistemic advance. Moreover, an epistemic adventurer may arrive
at beliefs that are not only new and revelatory, but also better justified than
those more comfortably held by others. The principle of the conservation of ac-
cepted opinion is a roadblock to inquiry, and, consequently, it must be removed
(Lehrer, 1974: 184).

Of course, epistemic advances often require the overthrow of accepted opinion.
But these advances occur because evidence in favour of new theories often renders
old theories untenable for epistemic adventurers and conservatives alike. Lehrer’s
point misses the mark here for two reasons. The first is that he reads conservativity
to entail that one should hold beliefs as close as possible to those of other people.
This type of intersubjective agreement is only justifiable in special cases (Gillies,
1991). Indeed it seems quite plausible to hold that epistemic advances might be
encouraged in the sciences if research councils fund individuals, each of whom
are conservative with respect to their own beliefs, but who as a group hold a broad
spectrum of incompatible beliefs. The second confusion in the above passage arises
with the thought that the epistemic adventurer may be more justified than the con-
servative. No one argues that an agent should be conservative in the sense that she
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ought to stick to her old beliefs in the face of evidence that justifies incompatible
beliefs. The agent should change her beliefs to accommodate the new information,
but change them only as much as is necessary. Thus Lehrer’s arguments only suc-
ceed against notions of conservativity that few would be willing to uphold, and not
the notion of conservativity that we are considering here.

It is wrong to think of conservativity in terms of justification. There is very
little motivation for the assertion that a minimal change in beliefs is more justified
than a large change in beliefs.� Justification has already done its work: given new
knowledge certain belief states are justified; from those belief states (which are all
justified) one ought to adopt the belief state which differs least from one’s previous
belief state. There is clearly no hope in claiming that justification determines that
one should adopt that particular belief state. One should view the minimal change
as most rational rather than most justified: it is for pragmatic reasons that we
are and ought to be conservative.�� Justification is to do with truth and eviden-
tial relations, whereas rationality must take both justification and pragmatics into
account.

Gilbert Harman discusses conservativity from the point of view of belief revi-
sion. Harman distinguishes between foundational belief revision, where an agent
keeps track of all the justifications of her beliefs and revises her beliefs according to
this stock of knowledge, and coherence revision, where one forgets past justifica-
tions and assigns new beliefs on the basis of new information and the coherence of
new beliefs with old beliefs (Harman, 1986: Chapter 4). Conservativity is then an
important constraint for the coherence revision strategies: it allows one to choose
a new belief state on the basis of the current state.

While Harman discusses belief revision in the context of propositional beliefs,
the same distinction can be applied to numerical degrees of belief. Bayesian belief
change is most naturally viewed as a coherence-based approach: Bayesian con-
ditionalisation, for example, determines a new belief function from new evidence
and the old function. Agents do not need to keep track of their justifications, and
indeed it is of pragmatic advantage that they do not. A foundational approach to
Bayesian belief change would require large amounts of space to store a database
of all past evidence and justifications, and large amounts of time to maintain con-
sistency of this database and to calculate a most rational belief function consistent

� As Lehrer points out elsewhere, “And the principle that, what is, is justified, is not a better
principle of epistemology than of politics or morals” (Lehrer, 1978: 358). Christensen (2000) makes
a similar point. Christensen puts forward the principle of epistemic impartiality, which says that an
agent is not justified in adopting beliefs solely on the basis of their belonging to the agent’s present
belief state.

�� It is for this reason that conservativity cannot help with the problem of underdetermination
of theory by evidence. Sklar (1975: §3) argues that conservativity can be used to pick one among
several equally justified hypotheses. But while conservativity can tell us what to do when we face
underdetermination, the application of conservativity depends on there being underdetermination –
if only one hypothesis is justified then we do not need conservativity to tell us what to do. Thus
conservativity can in no way be thought of as a solution to the problem of underdetermination.
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with the database. Thus coherence-based Bayesian updating offers what Harman
calls “clutter avoidance:” the ability to avoid cluttering the mind with unimportant
things (Harman, 1986: 41). It is no small matter to ensure that Bayesian degrees
of belief can be stored efficiently� or that conservative Bayesian updating can be
performed efficiently – these will be major concerns of Part II – but the potential is
there with a coherence approach.��

8. Prospects for a Solution

Lakatos again:

Carnap tried his best to avoid any “language-dependence” of inductive logic.
But he always assumed that the growth of science is in a sense cumulative:
he held that one could stipulate that once the degree of confirmation of h

given e has been established in a suitable “minimal language,” no further argu-
ment can ever alter this value. But scientific change frequently implies change
of language and change of language implies change in the corresponding
c-values.

This simple argument shows that Carnap’s (implicit) “principle of mini-
mal language” does not work. This principle of gradual construction of the
c-function was meant to save the fascinating ideal of an eternal, absolutely
valid, a priori inductive logic, the ideal of an inductive machine that, once
programmed, may need an extension of the original programming but no re-
programming. Yet this ideal breaks down. The growth of science may destroy
any particular confirmation theory: the inductive machine may have to be
reprogrammed with each new major theoretical advance.

Carnapians may retort that the revolutionary growth of science will pro-
duce a revolutionary growth of inductive logic. But how can inductive logic
grow? How can we change our whole betting policy with respect to hypothe-
ses expressed in a language L whenever a new theory couched in a new
language L∗ is proposed? (Lakatos, 1968: 363–364).

Most Bayesians – even those who accept objective constraints on priors – now
reject Carnap’s search for a unique, objective confirmation function, in favour of a
subjective belief function relativised to an individual agent,‡ yet Lakatos’ questions
at the end of this passage remain as important today as they were in 1968: we still
do not know how degrees of belief should change as language changes.

� The choice of representation of probability function is crucial here – see Section 13.
�� Gärdenfors (1990: §3) picks up on the computational advantages that a coherence approach

offers propositional belief revision. Indeed the AGM theory of belief revision that Gardenfors defends
is a coherence theory. See also Rott (1999) on this point.

‡ This is because there are clear cases in which there is more than one appropriate probability
function – see Williamson (1999). Carnap himself at one time accepted that choice of belief function
is to some extent subjective – see Hilpinen (1975: 337).
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Earman maintains that there is no formal procedure for transforming the belief
function in such circumstances:

Indeed, the problem of the transition from P r to P r ′ can be thought of as
no more and no less than the familiar Bayesian problem of assigning initial
probabilities, only now with a new initial situation involving a new set of pos-
sibilities and a new information basis. But the problem we are now facing is
quite unlike those allegedly solved by classical principles of indifference or
modern variants thereof, such as E.T. Jaynes’s maximum entropy principle,
where it is assumed that we know nothing or very little about the possibilities
in question. In typical cases the scientific community will possess a vast store
of relevant experimental and theoretical information. Using that information
to inform the redistribution of probabilities over the competing theories on the
occasion of the introduction of the new theory or theories is a process that is,
in the strict sense of the term, arational: it cannot be accomplished by some
neat formal rules or, to use Kuhn’s term, by an algorithm. On the other hand,
the process is far from being irrational, since it is informed by reasons. But the
reasons, as Kuhn has emphasized, come in the form of persuasions rather than
proof. In Bayesian terms, the reasons are marshalled in the guise of plausibility
arguments. The deployment of plausibility arguments is an art form for which
there currently exists no taxonomy. And in view of the limitless variety of such
arguments, it is unlikely that anything more than a superficial taxonomy can be
developed (Earman, 1992: 197).

I am less sceptical. I think inroads can be made on the problem of language
change, at least in a restrictive formal setting such as the propositional languages
of Part II. Indeed unlike Earman I think that maximum entropy techniques can help
us here. However there are cautionary lessons to be learned from the analysis of
Part I. Language invariance will not help us because an agent’s language contains
implicit factual knowledge. This has two repercussions. Firstly if we are to save
intuitions behind language invariance, we will have to generalise it to some form
of conservativity principle. Secondly this transitional knowledge will have to be
made explicit before the more general conservativity rule can be formally applied.
Making the transitional knowledge explicit will in general be no mean feat – it is at
this stage that insight and an awareness of subtleties of the particular domain come
into play – but will clearly be a prerequisite of any formal analysis. Further, Kuhn’s
problem of incommensurability should lead us to look for a bridge language that
encompasses the old and new languages. The relationships between the old and
new terms in the bridge language may again be subtle and difficult to ascertain
fully, but if knowledge of these relationships can be rendered explicit then the
resulting formalisation will have normative value.

These then appear to be the key ingredients of a formal analysis: A conserva-
tivity principle generalising language invariance, transitional knowledge rendered
explicit, and a bridge language involving both old and new terms.
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Part II: PROPOSITIONAL LANGUAGES

9. Rational Assignments

We shall now look at the problem of language change from a more formal per-
spective. Our primary goal in Part II will be to produce a framework that can be
implemented efficiently in an artificial agent.

Consider agent X whose rational belief function is p0, a probability function on
the sentences SL0 of propositional language L0.� Suppose X’s language changes
to L1 and K is an explicit formulation of all X’s new knowledge gained in the tran-
sition from L0 to L1, including knowledge implied by choice of the new language.
The key task is to define a new rational belief function p1 over SL1.

We shall call K the transitional knowledge, and discuss its properties in more
detail in Section 11. We shall call L = L0 ∪ L1 the bridge language, and L+ =
L\L0 = L1\L0 the additional language. Note that if any of the variables in L0

change meaning in the transition to L1 (as in the case of the move from Newtonian
to Einsteinian mass mentioned in Section 6) then the syntax should reflect this
change by introducing new variables to correspond to the new meanings (thus the
bridge language would contain a distinct variable for each type of mass). This
framework allows us to achieve our key task by defining a rational belief function
p on L, given L0, p0 and K, and then setting p1 = p|L1 , the restriction of p to the
sentences of L1.

Unfortunately, as pointed out in Section 1, Bayesian conditionalisation does not
help us much here. The principle of Bayesian conditionalisation says that when X

learns K she should set her new degrees of belief to her old degrees conditional
on K, p1(θ) = p0(θ | K), for each sentence θ of L1. This rule is fine when X’s
language does not change, but is only helpful in our context if K ⊆ SL0 and
θ ∈ SL0, since p0 is only defined on the sentences of L0. Thus we require a more
general way of specifying X’s new belief function.

Let PL signify the set of probability functions defined on SL. What we require
is a way of transforming p0 ∈ PL0 into p ∈ PL on the basis of transitional
knowledge K. Define a rational belief assignment (or assignment for short) on L
given p0 and K, to be a function ρ(L, p0, K) that selects a rational belief function
p ∈ PL, given rational p0 ∈ PL0 and transitional knowledge K.

What form should ρ take? What makes a particular assignment p ∈ PL rational,
given p0 and K? This is the key issue we now face.

10. Conservative Assignments

In Sections 7 and 8 I mentioned that intuitions behind language invariance could
be salvaged to some extent if we assume that rational belief should change as little
as possible, as language and knowledge changes.

� See Paris (1994) for an introduction to probabilistic reasoning over propositional languages.
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An assignment ρ is conservative if for each p0 and K, ρ(L, p0, K) is a function
p ∈ PL satisfying K that is closest to p0 according to some measure of distance
between probability functions.

This yields a useful constraint on assignments once we specify a suitable dis-
tance function. Perhaps the most plausible measure of distance between probability
functions on a finite language L0 is cross entropy:

dL0(p, p0) =
∑

α

p(α) log
p(α)

p0(α)
,

where the sum is over atomic states α of L0: if L0 = {c1, . . . , cm} then the
atomic states AL0 are the sentences of the form ±c1 ∧ . . . ∧ ±cm. We shall use
the standard conventions, justified by continuity arguments, that 0 log 0/y = 0 and
x log x/0 = ∞ for x 
= 0. Cross entropy is not a distance function in the usual
mathematical sense, since it is not symmetric and does not satisfy the triangle
inequality. However, we do have that dL0(p, p0) ≥ 0 and dL0(p, p0) = 0 iff
p|L0 = p0,� which is enough for our purposes here.

There are several well-known arguments to the effect that a new belief function
should minimise cross entropy relative to the old function, subject to constraints
imposed by K.�� These arguments can be construed both as reason to employ
conservative assignments in general and as reason to explicate the notion of conser-
vativity via minimum cross entropy. We shall accept both these conclusions without
further discussion, and we shall suppose for the rest of this paper that a conservative
assignment minimises cross entropy between p and p0 on L0. Since minimum
cross entropy updating generalises Bayesian conditionalisation (Williams, 1980).
the resulting conservative assignment will too.

Since we are dealing with finite domains here, we may plausibly require that
open-mindedness be satisfied: p(θ) = 0 iff θ is known (incontrovertibly) to be
false.‡ Open-mindedness is desirable for two technical reasons. First, since Bayesian
conditionalisation can not update any zero degree of belief to a non-zero degree of
belief, p(θ) = 0 ⇒ p(θ | φ) = 0, it becomes necessary to save zero degrees of
belief for incontrovertibly false sentences in order to apply Bayesian conditionali-
sation or its generalisations. Second, conditional probabilities are unconstrained if
the probability of the condition is zero (conditional probabilities are subject to the
constraint that p(θ | φ)p(φ) = p(θ∧φ), but this is vacuous when p(φ) = 0). This
may be appropriate when the condition φ is false, since according to the betting
interpretation of rational belief conditional bets on false antecedents are called off,
and so betting considerations do not constrain betting quotients in such cases.‡‡ But
if the condition is not known to be false, non-vacuous conditional probabilities may

� See Paris (1994: proposition 8.5) for example.
�� These are detailed in Paris (1994: 120–126).
‡ See Shimony (1955) and Chapter 7 of Paris (1994) for alternative formulations of this principle.

‡‡ Many doubt, moreover, the existence of objective truth conditions in counterfactual circum-
stances.
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be useful. I may, for example, be inclined to give negligible degree of belief to the
proposition that I will be run over when I next cross the road, yet I should not give
it zero degree of belief because, given my background knowledge, I ought to give
high degree of belief to an outcome of serious injury or worse, conditional on my
being run over – that such conditional probabilities are non-vacuously constrained
is vital for my decision making. For our purposes it is important to note that if
open-mindedness initially holds, then any minimum cross entropy update will also
satisfy open-mindedness, and the cross entropy distance between successive belief
functions will never be infinite.

11. Compatible Transitional Knowledge

We need not assume here that K is set of sentences. Instead we shall view K more
generally as a set of constraints on X’s belief function p. (If K ⊆ SL then we
can consider each sentence θ in K to be the constraint p(θ) = 1.) Thus in effect
we make two key assumptions about the transitional knowledge K: First that such
knowledge can be made explicit at all, given that language change often involves
implicit change in knowledge, and second that such knowledge can be made quan-
titative by articulating it as a set of well-defined probabilistic constraints. Most
sciences require significant effort in identifying relevant constraints on a problem
and then rendering these constraints quantitative, and it must be emphasized that
such analysis is also required here.�

Let K ⊆ PL be the set of probability functions on SL that satisfy K. We shall
say K is consistent if there is some probability function that satisfies K, i.e., K 
= ∅.

K is compatible with p0 on L0 if there is a p on L satisfying K such that
p|L0 = p0. K is compatible on L0 if it is compatible with every p0 on L0, i.e., if
K|L0 = PL0 . Clearly K must be consistent to be compatible (with some p0).

Here are some examples:
(i) L0 = {a, b}, L = {a, b, c}, K = {a ↔ c, b ↔ c}. By the axioms of

probability, if p ∈ K then p(a) = p(c) = p(b) (Paris, 1994: proposition 2.1.c.)
K is consistent since there exist probability functions that satisfy this requirement.
But if p0(a) 
= p0(b) then K is incompatible with p0 on L0 – thus consistency
does not imply compatibility. Intuitively c is indirect evidence for a and b, since
the knowledge of c and its relationship with a and b makes a and b perfectly
dependent.

(ii) L0 = {c1, . . . , cm}, L = {c1, . . . , cm, cm+1, . . . , cn} and K = {p(φ1 | θ1) =
u1, . . . , p(φk | θk) = uk} where the ui ∈ [0, 1], the θi ∈ SL0 are disjoint (pairwise

� Frege made the point that the articulation and formalisation of a problem is often the most
difficult task:

I believe almost all errors made in inference to have their roots in the imperfection of concepts.
Boole presupposes logically perfect concepts as ready to hand, and hence the most difficult part
of the task as having been already discharged; he can then draw his inferences from the given
assumptions by a mechanical process of computation (Frege, 1880: 34–35).
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inconsistent) and the φi ∈ SL+ (recall that L+ is the additional language L\L0).
Then K is compatible on L0.

Proof. Given arbitrary p0 on L0 we will define a probability function p that
extends p0 to L and satisfies K. Let the α run through the atomic states ±c1∧ . . .∧
±cn of L. Let the β run through the atomic states ±c1 ∧ . . .∧±cm of L0, and let βα

be cα
1 ∧ . . .∧ cα

m, the atomic state β that is consistent with α. Similarly let the γ run
through the atomic states of L+ = L\L0 and let γ α be cα

m+1 ∧ . . .∧ cα
n , the atomic

state of L+ consistent with α. Let |θi | = |{β : β |= θi}| and |φi| = |{γ : γ |= φi}|.
Then define p(α) = q(γ α, βα)p0(βα), where

q(γ, β) =




ui

|φi | : β |= θi, γ |= φi

1−ui

|¬φi | : β |= θi, γ 
|= φi

1
2n−m : β 
|=∨k

i=1 θi

(this is well defined by the disjointness of the θi). Now if β |= θi then∑
γ

q(γ, β) =
∑
γ |=φi

q(γ, β)+
∑
γ 
|=φi

q(γ, β)

= ui + (1− ui)

= 1

and if β 
|= θi for any i then
∑

γ q(γ, β) =∑
γ 1/2n−m = 1. Hence q(γ, β) can be

interpreted as a conditional probability p(γ | β) and p is a well-defined probability
function extending p0. Also,

p(φi | θi) =
∑
β|=θi

q(φi , β)p0(β | θi)

=
∑
β|=θi


∑

γ |=φi

q(γ, β)


p0(β | θi)

=
∑
β|=θi

[ui] p0(β | θi)

= ui

∑
β|=θi

p0(β | θi)

= uip0(θi | θi)

= ui

so p satisfies the constraints. �
This notion of compatibility provides us with two key properties. Clearly,
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PROPOSITION 11.1 (Compatibility allows Extension). If K is compatible with
p0 on L0 and ρ is a conservative assignment then ρ(L, p0, K) extends p0.

We also have:

PROPOSITION 11.2 (Substitution of Equivalents).

− Suppose θ ↔ φ is in K, θ ∈ SL0, φ ∈ SL1.
− Let ψ ∈ SL and ψ ′ ∈ SL be ψ[φ/θ], the result of substituting θ for φ in ψ .
� Then

1. If p ∈ K then p(ψ) = p(ψ ′).
2. If ψ ∈ SL1, ψ ′ ∈ SL0, K is compatible with p0 on L0, and p1 is

produced by a conservative assignment, then p1(ψ) = p0(ψ
′).

Proof. Let L′ = {c1, . . . , cn} be the smallest sublanguage of L containing all the
above sentences (this is required in the case where L is infinite). Let α1, . . . , α2n

be the atomic states of L′ (expressions of the form ±c1 ∧ . . . ∧ ±cn.) Then any
sentence σ ∈ SL′ is logically equivalent to

∨
αi |=σ αi and p(σ ) = ∑

αi |=σ p(αi).
Let σ̇ = {αi : αi |= σ, p(αi) > 0}.

Part 1. Since p satisfies K, p(θ ↔ φ) = 1, an atom αi only has positive
probability if it satisfies θ ↔ φ. This implies that θ̇ = φ̇, which in turn gives
ψ̇ = ψ̇ ′ as can be seen by induction on the complexity of ψ . Then p(ψ) =∑

αi∈ψ̇ p(αi) =∑αi∈ψ̇ ′ p(αi) = p(ψ ′), as required.
Part 2. p1 is the restriction of p to SL1. Furthermore, by conservativity of the

assignment and compatibility of K, p0 is the restriction of p to SL0. Applying Part
1, p1(ψ) = p(ψ) = p(ψ ′) = p0(ψ ′). �
12. Maximum Entropy

Minimising cross entropy will only constrain the new belief function p over
L0. Suppose L0 = {c1, . . . , cm} and L+ = {cm+1, . . . , cn}. Then ensuring that
dL0(p, p0) is minimised may fix the restriction p|L0 of p to L0, but it will tell us
nothing about p on L+. Thus we must look for a further constraint to choose an
appropriate function p from all those functions equally close to p0 on L0.

According to the maximum entropy principle, agent X should choose a function
in K that maximises the entropy

HL(p) = −
∑

α∈AL

p(α) log p(α),

where the sum is over atomic states α of L. As with minimising cross-entropy,
many of the justifications of the maximum entropy principle are well known,� and
I shall accept the principle without any further defence here.

� See Jaynes (1998), Paris (1994) and Paris and Vencovská (2001) for justifications of the
maximum entropy principle.
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We thus have the following recipe for assigning p on L given p0 and K: choose
a function from {p ∈ K : p minimises dL0(p, p0)} that maximises entropy HL(p).
We shall call this the entropic assignment, ρe, and we will focus on this assignment
for the remainder of the paper.

In Section 7 I discussed the distinction between coherence and foundational
approaches to belief change. The entropic assignment is conservative and thus
coherence-based. But foundational assignments are also possible. For example, one
could store all past background knowledge, evidence, and transitional knowledge
that the agent has ever been exposed to, and whenever new knowledge enters this
database – such as during language change – one could choose the agent’s new
belief function by maximising entropy subject to the constraints imposed by the
database. As mentioned in Section 7, such a foundational approach is likely to
incur enormous computational costs, and the reason for focusing on conservative
assignments here is largely pragmatic.

An important special case occurs when K is a convex and compact set, for then
minimising cross entropy fixes p uniquely over L0, and maximising entropy fixes
p uniquely over L. Thus the entropic assignment fixes a unique rational belief
function in this case. This occurs quite often in practice, for example when the
constraints in K are linear, i.e., of the form

∑r
i=1 aip(θi) = b, for θi ∈ SL, i =

1, . . . r (Paris, 1994: proposition 6.1).
For the remainder of the paper we shall take L0 = {c1, . . . , cm}, L+ =

{cm+1, . . . , cn} and L = {c1, . . . , cn} = L0 ∪ L+. Minimising cross entropy is
maximising

−dL0(p, p0) = −
∑

β∈AL0

p(β) log
p(β)

p0(β)

= −
∑

β∈AL0

p(β) log p(β)+
∑

β∈AL0

p(β) log p0(β)

= HL0(p)+ E log p0

over probability functions in K, where E is the expectation with respect to p. Since
log x is strictly increasing in x for 0 < x≤1, the expectation of log x is maximised
just when the expectation of x, judged according to future belief function p, is
maximised. Thus minimising cross entropy can be thought of as a balance between
maximising the entropy over L0 and maximising the expectation of current beliefs.

The next step, maximising entropy, requires maximising

HL(p) = −
∑

β∈AL0,γ∈AL+

p(γ | β)p(β) log p(γ | β)p(β)

= −
∑

β∈AL0,γ∈AL+

p(γ | β)p(β) log p(γ | β)−
∑

β

p(β) log p(β)

= HL+|L0(p)+HL0(p)
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over probability functions in K. Now if K is convex and compact then the terms
p(β) are fixed by the cross entropy minimisation, and so entropy is maximised
by maximising −∑β,γ p(γ | β)p(β) log p(γ | β) with respect to the parameters
p(γ | β).

13. Representing Probability Functions

In certain circumstances the entropic assignment may be implemented very effi-
ciently. We shall explore these circumstances in the rest of the paper. The efficiency
of the implementation will hinge on the way we choose to represent our probability
functions. This section contains a brief overview of typical representations – those
familiar with this material may skip to the end of the section.

A representation of a probability function p on L is a structure R =
(L, G, S, A), where L is a language; G is some data structure; S is a set of prob-
ability specifiers – i.e., a set of statements of the form p(θ) = u where θ ∈ SL;
and A is a set of assumptions linking G to the probability function p, such that
p : SL −→ [0, 1] can be fully determined from R. Here are some examples,
where L is in each case the finite propositional language {c1, . . . , cn}:

(i) An atomic representation is of the form A = (L,∅, S,∅) where all proba-
bilities of atomic sentences are specified, S = {p(α) = uα : α ∈ AL} such that
uα ∈ [0, 1] for each α and

∑
α uα = 1. This is a representation of p because it

determines p fully: for any sentence θ ∈ SL, p(θ) = ∑
α∈AL,α|=θ uα . However,

it is not a very compact representation of p, since S contains 2n statements. One
of these statements is redundant by the additivity of p, but without substantive
assumptions (here A = ∅) representing p requires a set S of specifiers whose size
is exponential in n. Other types of representation trade off size for assumptions in
A.

(ii) A Prospector representation P = (L, G, S, A) is defined as follows. The
variables in G ⊆ L are called hypotheses, while all other variables in L are
evidence variables. The probability of each variable is specified together with
the probability of each hypothesis given each evidence variable, S = {p(ei) =
ui, p(hj) = vj , p(hj | ei) = wij : hj ∈ G, ei ∈ L\G} where ui, vj , wij ∈ [0, 1]
and

∑
j vj = 1. Finally in A it is assumed that the hypotheses in G are mutu-

ally exclusive and exhaustive and that the evidence variables are probabilistically
independent conditional on the truth or falsity of a hypothesis, p(eα

1 , . . . , eα
k |

hα) = ∏k
i=1 p(eα

i | hα) for each state α of L, and each hypothesis h ∈ G, where
e1, . . . , ek are all the evidence variables. This is a representation of probability
function p defined by p(α) = 0 if zero, two or more hypotheses are true in α, and
p(α) = v1−k

j

∏
α|=ei

uiwij

∏
α|=¬ei

(vj − uiwij ) otherwise, where hj is the hypoth-
esis true in α, and then for θ ∈ SL, p(θ) can be defined as in (i). A prospector
representation offers a very compact representation of p, since S contains at most
n2/4 + n specifiers, and it can be used to determine p(hj | s)/p(¬hj | s) very
efficiently, where s is some state of evidence variables. In fact such a representation
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was used for probabilistic reasoning in Prospector, an expert system for geological
prospecting in hard-rock mineral exploration. However, the assumptions made by
a Prospector network are extremely strong: it can be shown that the assumptions
imply that the evidence variables must all be probabilistically independent, and
that each hypothesis is independent of all but one, or all, of the evidence variables.�

Hence a more practical network might achieve a better balance between size and
strength of assumptions than the extremes of either an atomic or a Prospector
network.

(iii) A Markov network M = (L, G, S, A) may be defined thus. G is an undi-
rected graph, whose nodes are the propositional variables in L. The specification
S is determined according to the following recipe. First triangulate G (in a trian-
gulated graph every cycle of length four or more has a chord). Let C1, . . . , Ck be
the cliques of the triangulated graph (a clique is a maximal complete subgraph),
ordered according to increasing values of maxcj∈Ci

j . Form a join tree by connect-
ing each clique Ci to a predecessor sharing the highest number of vertices with Ci .
Let Ei be the sets of these vertices shared between Ci and its predecessor in the
join tree, for i = 1, . . . , k. Then specify in S the probabilities of all states of Ci

conditional on all states of Ei , S = {p(C
β

i | E
β

i ) = uiβ : β ∈ ACi} where each
uiβ ∈ (0, 1) and for each state γ of Ei ,

∑
β∼γ uiβ = 1, the notation β ∼ γ signify-

ing that β is consistent with γ . The assumptions A are that p is strictly positive, and
that conditional on its boundary in G, each node is probabilistically independent of
any set of other nodes (the boundary of a node in an undirected graph is the set of
nodes adjacent to it). A set of variables that renders a variable independent of other
variables is known as its Markov blanket. Under these assumptions the Markov
network can be used to generate p since for each α ∈ AL, p(α) = ∏k

i=1 uiβ

where each β is consistent with α. Propagation techniques have been developed
for calculating certain marginal probabilities from Markov networks.�� The size of
a Markov network and the speed of propagation calculations depend largely on the
sizes of the cliques in the join tree: in the worst case both are exponential in n, but
if the graph is sparse, space and time complexities can be dramatically reduced.‡

(iv) A Bayesian network B = (L, G, S, A) contains a directed acyclic graph G

involving the propositional variables of L as nodes, and a probability specification
S in which the probability of each node given each state of its parents in G is
specified. A is an independence assumption, often called the Markov condition,
which stipulates that the parents of each node in G render the node independent
from any set of its non-descendants. This independence assumption ensures that a
Bayesian network determines a full probability function, p(α) = ∏n

i=1 p(cα
i | dα

i )

where dα
i is the state of the parents of ci consistent with α.‡‡ Thus one can use a

� See Paris (1994: Chapter 9) for details concerning the facts in this example.
�� For more on Markov networks, see Pearl (1988: §3.2), Cowell et al. (1999: Chapter 5), and

Lauritzen and Spiegelhalter (1988).
‡ See Neapolitan (1990: §7.6) on this point.

‡‡ See Pearl (1988: §3.3), and Neapolitan (1990: §5.3).
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Bayesian network to represent a given probability function p on L by choosing a
graph G with respect to which p satisfies the independence assumption and spec-
ifying p(ci | dα

i ) in S for each node ci and state dα
i of its parents. The advantage

of such a representation is computational: roughly speaking the sparser the graph,
the smaller the amount of storage space the network takes up, and the quicker it
is to calculate required probabilities from the Bayesian network. For example, if
the maximum number of parents of nodes in graphs is bounded and graphs are
singly-connected then the space complexity of Bayesian networks, and the time
complexity for calculating p(ci | s) where s is a state of nodes, are both linear in
n, whereas specifying each p(α) directly would lead to 2n specifiers.� Note that
the graph G of a Bayesian network can be transformed into the graph of a Markov
network by forming the moral graph of G by marrying the parents of each node
(i.e., linking each pair of parents with an edge if they are unlinked) and replacing all
arrows with undirected edges. By triangulating this graph we can achieve a Markov
network representation of a strictly positive probability function p.

The strategy of the remainder of the paper will be to use a Bayesian network
representation to implement the entropic assignment efficiently. We shall see in the
next section that in certain circumstances a probability function p determined by
the entropic assignment satisfies a number of conditional independence relation-
ships that can be determined in advance. This allows us to construct the graph in a
Bayesian network representation of p.�� Moreover, using the entropic assignment
to work out the corresponding specifiers in the Bayesian network representation is
considerably easier than determining a direct representation of p. An algorithm for
constructing a Bayesian network representation will be given in Section 15.

14. Conditional Independence

Define the partners of ck to be the set Dk of propositional variables (other than
ck) that occur with ck in K, for k = 1, . . . , n. Let Kk be the set of constraints in
K involving ck and its preceding partners cj ∈ Dk such that j < k. Let KL0 =⋃m

i=1 Km, the set of constraints in K only involving variables in L0. For A, B and
C propositional variables or sets of propositional variables, write Ip(A, B | C) if
A and B are probabilistically independent conditional on C, according to p: C is
said to render A and B independent or screen off A from B. We have the following
useful properties:

THEOREM 14.1 (Conditional Independence Properties). Suppose that K is a set
of linear constraints and that p is determined by the entropic assignment ρe. Then

1. Let A be the set of variables which occur in KL0 and let B = L0\A. If
Km+1, . . . , Kn are compatible with each probability function satisfying KL0

� For specific and up-to-date details as to the computational properties of Bayesian networks, see
the proceedings of the Uncertainty in Artificial Intelligence conferences, www.auai.org.

�� See Williamson (2002b) for further analysis.
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then for each variable c ∈ B and for each state s of S such that A ⊆ S ⊆ L0,
p(c | s) = p0(c | s). Consequently, if Ip0(c, F | E) for some disjoint subsets
E and F of L0 such that A ⊆ E ∪ F , then Ip(c, F | E).

2. If all the partners of the new propositional variables are in the old language,
Dk ⊆ L0 for k = m+ 1, . . . , n, then p is such that for k = m+ 1, . . . , n, the
partners Dk screen off ck from all other variables, Ip(ck, L\(Dk∪{ck}) | Dk).

Proof. First some terminology. Let Ak = A{c1, . . . , ck} = {±c1 ∧ . . .∧ ±ck} be
the atomic states involving c1, . . . , ck. For α ∈ Ak let cα

i be the literal on ci that is
consistent with α. Thus we can write α as cα

1 ∧ . . .∧ cα
k . Let αi be cα

1 ∧ . . .∧ cα
i−1∧¬cα

i ∧ cα
i+1 ∧ . . . ∧ cα

k , the state in Ak that is identical to α except that it gives the
opposite value to ci . Recall that we write θ ∼ φ if sentences θ and φ are consistent.

The proof will be a constructive one, demonstrating how Lagrange multiplier
methods can be used to determine p from the constraints. While this type of proof
is far from brief, the Lagrange multiplier methods are important for practical cal-
culations and the techniques presented here can be adapted for use in the algorithm
of Section 15.

Part 1. This property just concerns the variables in L0 and is a feature of cross-
entropy minimisation. We shall use Lagrange multipliers to minimise cross entropy
subject to the constraints imposed by KL0 . Since the constraints in K are linear, K

is convex and compact and the functions p that minimise cross entropy all agree
on L0. The function p|L0 will be shown to satisfy the conditional independence
property. Since Km+1, . . . , Kn are compatible with p|L0 , the function p subse-
quently produced by entropy maximisation extends p|L0 , and so will also satisfy
the property.

Let pα
0k = p0(c

α
k | cα

1 ∧ . . . ∧ cα
k−1) and yα

k = p(cα
k | cα

1 ∧ . . . ∧ cα
k−1). Then to

minimise cross entropy we must minimise

dL0(p, p0) =
∑

β∈AL0

p(β) log
p(β)

p0(β)

=
∑

β∈AL0

(
m∏

i=1

y
β

i

)
log

∏m
i=1 y

β

i∏m
i=1 p

β

0i

=
∑

β∈AL0

(
m∏

i=1

y
β

i

)
m∑

k=1

[log y
β

k − log p
β

0k]

=
m∑

k=1

∑
β∈AL0

(
m∏

i=1

y
β

i

)
log

y
β

k

p
β

0k

=
m∑

k=1

∑
α∈Ak

(
k∏

i=1

yα
i

)
log

yα
k

pα
0k
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with respect to the parameters yα
k . Now

∂dL0

∂yα
k

=
(

k−1∏
i=1

yα
i

)
1+ log

yα
k

pα
0k

+
m∑

l=k+1

∑
β∈Al ,β∼α


 l∏

j=k+1

y
β

j



[

log
y

β

l

p
β

0l

]
 . (1)

We have two types of constraint on cross entropy minimisation. Firstly there are
those constraints χ in KL0 . Secondly, we also have constraints imposed by addi-
tivity of probability, namely yα

k + yαk

k = 1 (i.e., p(cα
k | cα

1 ∧ . . . ∧ cα
k−1)+ p(¬cα

k |
cα

1 ∧ . . . ∧ cα
k−1) = 1) for k = 1, . . . , m and each state α ∈ Ak. The Lagrange

equation is

L = dL0 +
m∑

k=1

∑
α∈Ak

µα
k (yα

k + yαk

k − 1)+
∑

χ∈KL0

λχχ,

where the µα
k are only dependent on k and cα

1 ∧ . . . ∧ cα
k−1 (i.e., µα

k = µαk

k ). Thus
cross entropy is minimised if

∂L

∂yα
k

= ∂dL0

∂yα
k

+ µα
k +

∑
χ∈KL0

λχ

∂χ

∂yα
k

= 0.

We can cancel the µα
k term with the µαk

k = µα
k term in the equation involving state

αk to get:

∂dL0

∂yα
k

+
∑

χ∈KL0

λχ

∂χ

∂yα
k

= ∂dL0

∂yαk

k

+
∑

χ∈KL0

λχ

∂χ

∂yαk

k

(2)

for each k = 1, . . . , m and α ∈ Ak. Equation (2) together with the constraints χ

determine the values of the parameters yα
k .

Without loss of generality we shall suppose that the variables in L0 are or-
dered so that the variables that occur in KL0 come first in the ordering: L0 =
{c1, . . . , ct , ct+1, . . . , cm} where c1, . . . , ct are the variables that occur in KL0 . By
assumption each constraint χ in KL0 is linear and can then be written

r∑
i=1

aip(θi)− b = 0

⇔
r∑

i=1

ai

∑
α∈At ,α∼θi

p(α)− b = 0

⇔
r∑

i=1

ai

∑
α∈At ,α∼θi

t∏
j=1

yα
j − b = 0.
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Then for k = 1, . . . , t ,

∂χ

∂yα
k

=
∑

β∈At ,β∼α

Aβ

t∏
i=1,i 
=k

y
β

i ,

where the constant Aβ =∑i:β∼θi
ai (= 0 if β 
∼ θi for any i).

Note especially that for k = t + 1, . . . , m,

∂χ

∂yα
k

= 0.

We shall now show that for k = t + 1, . . . , m, yα
k = pα

0k, by induction from
k = m down to k = t + 1.

For k = m Equation (1) reduces to

∂dL0

∂yα
k

=
(

k−1∏
i=1

yα
i

)(
1+ log

yα
k

pα
0k

)

and so Equation (2) reduces to

log
yα

k

pα
0k

= log
yαk

k

pαk

0k

which in turn implies that yα
k = pα

0k or pα
0k = 0. However, if pα

0k = 0 then by
open-mindedness yα

k = 0, so yα
k = pα

0k in either eventuality.
For t < k < m we get a similar reduction. By the induction hypothesis y

β

l = p
β

0l

for l = k + 1, . . . , m, so terms in Equation (1) involving log(y
β

l /p
β

0l) vanish and
again

∂dL0

∂yα
k

=
(

k−1∏
i=1

yα
i

)(
1+ log

yα
k

pα
0k

)
.

Thus Equation (2) implies again that yα
k = pα

0k.
Now suppose we are given any c ∈ B and set S ⊇ A. If c ∈ S then for any state

s of S, p(c | s) = p0(c | s) ∈ {0, 1} by the axioms of probability. If c 
∈ S, order
the variables so that A = {c1, . . . , ct } (as above), S = {c1, . . . , ck−1} and c = ck.
Then the fact that yα

k = pα
0k for each α means that p(c | s) = p0(c | s) for each

state s of S.
Next to prove the conditional independence property. Let E and F be subsets

of L0 such that S = E ∪ F ⊇ A, and suppose that Ip0(c, F | E). This occurs if
and only if p0(c | s) stays constant as state s of S varies over F . We know now that
p(c | s) = p0(c | s) for each such s, and so Ip(c, F | E), as required.

Part 2. Since the constraints in K are linear, K is convex and compact and the
restriction of p to L0 is fixed uniquely by cross entropy minimisation. It will not
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matter here what function this restriction is: this conditional independence property
is a result of the next stage in the process, entropy maximisation. We shall use
Lagrange multipliers to determine the function p which maximises entropy, just as
in Part 1.

Now p is found by maximising

Hcm+1,...,cn|c1,...,cm
(p) =

n∑
k=m+1

Hck |c1,...,ck−1(p)

= −
n∑

k=m+1

∑
α∈Ak

pα

(
k−1∏

i=m+1

yα
i

)
[yα

k log yα
k ]

with respect to parameters yα
k = p(cα

k | cα
1 ∧ . . . ∧ cα

k−1), for each α ∈ Ak, and
where pα = p(cα

1 ∧ . . .∧ cα
m), a constant, fixed by having minimised cross entropy.

Again we have two types of constraint on entropy maximisation: the constraints
χ in K, and the additivity constraints imposed by additivity yα

k + yαk

k = 1 for
k = m+ 1, . . . , n and each state α ∈ Ak. Therefore the Lagrange equation is:

L =
n∑

k=m+1

∑
α∈Ak

(
pα

(
k−1∏

i=m+1

yα
i

)
[yα

k log yα
k ] + µα

k (yα
k + yαk

k − 1)

)

+
∑
χ∈K

λχχ. (3)

(Here we adopt the usual convention that 0 log 0 = 0.)
Recall that we have divided K into KL0 , Km+1, . . . , Kn, where KL0 contains

constraints only involving propositional variables in L0 and Kk contains con-
straints only involving ck and its partners, for k = m + 1, . . . , n. Note that
by assumption, Dk ⊆ L0, and so ck only appears in constraints in Kk, for
k = m + 1, . . . , n. Let α run through the states of {c1, . . . , ck}. By assumption
χ each constraint in Kk is linear and can then be written

r∑
i=1

aip(θi)− b = 0

⇔
r∑

i=1

ai

∑
α∈Ak,α∼θi

p(α)− b = 0

⇔
r∑

i=1

ai

∑
α∈Ak,α∼θi

pα

k∏
j=m+1

yα
j − b = 0

and each constraint χ in KL0 is likewise of the form
r∑

i=1

ai

∑
α∈AL0,α∼θi

pα − b = 0.
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Then for k = m+ 1, . . . , n and χ ∈ Kl where l < k,

∂χ

∂yα
k

= 0.

For χ ∈ Kk,

∂χ

∂yα
k

= Aαpα

k−1∏
i=m+1

yα
i ,

where again the constant Aα = ∑
i:α∼θi

ai (= 0 if α 
∼ θi for any i). Finally for
χ ∈ Kl where l > k,

∂χ

∂yα
k

=
∑

β∈Al ,β∼α

Aβpβ

l∏
i=m+1,i 
=k

y
β

i

= pα

k−1∏
i=m+1

yα
i

∑
β∈Al ,β∼α

Aβ

l∏
i=k+1

y
β

i .

Notice that if β and β ′ agree on the propositional variables which occur in χ ∈ Kl

(and hence if β and β ′ agree on Dl) then Aβ = Aβ ′ .
Thus entropy is maximised if

∂L

∂yα
k

= µα
k + pα

(
k−1∏

i=m+1

yα
i

)

×

1+ log yα

k +
∑
χ∈Kk

λχAα
χ +

n∑
l=k+1

∑
β∈Al ,β∼α


 l∏

j=k+1

y
β

j




×

log y

β

l +
∑
χ∈Kl

λχAβ
χ






= 0.

Since µα
k = µαk

k these terms cancel when we form the equation ∂L/∂yα
k =

∂L/∂yαk

k . Since pα = pαk

and yα
i = yαk

i for k = m+1, . . . , n, i = m+1, . . . , k−1,
we get

log
yα

k

yαk

k

+
∑
χ∈Kk

λχ(Aα
χ − Aαk

χ )

+
n∑

l=k+1

∑
β∈Al ,β∼α


 l∏

j=k+1

y
β

j




log y

β

l +
∑
χ∈Kl

λχAβ
χ



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=
n∑

l=k+1

∑
β∈Al ,β∼α


 l∏

j=k+1

y
βk

j




log y

βk

l +
∑
χ∈Kl

λχAβk

χ


 .

We can now show that the independence relation I (ck, L\(Dk ∪ {ck}) | Dk)

holds by induction on k, from n down to m+ 1.
For k = n the above equation reduces to

log
yα

k

yαk

k

+
∑
χ∈Kk

λχ(Aα
χ − Aαk

χ ) = 0.

By eliminating the Lagrange multipliers we find that

log
yα

k

yαk

k

= log
yα′

k

yα′k
k

for each pair of states α, α′ consistent with the same state of Dk∪{ck}. This implies
that yα

k = yα′
k , the required conditional independence relationship.

For m < k < n we get a similar reduction. By the induction hypothesis y
βk

j =
y

β

j for each j = k + 1, . . . , n, since ck 
∈ Dj . Further, for χ ∈ Kj , j > k, we have

that Aβk

χ = Aβ
χ , since ck does not occur in χ . Then,

n∑
l=k+1

∑
β∈Al ,β∼α


 l∏

j=k+1

y
β

j




log y

β

l +
∑
χ∈Kl

λχAβ
χ




=
n∑

l=k+1

∑
β∈Al ,β∼α


 l∏

j=k+1

y
βk

j




log y

βk

l +
∑
χ∈Kl

λχAβk

χ


 .

Hence, just as in the case k = n,

log
yα

k

yαk

k

+
∑
χ∈Kk

λχ(Aα
χ − Aαk

χ ) = 0,

log
yα

k

yαk

k

= log
yα′

k

yα′k
k

and so yα
k = yα′

k for α, α′ consistent with the same state of Dk ∪ {ck}, as
required. �
Note in particular that if there is only one new variable (n = m+ 1), and the con-
straints in K are linear, then the partners of the new variable must all be in L0, so
the entropic assignment will render the new variable probabilistically independent
of all variables except its partners, conditional on its partners.
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Note also that the set of partners of ck depends on the way that the constraints
in K are formulated. For example, K may consist just of the constraint p(cn) =
p(c0), in which case Dn = {c0}. But the same constraint may be written p(cn∧c1)+
p(cn ∧ ¬c1) = p(c0), in which case Dn = {c0, c1}. The conditional independence
property implies in the first case that I (cn, cj | c0) for j = 1, . . . , n − 1, and in
the second case that I (cn, cj | c0, c1) for j = 2, . . . , n− 1 (assuming that m ≥ 1).
But these conclusions are quite consistent since the latter independence relation
follows from the former by the axioms of probability (Pearl, 1988: §3.1.4).

In Section 15 we shall show how the conditional independence properties enable
us to construct a Bayesian network representation of p. Finally in Section 16 we
shall see that the condition in Theorem 14.1 requiring constraints to be linear is
not, in fact, necessary.

15. Bayesian Network Representation

We have seen how the entropic assignment preserves certain conditional inde-
pendencies in the initial probability function p0, and that it can also render new
variables conditionally independent. Bayesian networks represent probability func-
tions efficiently by exploiting conditional independencies. Thus it seems plausible
that the entropic assignment might allow efficient belief change in the Bayesian
network framework. In this section we shall see that this is so, first through a
series of examples, and then by providing an algorithm for constructing a suitable
Bayesian network representation.

The key to efficient belief change lies in replacing the expensive operations
of minimising cross entropy and maximising entropy over the whole language by
local optimisations. The key advantages of such representations are computational.
Suppose p0 is represented by a Bayesian network, the transitional knowledge K

is linear and compatible with p0, and all partners of new variables are in the old
language. We can then apply the entropic assignment simply by taking the old
network, adding the new nodes, adding arrows to each new node from each of its
partners, and adding new probability specifiers p(ck | Dα

k ), for k = m+ 1, . . . , n,
by maximising entropy locally on Dk ∪ {ck}. If the size of each Dk is small relative
to n then the space taken up by such a representation, the time taken to max-
imise entropy to find the new specifiers, and the time taken to calculate required
probabilities from the new Bayesian network may all be reduced to practical levels.

In our examples, L0 = {c1, c2, c3} and L+ = {c4, c5}. p0 is represented by a
Bayesian network with graph as in Figure 1 and probability specification p0(c1) =
0.2, p0(c2 | c1) = 0.9, p0(c2 | ¬c1) = 0.4, p0(c3 | c1) = 0.8, p0(c3 | ¬c1) = 0.1.

Example 15.1. Suppose the transitional knowledge is of the form K = {p(c4 |
c1) = 0.6}. K is compatible with p0 on L0, so p|L0 = p0 and the Bayesian network
representing p will extend the initial network representing p0. Theorem 14.1.2
implies that Ip(c4, {c2, c3, c5} | c1) and Ip(c5, {c1, c2, c3, c4}). These conditional
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Figure 1. Graph in the Bayesian network representation of p0.
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Figure 2. Graph in the Bayesian network representation of p.

independencies can be used to construct a graph in a Bayesian network represen-
tation of p, as in Figure 2. All that remains is to add the probability specifiers of c4

conditional on c1, and of c5. These are found by maximising entropy locally on the
new nodes. Equation (3) becomes

L =
∑

α∈A{c1,c4}
pαyα

4 log yα
4 + µα

4 (yα
4 + yα4

4 − 1)+ λ(y
c1∧c4
4 − 0.6)

+
∑

α∈A{c5}
pαyα

5 log yα
5 + µα

5 (yα
5 + yα5

5 − 1).

Now y
c1∧c4
4 , y

c1∧¬c4
4 are fully constrained, while the pairs y

¬c1∧c4
4 , y

¬c1∧¬c4
4 and

y
c5
5 , y

¬c5
5 are only constrained by additivity. It is straightforward to see that in such

a situation entropy is maximised when

y
c1∧c4
4 = p(c4 | c1) = 0.6, y

c1∧¬c4
4 = p(¬c4 | c1) = 0.4,

y
¬c1∧c4
4 = p(c4 | ¬c1) = 0.5 = y

¬c1∧¬c4
4 = p(¬c4 | ¬c1),

y
c5
5 = p(c5) = 0.5 = y

¬c5
5 = p(¬c5).

These values complete the probability specification of the Bayesian network, which
now fully determines p.
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Figure 3. Graph in the Bayesian network representation of p.

Example 15.2. Suppose the transitional knowledge is now K = {p(c4 | c1) =
0.6, p(c5 ∧¬c3) = 2p(c5 ∧ c3)}. K is still compatible with p0 on L0, so we again
merely extend the Bayesian network representing p0. Theorem 14.1.2 implies that
Ip(c4, {c2, c3, c5} | c1) and Ip(c5, {c1, c2, c4} | c3). These conditional independen-
cies are represented by Figure 3. To determine the new probability specifiers we
maximise entropy locally on c4, c1 and c5, c3. Equation (3) becomes

L =
∑

α∈A{c1,c4}
pαyα

4 log yα
4 + µα

4 (yα
4 + yα4

4 − 1)+ λ1(y
c1∧c4
4 − 0.6)

+
∑

α∈A{c3,c5}
pαyα

5 log yα
5 + µα

5 (yα
5 + yα5

5 − 1)

+ λ2(p
¬c3∧c5y

¬c3∧c5
5 − 2pc3∧c5y

c3∧c5
5 ).

As above, y
c1∧c4
4 = 0.6, y

c1∧¬c4
4 = 0.4, so we just need to focus on the parameters

yα
5 . We thus have

∂L

∂yα
5

= pα(1+ log yα
5 )+ µα

5 + kλ2,

where

k =



p¬c3∧c5 : α = ¬c3 ∧ c5

−2pc3∧c5 : α = c3 ∧ c5

0: otherwise

Noting that pα = pακ

we eliminate µα
5 = µαk

5 to obtain the solution

y
c3∧c5
5 = 0.66, y

c3∧¬c5
5 = 0.34, y

¬c3∧c5
5 = 0.42, y

¬c3∧¬c5
5 = 0.58.

Example 15.3. Now the transitional knowledge K = {p(c4 | c1) = 0.6, p(c5 ∧
¬c3) = 2p(c5 ∧ c3), p(c1) = 0.7}. This transitional knowledge is no longer
compatible with p0 on L0, and so minimising cross-entropy is non-trivial. Note
however that K4 = {p(c4 | c1) = 0.6} and K5 = {p(c5 ∧ ¬c3) = 2p(c5 ∧ c3)}
are compatible with each function satisfying KL0 = {p(c1) = 0.7}, and so Theo-
rem 14.1.1 applies. Thus we know that Ip(c2, c3 | c1), which ensures that Figure
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3 remains the appropriate structure, and we know that p(c2 | ±c1) = p0(c2 | ±c1)

and p(c3 | ±c1) = p0(c3 | ±c1), and so to determine the Bayesian network repre-
senting p on L0, all we need do is determine the specifier p(c1). This is fixed by
KL0 = {p(c1) = 0.7}. Next we maximise entropy. This is done in the same way as
the last example, except now p(c1) = 0.7 so

y
c3∧c5
5 = 0.23, y

c3∧¬c5
5 = 0.77, y

¬c3∧c5
5 = 0.65, y

¬c3∧¬c5
5 = 0.35.

Example 15.4. In this example the transitional knowledge K = {p(c4 | c1) =
0.6, p(c5 ∧ ¬c3) = 2p(c5 ∧ c3), p(c1 ∧ c2) = 0.4}. Again, the transitional
knowledge is incompatible with p0 on L0, and we have work to do to minimise
cross-entropy. We still have that Ip(c2, c3 | c1), and so Figure 3 represents the con-
ditional independencies that p satisfies on L0. Moreover, Theorem 14.1.1 implies
that p(c3 | ±c1) = p(c3 | ±c1 ∧ ±c2) = p0(c3 | ±c1 ∧ ±c2) = p0(c3 | ±c1). Hence
we need to minimise cross entropy locally on c1 and c2. Writing the constraint
y

c1∧c2
2 y

c1
1 = 0.4, Equation (2) gives us the equations

log
y

c1
1

p
c1
01

+ y
c1∧¬c2
2 log

y
c1∧¬c2
2

p
c1∧¬c2
02

+ y
c1∧c2
2 log

y
c1∧c2
2

p
c1∧c2
02

+ λy
c1∧c2
2

= log
y
¬c1
1

p
¬c1
01

+ y
¬c1∧¬c2
2 log

y
¬c1∧¬c2
2

p
¬c1∧¬c2
02

+ y
¬c1∧c2
2 log

y
¬c1∧c2
2

p
¬c1∧c2
02

,

log
y
¬c1∧¬c2
2

p
¬c1∧¬c2
02

= log
y
¬c1∧c2
2

p
¬c1∧c2
02

,

log
y

c1∧¬c2
2

p
c1∧¬c2
02

= log
y

c1∧c2
2

p
c1∧c2
02

+ λ.

By eliminating λ and using the transitional knowledge constraint and additivity
constraints we see that:

y
¬c1
1 = 0.50 = y

c1
1 ,

y
¬c1∧¬c2
2 = p

¬c1∧¬c2
02 = 0.6, y

¬c1∧c2
2 = p

¬c1∧c2
02 = 0.4,

y
c1∧¬c2
2 = 0.20, y

¬c1∧¬c2
2 = 0.80.

These we add to the probability specification of the Bayesian network over L0. We
then conclude by maximising entropy as in the previous example.

The approach taken in these examples can be generalised as follows.
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The Network Assignment Algorithm:

Input B0 = (G0, S0), a Bayesian network representing p0 over L0; K, the
transitional knowledge. Assume that the conditions of Theorem 14.1 are
satisfied.�

− If K is compatible with p0 over L0, set G = G0, S = S0.
− Else:

• set G = G0,
• add arrows to ensure each pair of variables in KL0 is connected by an

arrow,
• for each variable ck that is in KL0 or an ancestor of a variable in KL0 ,

determine the specifiers corresponding to ck: these are the parameters
yα

k , for states α of ck and its parents, that solve the system of equations
given by the constraints in KL0 , the additivity constraints yα

k + yαk

k = 1,
and the minimum cross entropy constraints as in Equation (2).

• for each other variable, add to S the specifiers of that variable given in
S0.

− For each new variable ck, k = m+ 1, . . . , n,

• add ck as a node in G,
• add an arrow from each partner of ck to ck in G,
• determine the corresponding probability specifiers: these are the para-

meters yα
k , α ∈ A(Dk∪{ck}), which solve the system of equations given

by the constraints in Kk, the additivity constraints yα
k + yαk

k = 1, and the
maximum entropy constraints log yα

k /yαk

k +∑χ∈Kk
λχ (Aα

χ − Aαk

χ ) = 0.

Output B = (G, S), a Bayesian network representing p over L.

THEOREM 15.5. The network assignment algorithm is correct: it determines a
Bayesian network representing p from a network representing p0 and suitable
transitional knowledge.

Proof. Let Anc(X), Des(X), Par(X) and Chi(X) be respectively the ancestors,
descendants, parents and children of variables in X. Let Nid(X) be the set of vari-
ables which are not in the immediate family or descendants of X, i.e., all variables
except for those in X, the parents of variables in X, and the descendants of variables
in X. These relationships will be assumed to be determined by G0, unless indicated
otherwise, and the abbreviations Anck, Desk etc. refer to Anc(ck), Des(ck) etc.. We
shall go through the algorithm step by step.

� We shall see in Section 16 that the assumption of linear constraints may be relaxed.
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If K is compatible with p0 over L0, then p extends p0 (Proposition 11.1), and
so G extends G0 and S extends S0.

Otherwise cross entropy minimisation is non-trivial. Let A be the set of vari-
ables occurring in KL0 . The constraints KL0 on L0 may render all the variables in A

dependent, and so these variables need to be connected in G. All other connections
remain the same for the following reasons. If ck ∈ L0\(A ∪ Anc(A)) we have that
Ip0(ck, Nidk | Park) and A ⊆ Nidk∪Park so by Theorem 14.1.1, Ip(ck, Nidk | Park)

and for each state α of L0, p(cα
k | Parα

k ) = p(cα
k | Nidα

k ∧ Parα
k ) = p0(cα

k |
Nidα

k ∧ Parα
k ) = p0(cα

k | Parα
k ). Thus for those variables not in A or ancestors of

A, the graphical connections and specifiers remain unchanged. To show that the
connections amongst the ancestors of A and those linking the ancestors of A to A

remain unchanged it is enough (see Cowell et al., 1999: theorem 5.14). to show that
for each variable ck ∈ Anc(A) the Markov blanket Mbk = Park ∪Chik ∪Par(Chik)

in G0 continues to screen ck off from the other variables. To this end we have
that Ip0(ck, L0\(Mbk ∪ ck) | Mbk) and A ⊆ L0\ck so by Theorem 14.1.1,
Ip(ck, L0\(Mbk ∪ ck) | Mbk).

The next step is to determine the specifiers corresponding to variables in A and
their ancestors. The specifiers of the other variables in L0 are, as demonstrated
above, the same as those in B0.

We move on to the entropy maximisation phase. We add an arrow to each
new variable ck from its partners because we know by Theorem 14.1.2 that the
partners screen ck off from other variables, and these other variables constitute
its non-descendants. Thus Ip(ck, Nidk | Park). The final step is to determine the
corresponding probability specifiers. �

16. Freedom from Constraints

In this section I shall extend Theorem 14.1 to the case where constraints may be
non-linear. The proof of Theorem 14.1 uses Lagrange multipliers to construct the
probability function determined by the entropic assignment, and is useful in itself
for explicitly showing how cross entropy can be minimised and entropy maximised.
In this section we will pursue a less constructive approach which allows us to focus
on the nature of constraints and how they interact.

The key concept of this section is that of freedom: roughly speaking a set A of
variables is free in K if their probabilities are unconstrained in K. There are in fact
several ways this notion can be explicated, depending on how we interpret “their
probabilities” in the previous sentence. If the marginal probability distribution of A

is unconstrained we say that A is marginally free. If the probabilities that determine
the relationships between variables in A and those in B = L\A are unconstrained,
A is relatively free. If both the distribution of A and A’s relationships with B are
unconstrained, A is jointly free. In each case “unconstrained” in K means that
if we take a probability function p in K and hold fixed the marginal probability
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distribution over B, we can vary other probabilities arbitrarily and still remain
within K.

In what follows the set A is always assumed to be a subset of L, B = L\A, n =
|L|, for α ∈ AA and β ∈ AB concatenations αβ are to be read as conjunctions
α ∧ β (so that the concatenations αβ are the atomic states of L), and elements of
[0, 1]2n

are indexed by the atomic states of L.

DEFINITION 16.1. A ⊆ L is marginally free in K if

− given any p ∈ K and x ∈ [0, 1]2|A| such that
∑

α∈AA xα = 1,
� there exists some q ∈ K such that q(β) = p(β) for each β ∈ AB, and

q(α) = xα for each α ∈ AA.

DEFINITION 16.2. A is relatively free in K if

− given any p ∈ K and x ∈ [0, 1]2n

such that
∑

β xαβ = p(α) and
∑

α xαβ =
p(β) for each α, β,

� there exists some q ∈ K such that q(αβ) = xαβ for each α, β.

DEFINITION 16.3. A is jointly free in K if

− given any p ∈ K and x ∈ [0, 1]2n

such that
∑

α xαβ = p(β) for each β,
� there exists some q ∈ K such that q(αβ) = xαβ for each α, β.

These definitions imply:

PROPOSITION 16.4.

1. A is jointly free in K if and only if it is marginally free in K and relatively free
in K.

2. If A is marginally free in K then K is compatible on A. (The converse is not
true.)

3. If A is jointly free in K and C ⊆ A then C is jointly free in K.
4. If A is jointly (or marginally or relatively) free in K with respect to language

L, then A ∩ L0 is jointly (respectively, marginally or relatively) free in K0

with respect to L0.
5. A is jointly free in K if and only if,

− given any y ∈ [0, 1]2n
such that

∑
α yαβ = 1 (for all β),

� there is some p ∈ K such that p(β) > 0 ⇒ p(α | β) = yαβ (for all
α, β).�

� In Section 10 I took the line that if p(φ) = 0 then p(θ | φ) is unconstrained (rather than
undefined). This can be explicated thus: given p ∈ K, any φ ∈ SL such that p(φ) = 0, any θ ∈ SL,
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One generalisation of the concept of relative freedom will be important in what
follows.

DEFINITION 16.5. Subsets A1, . . . , Ak of L are relatively free in K if (setting
A =⋃k

i=1 Ai)

− given any p ∈ K and x ∈ [0, 1]2|A| such that for all i = 1, . . . , k and αi ∈
AAi,

∑
α∼αi

xα = p(αi),
� there exists some q ∈ K such that q(α) = xα for all α.

This definition gives:

PROPOSITION 16.6.

1. A is relatively free in K (according to Definition 16.2) iff A and L\A are
relatively free in K (according to Definition 16.5).

2. Suppose A1, . . . , Ak are relatively free in K with respect to L, and are pair-
wise disjoint in L+.� Let Bi = Ai ∩ L0, for i = 1, . . . , k. Then B1, . . . , Bk

are relatively free in K0 with respect to L0.

Now suppose each constraint χ is of the form f (p(α1), . . . , p(α2l )) = 0, where
the α1, . . . , α2l are the atomic states of set A = {ci1 , . . . , cil }. Thus χ is a constraint
on the marginal distribution of A.

PROPOSITION 16.7. Suppose χ1, . . . , χk are all the constraints on K, and these
constrain sets A1, . . . , Ak respectively. Then

1. A1, . . . , Ak are relatively free in K, and
2. B = L\⋃k

i=1 Ai is jointly free in K.

Proof. Part 1. We are given p ∈ K and x ∈ [0, 1]2|A| such that for all i =
1, . . . , k and αi ∈ AAi,

∑
α∼αi

xα = p(αi).
Now p ∈ K if and only if for each constraint (i.e., for i = 1, . . . , k),

fi(p(αi,1), . . . , p(αi,2li )) = 0.
Take any probability function q on L such that for all α ∈ AA, q(α) = xα . We

are ensured that q(αi,j ) = p(αi,j ) for each constraint (i = 1, . . . , k) and atom of
the set that it constrains (j = 1, . . . , 2li ).

Consequently fi(q(αi,1), . . . , q(αi,2li )) = 0 for i = 1, . . . , k, and q ∈ K.

and any x ∈ [0, 1] there is some q ∈ K such that q(θ | φ) = x yet q = p everywhere else. In the
light of this condition, we do not need the qualification that p(β) > 0 in part 5 of this proposition,
for ∃p ∈ K, ∀α∀β, p(β) > 0 ⇒ p(α | β) = yαβ if and only if ∃q ∈ K,∀α∀β, q(α | β) = yαβ .

� This disjointness condition is not, in fact, necessary. However, we do not need the more general
result here, and the disjointness condition renders the proof straightforward.
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Part 2. Since χ1, . . . , χk are all the constraints on K, none of the variables in B

are constrained at all. Any probability function q which agrees with given p ∈ K

on A =⋃k
i=1 Ai will satisfy all the constraints and so will be in K. �

It is not hard to see that, if there are no constraints in operation, cross entropy
distance from p is minimised by p itself, and if p maximises entropy then it renders
all variables probabilistically independent. We can generalise this: if constraints are
in operation, cross entropy distance is minimised by a function that agrees with p as
much as possible, and if p maximises entropy then it satisfies as many conditional
independencies as the constraints allow. The following lemma makes these notions
precise.

LEMMA 16.8.

1. Suppose we are given two probability functions p, q defined over the same
finite domain L = A ∪ B, where A and B are disjoint. Define the probability
function r over L by r(αβ) = p(β | α)q(α) (for all α ∈ AA, β ∈ AB). Then
dL(r, p) ≤ dL(q, p) (with equality if r = q).

2. Suppose p is defined over L = A ∪ B ∪ C, where A, B and C are disjoint.
Define q over L by q(αβγ ) = p(γ | α)p(αβ) (for all α ∈ AA, β ∈ AB, γ ∈
AC). Then HL(q) ≥ HL(p) with equality iff Ip(B, C | A).

Proof. Part 1.

dL(q, p) =
∑
α,β

q(αβ) log
q(αβ)

p(αβ)

=
∑
α,β

q(β | α)q(α) log
q(β | α)q(α)

p(β | α)p(α)

=
∑
α,β

q(β | α)q(α)

[
log

q(β | α)

p(β | α)
+ log

q(α)

p(α)

]

=
∑
α,β

q(β | α)q(α) log
q(β | α)

p(β | α)
+
∑

α

q(α) log
q(α)

p(α)
.

Likewise,

dL(r, p) =
∑
α,β

p(β | α)q(α) log
p(β | α)

p(β | α)
+
∑

α

q(α) log
q(α)

p(α)

=
∑

α

q(α) log
q(α)

p(α)
.
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This is no greater than dL(q, p), and is smaller unless q(β | α) = p(β | α) for
each α, β, or p(α) = 0 
= q(α) for some α.�

Part 2.

HL(q)−HL(p) = −
∑
αβ

p(αβ) log p(αβ)−
∑
α,β,γ

p(γ | α)p(αβ) log p(γ | α)

+
∑
αβ

p(αβ) log p(αβ)

+
∑
α,β,γ

p(γ | αβ)p(αβ) log p(γ | αβ)

=
∑
α,β,γ

p(γ | αβ)p(αβ) log p(γ | αβ)

−
∑
α,γ

p(γ | α)p(α) log p(γ | α)

=
∑
α,β,γ

p(γ | αβ)p(αβ) log p(γ | αβ)

−
∑
α,γ


∑

β

p(γ | αβ)p(β | α)


p(α) log p(γ | α)

=
∑
α,β,γ

p(γ | αβ)p(αβ) log
p(γ | αβ)

p(γ | α)

=
∑
α,β,γ

p(αβγ ) log
p(αβγ )

p(γ | α)p(αβ)

= dL(p, q) ≥ 0

with equality ⇔ p = q ⇔ p(γ | αβ) = p(γ | α) for all α, β, γ ⇔ Ip(B, C | A),
as required. �

THEOREM 16.9. Suppose

− χ1, . . . , χk are all the constraints on K, and these constrain the sets
A1, . . . , Ak respectively. Let A = ⋃k

i=1 Ai and B = L\A, and for any set
X ⊆ L let X0 = X ∩L0 and X+ = X ∩L+.

� This second possibility can be ignored if the open-mindedness condition is adopted – see
Section 10.
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− The constraint sets A1, . . . , Ak do not intersect in L+,� and
− p is determined by the entropic assignment ρe.
� Then

1. p(β | α) = p0(β | α) for each α ∈ AA0, β ∈ AB0.
2. Ip(Ai+, L\Ai | Ai0) for i = 1, . . . , k.

Proof. Part 1. A1, . . . , Ak are relatively free in K with respect to L (Propo-
sition 16.7.1). Therefore A10, . . . , Ak0 are relatively free in K0 with respect
to L0 (Proposition 16.6.2), and B is jointly free in K0 with respect to L0

(Proposition 16.7.2).
Now by Proposition 16.4.5 and its footnote, there is a q ∈ K0 such that q(β |

α) = p0(β | α) for all α ∈ AA0, β ∈ AB0, and so by Lemma 16.8.1 any function
in K0 that minimises cross entropy must have this property. Since functions in
K0 are just restrictions of functions in K, any function in K that minimises cross
entropy must have this property, and so must p.

Part 2. The strategy is similar here. We need to show that there is a q ∈ K such
that Iq(Ai+, L\Ai | Ai0) for i = 1, . . . , k. Then it follows by Lemma 16.8.2 that
any function that maximises entropy must have this property, and so p must have
the property.

Take an arbitrary r ∈ K and define x ∈ [0, 1]2|A| by setting xα =
r(Aα

0 )
∏k

i=1 r(Aα
i+ | Aα

i0) for each α ∈ AA. (If Aα
i+ = ∅ then we take r(Aα

i+ |
Aα

i0) = 1.) Now for αj ∈ AAj ,

∑
α∼αj

xα =
∑
α∼αj

r(Aα
0 )

k∏
i=1

r(Aα
i+ | Aα

i0)

=
∑
α∼αj

r(Aα
0 )r(Aα

j+ | Aα
j0)

= r(A
αj

j0
)r(A

αj

j+ | A
αj

j0)

= r(A
αj

j )

= r(αj ).

(Note that the second equality above requires the condition that the Ai+ be disjoint.)
Since A1, . . . , Ak are relatively free (Proposition 16.7.1) there is a q ∈ K such

that q(α) = xα for all α ∈ AA. By construction we have that Iq(Ai+, L\Ai | Ai0),
as required. �

� This corresponds to the condition of Theorem 14.1 that all partners of the new variables are
in L0. Without loss of generality we assume here that each c ∈ L+ occurs in no more than one
constraint, since we can combine constraints in which c occurs to ensure that this is so.
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Theorem 14.1 is a straightforward consequence of the above result. Thus Theo-
rem 16.9 generalises Theorem 14.1 to handle non-linear constraints.

17. Conclusion

We have seen how Bayesianism can begin to tackle the problem of language
change. The first step is to escape from the blinkers of language invariance ar-
guments: degrees of belief must change as language changes, but they need only
change conservatively. Then one can give a practical procedure for changing
degrees of belief. The procedure developed here – the entropic assignment –
generalises Bayesian conditionalisation to determine an agent’s new probability
function given her old function, her new knowledge, and her new language. Not all
Bayesians will be comfortable with routine use of strong constraints like the max-
imum entropy principle, but those who are will no doubt welcome the possibility
of efficient updating by using Bayesian networks.

By addressing the problem of language change we open a whole can of worms.
How can transitional knowledge be made explicit and quantified? How does the
entropic assignment compare with other possible rational assignments that one
might put forward? Can one further relax the conditions under which the Bayesian
network representation is applicable? How do we generalise to more realistic
languages? If we dissect these worms then the pieces will no doubt grow into
new worms, but Bayesianism will be rendered more applicable and more widely
testable.
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