JON WILLIAMSON

PROBABILITY LOGIC

Practical reasoning requires decision-making in the face of uncertainty.
Xenelda has just left to go to work when she hears a burglar alarm. She
doesn’t know whether it is hers but remembers that she left a window
slightly open. Should she be worried? Her house may not be being burgled,
since the wind or a power cut may have set the burglar alarm off, and even
if it isn’t her alarm sounding she might conceivably be being burgled. Thus
Xenelda can not be certain that her house is being burgled, and the decision
that she takes must be based on her degree of certainty, together with the
possible outcomes of that decision.

If Xenelda, or X for short, uses classical logic to make a decision, she will
not get very far. Classical logic has no explicit mechanism for representing
the degree of certainty of premises in an argument, nor the degree of cer-
tainty in a conclusion, given those premises. X must look for a logic that
can represent uncertainty.

Here we will look to probability as a representation of uncertainty, and
see how a logic of practical reasoning might involve probability, in order
to help agents like X. The plan is this: first we shall recall the standard
definition of probability, and the standard interpretations of this formal
definition. Next we shall look at attempts to incorporate probability into a
logic, and go on to investigate a practical question, namely inference.

1 PROBABILITY AND ITS INTERPRETATIONS

Probability has a rather technical mathematical characterisation. Given
an arbitrary non-empty space 2 and a o-field F of subsets of  (that is,
a nonempty class of subsets of Q closed under complement and countable
unions), p : F — R is a probability measure if (for all a,b,a,as,... € F)

M1: 0 <p(a) <1;
M2: p(#) =0 and p(Q) = 1;
M3: if a1, as, ... are disjoint then p(J;2; a;) = >, pla;).

A new function, conditional probability is induced by probability according
to the following definition:

MC: if p(a) > 0 then p(bla) = p(a N b)/p(a).

For example, let B stand for burglary and B’ for no burglary. Suppose
Q= {B,B'}, and F = {0,{B},{B'},{B,B'}}. Then the axioms require
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that p({B}) + p({B'}) = 1 and the definition of conditional probability
ensures that p({B}|{B'}) = 0.

This gives a formal definition of probability,! but it doesn’t tell us what
probability means. Probability has a number of standard interpretations,
and we shall take a brief look at these now.? As a starting point the elements
of the domain of a probability measure are usually called events. Just what
the events are depends somewhat on the interpretation of probability.

1.1 Subjective degrees of belief

Ramsey® and de Finetti* interpreted probability as degree of rational be-
lief. According to this interpretation an agent, X for example, has a belief
function p% at time 7 over the domain of events, which are single-case (that
is, unrepeatable). X’s house being burgled that morning would qualify as
such an event. Thus for a € F, p% (a) measures X’s degree of belief at 7 in
the occurrence of event a. In our example, p% ({B}) represents X’s degree
of belief at time 7 that a burglary has taken place that morning. One can
determine X'’s degrees of belief by analysing how she is prepared to bet:

e p%(a) = z if and only if at time 7, X is willing to bet zA® on event a
occurring, with return A© if a does occur, where A© is an unknown
stake (either monetary or in terms of some measure of utility) which
may depend on p%(a), ® € R>¢ being the magnitude and A = £1 the
direction of the stake; and

e p%(bla) =z iff at 7, she is prepared to bet £A® on b occurring, with
return AO if both a and b occur but with the bet being called off if a
fails to occur.

X's belief function p% is deemed to be coherent if no stake-maker can choose
stakes which make X lose money whatever happens. By the Dutch book
argument,® p% is coherent if and only if it is a probability measure. Thus
probability measures are coherent belief functions. This gives a subjective
interpretation of probability in the sense that probabilities are associated
with a subject’s state of knowledge or belief, as opposed to attaching directly
to the physical world as stipulated by objective interpretations.

The notion of coherence can be used to argue for further rational con-
straints on X'’s belief function. For example one can apply a diachronic

! [Kolmogorov, 1933] was a key pioneer behind the mathematical theory of probability
— see [von Plato, 1994] for further historical details and [Billingsley, 1979] for a good
exposition of the modern theory.

2See [Howson, 1995] for a more detailed survey.

3[Ramsey, 1926].

4[de Finetti, 1937].

5[Ramsey, 1926] and [de Finetti, 1937]. See also [Williamson, 1999] regarding the
axiom of countable additivity [M3].
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Dutch book argument to show that if p% (a) > 0 and between times 7 and
74+ 1 X comes to learn only of the occurrence of event a, then her belief
function should change via Bayesian conditionalisation:

o px ' (b) = pk (b]a).
Thus one can bolster the subjective theory by adding further rationality
requirements — although proponents of the subjective interpretation often
disagree as to which extra principles should be adopted.®

Another point of disagreement boils down to attitudes toward other in-
terpretations of probability. Strict subjectivists like de Finetti argue that
subjectivism is the only viable interpretation of probability, while others
are tolerant of, or argue in favour of, one or more of the following objective
interpretations.

1.2 Objective frequencies

Von Mises was the first to work through the idea that probabilities are mea-
sures of frequency.” According to this interpretation an event a in F can be
repeatably instantiated, a burglary rather than X’s burglary that morning,
and the frequency of a may be defined as its limiting relative frequency in
a collective. This collective is a denumerable sequence of mutually exclu-
sive and exhaustive elements of F. In our example a collective may look
like ({B'},{B},{B'},{B},{B'},{B'},{B'},...) and may be obtained from
examining X'’s house each time its alarm sounds to see if it was burgled.
Von Mises invoked two empirical laws, the first of which claimed that for
any naturally occurring collective, the relative frequency of an event a in
the first n places of the collective tends to a limit, the frequency of a, as n
increases. Thus in the above collective the relative frequency of {B} pro-
gresses 0, %, %, %, %, %, %, ... and is assumed to converge to a fixed limit. The
second empirical law claims that this frequency is constant over all subse-
quences selected by recursive place selections from the collective — so for
example if we form a new collective by taking all the even places of the
original collective, the limiting frequency in the new collective is the same
as that in the original collective.® From these empirical laws von Mises’ de-
duced that frequency obeys the axioms of finitely additive probability, that
is, the above axioms with [M35] replaced by finite additivity, which is the
special case in which finitely many attributes are considered.®*

Popper noted that there are intuitive difficulties concerned with the col-
lective of outcomes of rolls of a biased die interspersed with one or two rolls

6Those who advocate Bayesian conditionalisation usually call themselves ‘Bayesians’.

7[von Mises, 1928].

8See [von Mises, 1964] for the details.

9Note however that von Mises later included countable additivity as an extra stipula-
tion.
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of a fair die. While it makes sense to say that the frequency of a 5 is i
for such a collective, intuitively the frequency changes according to which
die is rolled.!® Thus von Mises’ theory is often amended to a propensity
theory.!! This states that it is reasonable only to consider collectives gener-
ated by a repeatable experiment, such as rolling a particular die, and that
once this move is made, the frequency of an event is dependent only on
the generating experiment. In other words the frequency is constant over
all collectives generated by the same repeatable experiment. This might be
given the status of an empirical law, or, as with Popper, such a concept of
probability may be taken as a scientific primitive.

Another version of the frequency theory takes issue with the law that
says the relative frequency in a collective converges to a fixed limit. One
can argue that one should only assume that relative frequency converges in
probability to the limit, which means that for a small proportion of collectives
(a set of measure 0) there will be no convergence.'?> Another frequency
theory, actual frequency, takes issue with the demand that collectives be
infinite, which usually fails for outcomes of real experiments, and defines
frequency to be the relative frequency in the actual (often finite) sequence
of outcomes.'?

1.8 Objective chances

We obtain quite a different objective notion of probability if we demand
that events in the domain of a probability measure are single-case (as they
were in the subjective theory) as opposed to the repeatable events of the
frequency theory. We can merely hypothesise that the mathematical theory
has such an objective physical interpretation, and find ways to test this
assertion in order to confirm or refute it. Thus while many versions of the
last two interpretations offer an explicit definition of probability in terms of
observable beliefs and frequencies respectively, this theory implicitly defines
objective single-case probabilities, or chances, and requires some form of
prediction method to test the definition.'* There are two standard ways
of drawing predictions from chances. One can claim that chances give rise
to certain frequencies as experiments are repeated, and then test to see

10[popper, 1983] pp. 352-356.

11See for example [Popper, 1972]. The idea behind propensity theories, like that behind
frequency theories, goes back a long way — see [Peirce, 1910] paragraph 664.

12The mathematical theory of probability only implies convergence according to the
laws of large numbers, and consequently one can only account for the phenomenon of
frequency from within the mathematical theory if one assumes the weaker notion of
convergence in probability. See [Kolmogorov, 1933], [Neapolitan, 1992].

133ee [Williamson, 1999b)].

4 Note that Popper’s formulation of the propensity theory, while not a single-case
theory, made use of this type of implicit definition of probability rather than von Mises’
operationalist definition involving empirical laws.
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whether those frequencies are obtained. Thus if the chance of X’s house
being burgled this morning, given that her alarm is sounding, is %, then one
can claim that if we form a collective by checking for burglary each time
X’s alarm sounds, the frequency of burglary will be % in this collective.
Alternatively one can claim that the chance at time 7 of an event is the
degree to which an agent should believe at 7 that it will occur, were she to
have at 7 all the relevant information pertaining to the occurrence of the
event. We might then test this claim by seeing if the agent can be made to
lose money by betting according to chances. Thus in our example X should
believe that her house is being burgled, given that her alarm is sounding
and other relevant information, to degree .15

Having sketched the concept of probability and its interpretations, we
shall move on to the relationship between probability and logic, which is the
central theme of this chapter. In the next section we will look at attempts
to integrate probability and logic. Later we shall investigate the important
practical problems to do with probabilistic representation and inference.

2 PROBABILITY AS LOGIC

The starting point for most theories that integrate probability and logic is
to attach probability to logical statements rather than events. The moti-
vation here is that logic operates on statements and so it would be natural
if a probabilistic logic for practical reasoning were to do the same. A sec-
ond motivation is that when we look at the application of the mathemati-
cal theory of probability, we see that probabilities are usually posited of a
random variable taking a certain value. Such expressions are more natu-
rally thought of as statements of the form X = z than events of the form
{we: X(w)=a}.16

Unfortunately, confusion is often the upshot of the move from events to
sentences. The problem is that the literature contains a plethora of new
axiomatisations of probability on sentences, few of which bear a clear re-
semblance the mathematical formulation of probability.!” One can however
make the link between probability on sentences and the mathematical the-
ory more perspicuous, as follows.

15See [Mellor, 1971] and [Lewis, 1980] for detailed defences of the chance approach.

16[Scott and Kraus, 1966], p. 219.

L7Thus it requires significant effort to work out how the new notions of probability relate
to the mathematical notion — see [Roeper and Leblanc, 1999] for a glimpse of what is
required. One reason for the abundance of axiomatisations is that probability theory is
often used to give a new semantics for logic, whereby a statement is logically true if given
probability 1 by all probability functions, in which case axiomatisations of probability
must be autonomous, in that they must not themselves involve logical notions. [Popper,
1934] appendix *iv and [Field, 1977] provide examples of such axiomatisations and this
approach. However, our task is to investigate probability as an extension rather than a
replacement of logic, so we need not enter into the intricacies of these axiomatisations.
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Consider a propositional language £ involving a countable set of propo-
sitional variables {c1,ca,...}. Sentences S>®L are formed by applying the
usual connectives =, V, A, =, ¢+ and allowing denumerable disjunctions and
conjunctions \/, A\ (such sentences are known as infinitary).'®* The usual
semantics (including logical truth, logical implication |= and logical equiv-
alence =) is available if we consider the (uncountable) infinity of truth func-
tions. Then p : S®L — R is a probability measureif (for all 0, ¢, 01,05, ... €
S>®L)

L1 0<p(f) <1
L2: p(@ A—6) =0 and p(6 V —0) = 1;
L3: if 6,65, ... are mutually exclusive'? then p(\/;2, 6;) = > .o, p(6:);
and conditional probability is defined by:

LC: if p(6) > 0 then p(¢|0) = p(8 A ¢)/p(H).

Note that one consequence of the axioms is that if two sentences are logically
equivalent, § = ¢, then they have the same probability.

The clear connection between the mathematical and the logical axioms of
probability is due to the formal fact that the Lindenbaum algebra S®L/ =
is a g-algebra which is isomorphic to a o-field F of subsets of the space
of truth functions. Thus each sentence 6 corresponds to an element a of F
and under this mapping the logical axioms on S*°L are equivalent to the
mathematical axioms on F.

This works according to the following construction. The space 2 of truth
functions is just the space of binary sequences. A truth function w is of the
form (t1(w),t2(w),...) where t;(w) € {T,F},i =1,2,..., signifies the truth
value of ¢;. A eylinder of rank n is of the form a = {w : (t; (w), ..., tn(w)) €
H}, where H C {T, F}". The set of cylinders of all ranks is a field,?° and
we shall consider the o-field F generated by this field. Now to each sentence
f in S L there corresponds an element of F which contains just the truth
functions that satisfy #. This can be shown inductively. If # is propositional
variable c,,, take H as {T, F}" ! x {T'} and then the corresponding cylinder
of rank n contains just the truth functions that satisfy 6. If 6 is -¢ and
a € F contains the satisfiers of ¢, then the complement of a, a’, which is also
in F, will contain the satisfiers of . The union of the satisfiers of § and ¢
will be the satisfiers of # V ¢, and a countable union is required for \/3°, ;.
Other connectives can be reduced to these. The converse is also true: to
each a € F there is a § € S L which is satisfied by just the truth functions
in a. If a is a cylinder with places i1, ..., fixed to T" and places ji,.-.,J

185ee [Karp, 1964].
191n the sense that = —(6; A 0;) for all 4 and j.
20[Billingsley, 1979], p. 27.
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fixed to F, then ¢;; A ... Acy A—cj, A...A —cj is the required sentence,
and a countable union of cylinders requires a countable disjunction of such
sentences. Now 6 and ¢ both correspond to the same a € F iff they are
satisfied by the same set of truth functions, i.e. # = ¢. Thus we have a
bijection between S*°L/ = and F.

Such an infinitary propositional system is a useful formalism because it
clarifies the link between probability on sentences and probability on events.
However, many are cautious about using infinitary systems, either because
they find the concept of infinitary sentences counterintuitive or for technical
reasons — for example only a weak version of the completeness theorem
can be proved. Interestingly, if we restrict attention to a finitary language
and define probability accordingly then no probabilistic information is lost,
in the sense that there are no more probability measures on an infinitary
language than on the finitary language which it extends. Let S£ denote
the finitary sentences (involving the same countable set of propositional
variables £, but no countable disjunctions or conjunctions). Let p: SL —
R be a (finitary) probability measure if (for all 6, ¢ € SL)

F1: 0<p(f) <1;

F2: p(8 A—6) = 0 and p(f vV —6) = 1;

F3: if § and ¢ are mutually exclusive then p(6 V ¢) = p(6) + p(¢).
Define conditional (finitary) probability by:

FC: if p(6) > 0 then p(]6) = p(6 A 6)/p(6).

Then a finitary probability measure on SL determines a unique probability
measure on the infinitary extension S*L.

The reasoning behind this fact is as follows. SL£/ = is isomorphic to
the field of cylinders of truth functions considered above. A finitary prob-
ability measure on SL then induces a finitely-additive probability measure
on the field of cylinders. But any such measure on the field of cylinders
must be countably additive,?! and can therefore be uniquely extended to a
(countably additive) probability measure on the generated o-field F.?? By
the isomorphism between F and S L/ = this corresponds to a probability
measure in the infinitary system.

One could of course define probability over first-order predicate sentences.
But if we define existential and universal quantification in terms of denumer-
able disjunction and conjunction respectively, and the first-order language
has countably many atomic sentences, then for the purposes of defining
probability the first-order language can be thought of as an infinitary propo-
sitional language over the atomic sentences. Thus in this situation the extra

21[Billingsley, 1979] theorem 2.3.
22[Billingsley, 1979] theorem 3.1.
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expressive power of the predicate calculus is linguistic rather than proba-
bilistic. Coupling this reduction with the reduction to a finitary propo-
sitional language, we can uniquely extend a finitary probability measure
over the finitary propositional language to a probability measure over the
first-order language.?3

In sum, an infinitary propositional system is a useful formalism, not only
because of the link with the mathematical definition of probability, but also
because it acts as a good half-way house between more familiar finitary
propositional systems and first-order predicate systems.

2.1 Partial entailment

Having seen how probability can be defined on sentences, we are now in
a position to examine the concept of a probability logic which generalises
or modifies classical logic. Such a system can be classified according to
its interpretation of the logical implication operator |=. Perhaps the most
obvious thing to try first is a generalisation of entailment |= to partial
entailment |=,, where a set © of sentences partially entails sentence ¢ to
degree z, © =, ¢, if and only if p(¢| A ©) = z. Under such a view classical
entailment is the case where x = 1. If O is empty we get a concept of
degree of logical truth or degree of truth which corresponds to unconditional
probability. There have been some well-known proponents of this kind of
view, as we shall see now. In the following subsection we will examine the
viability of the partial entailment approach.

One may be able to attribute the germs of such a logical approach to
probability to some of the pioneers of probability — for example Boole
permitted probabilities defined on propositions, although his logical foun-
dations of probability really amounted to a mathematical calculus of prob-
ability derived logically, rather than a generalisation of logic.?* However
it wasn’t until the developments and interest in formal logic at the end of
the 19*" and beginning of the 20" centuries that the view of probability as
logic began in earnest.

Frege, Peano and Russell’s contributions to formal logic motivated
Lukasiewicz’ innovative theory.?® Instead of defining probability over sen-
tences as we do above, Lukasiewicz defines probability over indefinite propo-
sitions, formulae which contain free variables. An indefinite proposition is
true or false if true or false respectively for all substitutions. Further, ‘By the
truth value of an indefinite proposition I mean the ratio between the number
of values of the variables for which the proposition yields true judgements

23Gee [Gaifman, 1964], [Scott and Kraus, 1966], [Paris, 1994] chapter 11, or [Roeper
and Leblanc, 1999] chapter 5 for further details concerning such reductions.

248ee [Boole, 1854], [Boole, 1854b], [Boole, 1854c].

25[L ukasiewicz, 1913].
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and the total number of values of the variables’.?® Relative truth value is
defined as conditional probability. Thus partial truth and partial entailment
are given a specific interpretation.

Lukasiewicz rejects probability over events as being too restrictive in
that it represents only the single-case. He distinguishes subjective and ob-
jective probability, but finds both interpretations unsatisfactory, subjective
probability because it is too psychologistic, too subjective, and beliefs are
unmeasurable (this was before the betting set-up had been introduced),
and objective probability because determinism renders it redundant (this
was before quantum mechanics) and because the principle of the excluded
middle states that a proposition is objectively true or false at every time,
precluding objective partial truth. Instead Lukasiewicz’ interpretation is
intended to be a coherent explication of Laplace’s notoriously problematic
principle of indifference, which defines a probability to be the ratio of the
number of cases favourable to an event to the total number of possible cases,
if we are indifferent as to which case will occur.?” As he says,

The interpretation of the essence of probability presented here
might be called the logical theory of probability. According to
this viewpoint, probability is only a property of propositions, i.e.,
of logical entities, and its explanation requires neither psychic
processes nor the assumption of objective possibility. Probabil-
ity, as a purely logical concept, is a creative construction of the
human mind, an instrument invented for the purpose of master-
ing those facts which cannot be interpreted by universally true
judgements (laws of nature).?8

Keynes was another key player in the partial entailment tradition. He
argued that probability generalises logic, measuring the degree to which an
argument is conclusive. However he also allowed a subjective interpretation
to his logical view of probability. In effect he proposed a probabilistic logic
of rational belief.2? Jeffreys too thought of probability as a generalisation
of deductive logic, expressing support for an inference, given data.® In this
respect his probability theory was a formalisation of inductive logic.3!

Hempel closely studied this inductive relationship between evidence and
hypothesis, deriving a qualitative logic of confirmation with a well-defined
syntax and semantics: ‘Confirmation as here conceived is a logical relation-
ship between sentences, just as logical consequence is’.3? Carnap rendered

26[f,ukasiewicz, 1913] pg. 17.
27[Laplace, 1814].
28[FLukasiewicz, 1913] pg. 38.
29Gee [Keynes, 1921] section 1.1.
30[Jeffreys, 1931] section 2.0.
31[Jeffreys, 1939] section 1.2.
32[Hempel, 1945] pg. 24.
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Hempel’s theory quantitative by bringing probability into the logic. For
Carnap probability was degree of confirmation. This was not cached out in
terms of frequency (which he thought to be a valuable concept but quite
different) or subjective degrees of belief (which he argued are too psycholo-
gistic), but given a distinct logical interpretation. The issue of confirmation
is ‘a logical question because, once a hypothesis is formulated by h and
any possible evidence by e ..., the problem whether and how much A is
confirmed by e is to be answered by a logical analysis of h and e and their
relations. This question is not a question of facts in the sense that factual

knowledge is required to find the answer’.??

Jaynes explicitly adopted a Keynesian position, arguing in favour of a log-
ical partial entailment approach together with a subjective interpretation.>*
According to Jaynes’ own theory, background knowledge imparts a fixed de-
gree of plausibility (formally a conditional probability) to a proposition, and
it is through principles like the principle of indifference, Laplace’s rule of suc-
cession, the maximum entropy principle and symmetry constraints that we
can identify the correct probability. The maximum entropy principle, for ex-
ample, says that one should assign probabilities over the sentences of a finite
language {ci,...,cn} in such a way that the entropy (-3 p(a)log p(a),
where the o range over the atomic states +¢; A...A+cy, where +¢; is ¢; and
—¢; is —¢;) is maximised subject to any constraints imposed by background
knowledge.3?

2.2  Uniqueness

In this section we shall see that the partial entailment view of probability
logic is not an easy one to maintain. In the next section we will discuss an
alternative approach.

There are inconclusive objections specific to particular approaches. Lan-
guage dependence is a trap for theories which rely on the principle of in-
difference, although its generalisation, the maximum entropy principle does
not appear to be subject to these problems.?¢ Theories that allow a sub-
jective degree of rational belief interpretation to probability as defined over
sentences suffer from the problem of logical omniscience. Here an agent is
assumed to give the same degree of belief to logically equivalent sentences,
even though the equivalence may not be known — the agent must some-
how know all logical facts in order to be rational, which is rather a tall
order, especially considering the fact that many difficult unsolved problems

33[Carnap, 1950] p. 20.

34[Jaynes, 1998] chapter 1.

35Gee [Paris, 1994] for justifications of the maximum entropy principle and an idea of
the logical issues that surround the Keynes-Jaynes type of position.

36See [Paris, 1994], [Paris and Vencovské, 1997], [Paris, 1999].



PROBABILITY LOGIC 407

in mathematics are questions of logical implication or equivalence.?” On the
other hand it is possible to represent uncertainty about logical implication
even if we do adopt a subjective interpretation, as we shall see in the final
section.

However, there is also an important general problem. The partial entail-
ment approach requires that the degree x of confirmation that the set © of
sentences gives to sentence ¢, be a logical fact, dependent only on © and
¢. Given the probabilistic interpretation of =, as conditional probability,
and letting ©® and ¢ vary, this means that there is some unique, distin-
guished probability function p* which determines degree of confirmation,
O E. ¢ < p*(6|0©) = z. However, there are good reasons to doubt whether
such a function p* can be uniquely determined.

Lukasiewicz recognised the uniqueness requirement: ‘Although probabil-
ity does not exist objectively, the probability calculus is not a science of sub-
jective processes and has a thoroughly objective nature. Hence the essence
of probability must be sought not in a relationship between propositions
and psychic states, but in a relationship between propositions and objective
facts.”®® Keynes considered the degree of belief interpretation unnecessary
in as much as uniqueness leaves no room for subjectivity.?® Jeffreys was of a
similar opinion: the degree of belief interpretation is an optional extra. As
he says, ‘If we like there is no harm in saying that a probability expresses a
degree of reasonable belief.”*® Carnap also realised that if rational degree of
belief is uniquely determined then the subjective element is gratuitous and
can be omitted.*' He puts it thus:

The characterisation of logic in terms of correct or rational or
justified belief is just as right but not more enlightening than
to say mineralogy tells us how to think correctly about miner-
als. The reference to thinking may just as well be dropped in
both cases. Then we say simply: mineralogy makes statements
about minerals, and logic makes statements about logical rela-
tions. The activity in any field of knowledge involves, of course,
thinking. But this does not mean that thinking belongs to the
subject matter of all fields. It belongs to the subject matter of
psychology but not to that of logic any more than to that of
mineralogy.*?

Jaynes on the other hand was a strict subjectivist and he thought that it
is wrong to think of subjective entities as objective features of the physical

37See [Williamson, 1999¢].
38[Lukasiewicz, 1913] p. 37.
39[Keynes, 1921] section 1.2.
40[Jeffreys, 1931] p. 22.
41[Carnap, 1950] section 2.11.
42[Carnap, 1950] pp. 41-42.
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world, even if they do not vary from individual to individual.**> However he
did recognise that the uniqueness requirement precludes room for subjective
disagreement (note that Jaynes’ rational agent X is a robot):

When we apply probability theory as the normative extension
of logic, our concern is not with the personal probabilities that
different people might happen to have; but with the probabilities
that they “ought to” have, in view of their information .. ..

In other words, at the beginning of a problem our concern is not
with anybody’s personal opinions, but with specifying the prior
information on which our robot’s opinions are to be based, in
the context of the current problem. The principles for assigning
prior probabilities consistently by logical analysis of that prior
information are for us an essential part of probability theory.**

And,

Surely the most elementary requirement of consistency demands
that two persons with the same relevant prior information should
assign the same prior probabilities.*®

Thus uniqueness is recognised as a condition for the partial entailment
position.*® However there are two types of problem with uniqueness.

First, there seem general situations where two agents’ beliefs may be ra-
tional yet differ. There are statements whose truth depends on the agent’s
perspective, such as “I am Xenelda”. “Bob is tall” is a vague and to some
extent subjective statement. Carnap might dismiss such statements as un-
scientific, and he defended his position against other examples.*” More seri-
ously, there are doubts as to how and when the constraining principles that
Jaynes appeals to should be applied. For example, the principle of indiffer-
ence may be applied in different ways depending on how the equipossible
outcomes are delineated, and the maximum entropy principle can be inter-
preted as saying that one should not take risks, in as much as one should
accept bets that minimise worst-case expected loss, which may not always
be a good strategy.*®

43This he called the mind projection fallacy: see [Jaynes, 1990] and [Jaynes, 1998]
chapter 2 and pages 218, 1614.

44 Jaynes, 1998] Appendix A p. 5.

45[Jaynes, 1968] 228.

46Note that those who adopt the logical approach (with the uniqueness requirement)
together with a subjective interpretation of probability (with Bayesian conditionalisation)
occasionally call themselves ‘objective Bayesians’. There is a possible source of confusion
here: this position is objective in the sense that rational belief does not vary from indi-
vidual to individual, not in the sense that I have been using, where an interpretation is
objective if it is directly physical, not to do with subjects and their beliefs.

47[Carnap, 1950] sections 46-47.

485ee [Griinwald, 2000].
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Second, even if these problems are overcome, further problems arise on
infinite domains. One can formulate constraining principles over languages
involving a finite number of propositional variables, but it is generally not
possible to extend them to a denumerable language, in particular a pred-
icate calculus. Carnap himself searched for a unique probability function
representing degree of confirmation but ended up with a continuum of prob-
ability functions. We saw in the last section that he viewed confirmation
as a logical matter, not factual. However, if a function must be chosen
from Carnap’s continuum of inductive methods, this must be done either
factually through calibration (for instance, seeing in practice which func-
tion agrees with frequency or leads to the best long-term betting strategy),
or subjectively in an arbitrary fashion. Others have found that intuitively
plausible rational constraints contradict each other on the infinite domain.*?

One can see that there can be no unique most rational probability func-
tion on an infinite domain for the following reason.’® Suppose we have
a denumerable sequence 61,6-,... of mutually exclusive and exhaustive
sentences. Agent X has no information about any of these sentences —
how should she set her beliefs? We might want to generalise the prin-
ciple of indifference to claim that each sentence should be given equal
degree of belief. However, this degree of belief must be zero, since if
p(f;) = ¢ > 0 for all i then > :° p(#;) diverges, but by countable addi-
tivity Yoo, p(6;) = p(Vioy 6;) = 1, since the §; are exhaustive. Then if
e =0, we get >0, p(f;) = 0 which also contradicts countable additivity.
Therefore the principle of indifference does not generalise, and some 6; and
6; must be awarded different probabilities. Since there is no information
about either of these sentences, a belief function that swaps their proba-
bilities is equally rational. There is no unique most rational probability
function.

Thus the uniqueness requirement poses difficulties for the partial entail-
ment approach. However, there are several possible responses. Firstly there
are many ways in which the approach can be altered to abandon such a re-
quirement. Second one can retain the uniqueness requirement if one drops
the subjective or logical interpretation in favour of an objective interpreta-
tion of probability. We shall consider these options in order.

2.3 Generalised partial entailment

Dropping the uniqueness requirement yields a new notion of entailment |= 4,
where © =4 ¢ iff A = {z:2 = p(¢| \ O) for some p}.5! This concept is a
great deal weaker, for if © and ¢ are logically unrelated then A = [0, 1] and

49[Wilmers et al., 1999].

50[Williamson, 1999].

51de Finetti, 1970] section 3.10 shows that A will always be a singleton or a closed
interval.
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the entailment relation says nothing. However, one can bolster the concept
by limiting the probability functions under consideration when construct-
ing the set A. Consider for example a subjective interpretation. Here the
probability functions are rational belief functions of agents with knowledge
0. Many subjectivists would accept the weak generalisation of partial en-
tailment, but a subjectivist like Jaynes would apply extra principles, like
maximum entropy, to narrow down the range of belief functions considered
rational given the background knowledge. We saw in the last section that
this need not narrow down A to a unique value, but it may nevertheless
considerably strengthen the partial entailment relation.

Howson is a subjectivist of the former ilk. Degrees of belief are restricted
to be probabilistic, but no further constraints are imposed (apart from the
qualified use of Bayesian conditionalisation). Howson develops a logical ap-
proach to probability, based on the notion of consistency, which is defined by
a set of axioms concerning fair bets. These are used to show that an assign-
ment of degrees of belief is consistent if and only if it is the restriction of some
probability measure.?> We generate an entailment operator from this notion
of consistency by appealing to Howson’s identification of models with proba-
bility measures: an assignment of degrees of belief is consistent if and only if
it has (is the restriction of) a model. Then assignment ¢ entails assignment
r iff all probability measures satisfying g, satisfy r. That is, ¢ entails r iff r
is the restriction of any probability measure p that extends ¢. If assignment
q is of the form ¢(61) = y1,q(62) = ya,... and r is r(¢p) = z, this becomes:
q entails r iff for all probability measures p, if p(61) = y1,p(02) = yo,...
then p(¢) = z. I shall call this formulation probabilistic entailment, and
write 01/y1,02/y2, ... |Ez ¢. Probabilistic entailment is just logical entail-
ment via the axioms of probability. We then get the following connection
with the earlier version of partial entailment: 6 =, ¢ < Vp,p(¢|f) =z &
Vp,p(O A @) = 2p(0) & 0]y |=uy 0 A ¢. Of course depending on the §; and
¢ there will often be no unique z such that 6 /y1,62/y2,... Fz ¢, in which
case we can only say that 61/y1,02/y2,... Fa ¢ for some set A C [0,1].
Then 0 =4 ¢ < 0]y |=ay 0 A ¢, where Ay = {zy : © € A}. Thus Howson’s
proposal induces probabilistic entailment which is closely related to weak
partial entailment.

Adams interprets probabilities as degrees of belief, but relies also on
frequencies, since he argues that degrees of belief must approximate fre-
quencies in order to be useful for practical reasoning.’® Adams extends
propositional logic by adding a new non-truth-functional conditional con-
nective =, which can only link formulae which have the usual connec-
tives in them (so one can have § = (¢ V ¢) but not § = (¢ = o))

528ee [Howson, 2000]. The consistency condition is a normative constraint just as
coherence is under the standard Dutch book foundations of subjective probability, which
Howson rejects.

53[Adams, 1998] chapter 9 and appendix 1.
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and for which p(6 = ¢) = p(¢|f). Adams provides a probabilistic se-
mantics: an inference is valid iff the uncertainty of its conclusion cannot
exceed the sum of the uncertainties of its premises, where Adams defines
uncertainty as u(f) = 1 — p(f). It turns out® that an argument is valid
in Adams’ sense if and only if the premises entail the conclusion thus:
Vo € (Ov 1)735 € (Oal)v [p(el) Z 1- Ey.- 7p(0n) Z 1-¢ :>p(¢) Z 1- 6]7
which T will write as 6y,...,6, E. ¢ and call %-entailment. Note that
x-entailment coincides with classical entailment on arguments which do not
involve the connective =.%°

2.4 Objective interpretations

While Howson and Adams are subjectivists, objective interpretations are
also represented in the probability logic literature. Objective chance inter-
pretations often appeal to a possible-world semantics for entailment. Above
I equated the probability of a sentence with the probability of the set of
truth functions that satisfy the sentence. One can think of this as the prob-
ability that the truth function corresponding to the actual world is in this
set of truth functions, as the probability that the actual world is in the set of
worlds at which the sentence is true, or as the proportion of possible worlds
taken up with worlds at which the sentence is true. Nilsson’s probability
logic is based on this thought and employs the probabilistic entailment rela-
tion considered above.?® One can also think of partial entailment in terms
of possible worlds if one thinks of p(¢|f) as the proportion of #-worlds in
which ¢ is also true.>” In this way one can retain the original concept of
partial entailment, © =, ¢ iff © = p*(¢| A ©), together with its uniqueness
requirement, by interpreting p* objectively.

Lukasiewicz gave the probability of an open sentence a logical interpre-
tation, but it can also be given a frequency interpretation, in which the
probability of P(z) is the frequency of P. Coupling this with probabilities
for sentences and a possible-worlds semantics, one can claim that the prob-
ability of a formula is the average frequency, with the average taken over
classes of possible worlds and weighted by the chance of our world being
in such a class. This is essentially the interpretation suggested by Los and
refined by Fenstad.?®

54[Adams, 1998 section 7.1.

554-entailment can also be used as a semantics for non-monotonic logic, if the numbers
0 and e are taken to be infinitesimals. See [Pearl, 1988] in this respect. Note however
that non-standard probability measures lead to a range of conceptual problems, including
failure of the archimedean property and difficulties to do with interpreting and measuring
infinitesimal probabilities.

56[Nilsson, 1986].

57See [Adams, 1998] chapter 8.

58[Log, 1963], [Fenstad, 1967].
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Halpern adopts a similar approach, but instead of mixing the frequency
distribution at a world with the chance distribution of the worlds, he makes
a sharp distinction between the interpretation of the probabilities of open
and closed formulae. The probabilities of open formulae are given a fre-
quency interpretation, while the probabilities of sentences are given a dis-
tinct possible-world semantics.?® In Halpern’s theory, the probabilities of
sentences are also thought of as subjective probabilities, but such an inter-
pretation does not fit well with the possible-world semantics. It is much
more intuitive and straightforward to apportion degrees of beliefs directly
to sentences than to assess how likely our world is to be within a class of
other possible worlds and then translate that probability to one over a sen-
tence. Reformulating a problem in terms of possible worlds usually offers
little or no extra insight for the price of a complicated and counter-intuitive
ontology — possible worlds may be a necessary evil for chance theorists,
but in my view they are best avoided by subjectivists.

3 PROBABILISTIC INFERENCE

I hope to have given an indication of the range of interpretations available,
both to probability itself and to entailment in a probabilistic logic. In this
section I will give a brief flavour of the approaches to inference using prob-
ability. In the following sections I shall argue for a reinterpretation of one
of these approaches, and outline the ramifications for practical reasoning.

Probabilistic reasoning poses serious practical challenges. Consider the
task of defining probability over a propositional language based on just a
finite set of propositional variables £ = {¢1,...,en}. To specify a proba-
bility measure (or finitary probability measure) over the sentences of this
language, one must specify at least 2V — 1 probability values. For exam-
ple, one can determine the probability measure from the values given to
the 2V atomic states, p(+c1 A ... A £cn), and one of these is redundant
since it can be determined by additivity from the others. Thus the space
complezity, the amount of space required to store a probability measure, is
exponential in the number of nodes. One can calculate the probabilities of
other finitary sentences from the specified probabilities, but an exponential
number of additions may be required. Therefore the time complexity, the
amount of time required to perform a probabilistic inference, may severely
restrict applications to practical reasoning. Likewise it may be practically
difficult to check an assertion of entailment and even to check whether an
assignment of probabilities over a set of statements is consistent (this is the
consistency problem).

I will consider two types of strategy for overcoming these practical prob-
lems. First we shall look at probability logics and the approaches to infer-

59[Halpern, 1990].
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ence they yield. After this we shall look at a technique from artificial in-
telligence, namely Bayesian networks. Later I will argue that the Bayesian
network approach can be integrated into a logic.

3.1  Probability logics

From a logical point of view, the first step towards efficient probabilistic
inference is to provide a proof theory that is sound and complete with re-
spect to the chosen entailment relation. Adams gives a sound and complete
proof theory for his logic.?° Likewise, probabilistic entailment can be given
a sound and complete proof theory but only for the above finite language,
not for example for a first order language involving an unbounded domain.5!
However, a proof theory is only a start. Finding a proof of a conclusion from
its premises is often a prohibitively complex problem, even if a proof exists.

Nilsson gives a geometrical method for bounding the probabilities of sen-
tences. Recall that for generalised probabilistic entailment, 61 /y1,62/y2, . ..
Ea ¢ iff Vp, if p(81) = y1,p(02) = yo, . .. then p(¢) € A. Nilsson gives a ma-
trix technique for calculating the parameter A given a finite set of premises,
their probabilities and the conclusion. Linear programming can be used to
solve the problem, but as Nilsson acknowledges, computational complexity
remains a serious difficulty.%?

Logic programming aims to simplify the proof problem for classical logic
by focussing on a more restricted language than the full predicate calculus,
employing resolution as a single rule of inference, and treating the failure
to find a proof of a ground atomic formula as a proof of its negation.%?
One hope is that by adding probabilities to logic programs and making use
of the computational advantages offered by logic programming, one might
perform probabilistic inference efficiently. Probabilistic Horn abduction, for
instance, can be used to find the most likely hypothesis that explains a set
of evidence.%

Another such system, stochastic logic programming, was devised to repre-
sent the bias of a machine learning program over the hypothesis and instance
spaces, but the formalism may also be applied to first-order probabilis-
tic reasoning.®® The basic idea here is that proofs of a goal (an implicitly
existentially quantified open formula) are given a loglinear distribution pa-
rameterised by features of those proofs, and the probability of an instantia-
tion of the goal is defined as the sum of the probabilities of the proofs that

60[Adams, 1998] chapter 7.

61 Halpern, 1990].

62Gee [Nilsson, 1986]. Nilsson also suggests a solution to the consistency problem.
63See [Nilsson and Maluszynski, 1990].

64[Poole, 1992].

65[Muggleton, 1995].

66[Cussens, 1999], [Cussens, 2000].



414 JON WILLIAMSON

result in that instantiation. In a sense this progresses Lukasiewicz’ origi-
nal aim of defining probabilities on formulae based on their purely logical
characteristics.

3.2 Bayesian networks

A Bayesian network consists of a directed acyclic graph, or dag, G over the

propositional variables ci,...,cny together with a set of specifying proba-
bility values S = {p(c;|d;) : d; is a state of the parents of ¢; in G, i =
1,...,N}.57 Now, under an independence assumption,®® namely that given

its parent states d;, each node ¢; in G is probabilistically independent of any
state s of other nodes not containing the descendants of ¢;, p(c;|d; A s) =
p(ci|d;), a Bayesian network suffices to determine a probability measure
p over the sentences SL of £. This is determined from the probabilities
of the atomic states, which are given by the formula p(xc; A ... A +cy) =
Hﬁil p(+¢;ld;) where the d; are the parent states consistent with the atomic
state. Furthermore, any probability distribution on S£ can be represented
by some Bayesian network.5?

In particular, if the ¢; are causal variables, and the graph G represents
the causal relations amongst them, with an arrow from ¢; to ¢; if ¢; is a
direct cause of ¢;, then it is thought that G' will automatically be acyclic,
and the independence assumption will be a valid assumption.”

Bayesian networks offer the following advantages. First, if one deals just
with Bayesian networks then there is no consistency problem, because any
allocation of specifying values in [0, 1] is consistent in that it is the restriction
of some probability measure. Second, depending on the structure of the
graph, the number of specifying probabilities may be relatively small. For
example, if the number of parents of a node is bounded then the number
of probabilities required to specify the measure is linear in N. Third, also
depending on the structure of the graph, propagation techniques™ can be
employed which allow the quick calculation of conditional probabilities of
the form p(c;|a), where « is a state of other nodes. For example, if the
graph is singly-connected (there is at most one path between two nodes)
then propagation can be carried out in time linear in N. Thus while in the
worst case (which occurs when the graph is complete, that is when there is
an arrow between any two nodes) there is nothing to be gained by using a
Bayesian network, if the graph is of a suitable structure then both the space

671f ¢; has no parents, p(c;|d;) is just p(c;).

68The Bayesian network independence assumption is often called the Markov or Causal
Markov condition.

69Gee [Pearl, 1988] or [Neapolitan, 1990] for more on the formal properties of Bayesian
networks.

70Pearl, 1988, [Neapolitan, 1990].

"1[Neapolitan, 1990].
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and time complexity will be dramatically reduced. It is generally presumed
that causal graphs are simple enough to offer satisfactory reductions in
complexity.

4 BAYESIAN NETWORKS PROPERLY INTERPRETED

In this section and the next I would like to give some of my views as to
the future directions of probability logic. I believe that Bayesian networks
offer significant potential in this area, but that their use hinges on their
interpretation. For a detailed account of the arguments in this section, see
[Williamson, 2000].

The key issue is the interpretation of probability. Thus far in the Bayesian
network literature the probability measure is either interpreted objectively,
or subjectively but under the presumption that the subjective probabili-
ties are estimates of objective probabilities. In my view, neither of these
interpretations are viable.

The objective interpretation fails because the independence assumption
need not hold, when assumed of causality with respect to objective prob-
ability. The independence assumption requires that any probabilistic de-
pendency amongst the nodes in the network be accounted for by the causal
relations within the network. This can be expressed more precisely by the
principle of the common cause: if ¢; and c; are probabilistically independent
and neither is a cause of the other, then they have one or more common
causes and the dependency is screened off by the states d of the common
causes, p(c;|d A ¢;) = p(c;|d). However, the principle of the common cause
can be shown to fail, for the simple reason that causal connection is not the
only way that nodes can be rendered probabilistically dependent. They may
be dependent because they have related meaning, or they may be logically
or mathematically related, they may be related by non-causal physical laws,
or by local or boundary conditions, or they may even be probabilistically
dependent purely by accident. In any of these eventualities the Bayesian
network independence assumption can fail.

On the other hand, if we view the Bayesian network as the knowledge of
an agent X, consisting of her picture of causality and her degrees of belief,
and those degrees of belief are assumed to be estimates of objective prob-
abilities, then there is a further reason why the independence assumption
might fail. X may simply not know about all the causal variables relevant
to those in her language, or she may not know of all the causal relations
linking the variables already in her language. One can show that if X'’s
causal graph is incomplete in this sense then the independence assumption
is very unlikely to hold.

If we opt for an unconstrained subjective interpretation, losing the link
between subjective and objective probabilities, then there is no reason at
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all to suppose the independence assumption might hold. For X may have
any belief function she wishes, and only a few of those (a set of measure
zero, to be precise) will satisfy any non-trivial independence assumption.

The only alternative, I claim, is to adopt a constrained subjective inter-
pretation, along the lines of Jaynes’ interpretation, by employing the maxi-
mum entropy principle.”? The idea is that the components of the Bayesian
network — the causal graph G and specified probabilities S — represent
agent X’s background knowledge, and the maximum entropy principle is
used to derive the full probability measure p. The specified probabilities
offer an immediate constraint on this process: the derived measure p must
extend these specifiers. There is no immediate constraint imposed by the
causal graph, and I propose the principle of causal irrelevance be used to
invoke a constraint. This principle says that if a probability measure p is
derived over S£ via maximum entropy, next a new propositional variable
cn+1 which is not a cause of any of the variables in £ is added to £ to give
LT, and finally a new probability measure q over SL* is derived, then ¢
extends p, that is, the restriction ¢|s; = p. Intuitively there is no informa-
tion that cy41 is relevant to the other variables, so it should be considered
irrelevant. It can be shown that

E: under these constraints, the probability measure p derived by maxi-
mum entropy is the same as that derived by a Bayesian network under
the independence assumption.

Thus if probability measure p is given this type of subjective interpretation,
and is constrained by G and S, then the independence assumption holds
and p can be represented by the Bayesian network on G and S.

5 NEW DIRECTIONS

5.1 A causal logic

Given the above interpretation of the components of a Bayesian network
as background knowledge, we can define a logic, as follows. As before, we
consider a language based on a set of causal propositional variables, and for
practical reasons this set is finite. The components (causal graph G and
probability specification S) of a Bayesian network together with a set of
sentences © partially entail sentence ¢ to degree z, G, S, 0 =, ¢, iff, given
the information represented in G and S, an agent ought to believe ¢ to
degree z, p(¢| A ©) = . The maximum entropy principle is used to select
the function p (uniquely, because the language is finite, and so we consider

72There are a finite number of propositional variables here, so we don’t get problems
of non-uniqueness.
73[Williamson, 2000].
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degree x rather than set A of degrees) and therefore the degree x of partial
entailment. The value z can be determined from the Bayesian network
formed on the components G and S. Such a calculation can be viewed as
a proof of the entailment, and by equivalence [E], Bayesian network proofs
are sound and complete with respect to this concept of partial entailment.
The space and time complexity of a proof depend on the structure of the
graph GG, and the time complexity also depends on the form of ©® and ¢.

Recall that propagation techniques can be used to quickly calculate p(a;|)
where « is a state of some of the other variables. These techniques can
also be used to calculate p(¢|f), as follows. First note that p(¢|a) can
be broken down into propagations. Write ¢ in disjunctive normal form
as \/J_, a; where each a; is of the form Aj_, +¢;, and the a; are mu-
tually exclusive. Now p(cj|a) = 0 if ¢ is inconsistent with «, otherwise
plajla) = p(ei, |£ci, A Axci, Aa)p(£ci,|£Ci, Ao A£C, Aa) .. p(+c, ).
Then p(p|la) = Z;nzl p(aj|a) and can thus be decomposed into propaga-
tions. Now p(¢|f) can also be decomposed into propagations, for if we
write @ in disjunctive normal form as \/;n:1 aj where each «; is of the form
Aj—1 £¢i, and the a; are mutually exclusive, then

p0lo)p(g)  Xj=i plegld)p(e) 371, p(dlay)pla;)
p(9) a Z;nzl pley) a Z;nzl p(ey) -

Thus propagation techniques can be used to perform a proof, but the
more logically complex the sentences involved in the partial entailment,
the greater the time complexity of the proof.

Given such a causal logic, one can ask what should happen when an
agent’s background knowledge does not take the form of the components G
and S of a Bayesian network. In particular, how should one derive a proba-
bility measure if not all of the required probability specifiers are available?

Garside [1996] and Rhodes [1999] have provided answers to this question
for the special cases in which the causal graph has a tree or inverted tree
structure. However, while they appeal to the maximum entropy principle
they do not allow the causal knowledge to constrain the maximum entropy
solution in any way. I advocate the principle of causal irrelevance as an extra
constraint, and this gives a different solution to the problem. I shall indicate
here how the combination of causal irrelevance and maximum entropy can
be used to shed light on the issue of incomplete background knowledge.

Suppose X'’s background knowledge consists of a causal dag G with each
arrow ¢; ~ c¢; labelled by a weight w € [—1,1], and each root node
labelled by its probability. If the weight is positive, this signifies that
p(cjlei Ad) > p(ej|mei A d) + w for each state d of the other parents of
¢;. If it is negative then p(c;le; A d) < p(ej|-e; A d) + w for each such
state d (intuitively in this case ¢; prevents ¢;). Using the techniques in-
volved in the proof of the equivalence result [E], one can show that the

p(9l6) =
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probability measure determined from such a labelled graph by the princi-
ples of causal irrelevance and maximum entropy is the same measure as
that determined by the Bayesian network involving specifiers of the form
plejlei Ad) = 5% p(ejl-e; Ad) = 152, One may specialise further by
considering labels of the form w € {+,—}, with some € > 0 given such
that ¢; ~T ¢; implies p(cjle; A d) > plejl=e; Ad) + ¢ and ¢; ~7 ¢
implies p(cjle; A d) < p(cj|me; Ad) —e. We then get an equivalence be-
tween such a structure and a Bayesian network in which if ¢; ~7 ¢; then
p(cjlxe; ANd) = 122, and similarly for prevention (and if root probabilities
are omitted in the labelled graph they are specified to be % in the Bayesian
network). Thus we can define partial entailment G,0 =, ¢ where G is a
labelled graph of one of the above varieties. This move not only extends
the causal logic to situations where background knowledge is more limited,
but can also significantly reduce the space complexity of the corresponding
Bayesian network. In general, if we replace the values in the specification S
by bounds on those values, we determine the specification .S, and thereby a
Bayesian network, by selecting the values within those bounds which max-
imise entropy. The task of finding the probability measure over the whole
domain that maximises entropy is broken down into smaller and easier tasks,
namely those of maximising the entropy of the individual specifying prob-

abilities.

5.2 A proof logic

I claimed earlier that causal connection is only one type of link between
variables, and that other links, such as logical relations, may also induce
probabilistic dependencies. This observation motivates the hope that the
Bayesian network toolkit may be applicable to these other types of links. I
shall consider one such application here.

A logical proof of a sentence takes the form of an ordered list. Consider
a propositional language with sentences s, t,u, ... and the following proof of
s = t,t = uF s — u, using the axiom system of [Mendelson, 1964] section
1.4:

1. t — u [hypothesis]
. 8 = t [hypothesis]

C(s=(t—ouw) = ((s—=t) = (s> u)) [axiom]

. s = (t > u) by 1, 4]

2
3
4. (t - u) = (s = (t = u)) [axiom]
)
6. (s = 1t) = (s = u)[3, 5]

7

. s u 2, 6]
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Figure 1. A proof dag.

The first important thing to note is that the ordering in a proof defines
a directed acyclic graph. If we let ¢; signify the sentence on line i, for
i=1,...,7, we get the dag in Figure 1.

By specifying degrees of belief in root nodes and conditional degrees of
belief in other nodes given states of their parents, we can form a Bayesian
network. These beliefs will depend on the meaning of the sentences, and in
this example a specification might start like this: S = {p(c1) = %,p(cz) = %,
p(es) = 1,p(ca) = 1,p(cs|er Aes) = 1,p(es|er A—eq) = 5,...}

We can interpret the probability measure in various ways and if we as-
sume that the probabilities are estimates of objective probabilities then, just
as with causal Bayesian networks, we would not expect the independence
assumption to hold unless (i) there are no dependencies due to non-logical
relations amongst the variables and (ii) all the logical relations are included
in the proof graph (but note that the graph will not necessarily remain
acyclic if it includes all logical relations).

However the analogy with the causal case extends further, and if we adopt
a subjective interpretation constrained by the maximum entropy principle,
we would expect proof irrelevance, the analogue of the causal irrelevance
condition, to hold. For if agent X learns of a new sentence cg that does not
logically imply any of the others, her degrees of belief in the other sentences
should intuitively not change.”™ Then the equivalence argument [E] can be
used to justify equating X'’s belief function with the probability measure
determined by the Bayesian network.

Finally, we can form a proof logic in the same way that we formed a causal
logic above. While the parents of a node logically entail it, each node or set
of nodes will also partially entail the others in the proof graph. The partial
entailment relation can be proved, or the degree of partial entailment can be
found, by using Bayesian network calculations. Thus two senses of proof are
in play at once: a Bayesian network is used to prove a partial entailment,
and the classical axiomatic method is used to prove the logical entailment
on which the network is based.

74X learns of cg in the sense that she extends her language to include the new sentence,
not in the sense of her learning the truth or falsity of cg, which may well give her reason
to change her other degrees of belief.
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Why form beliefs about sentences in a proof? Because beliefs play a key
role in proof planning. As Corfield demonstrates, subjective probability
is important in mathematics: mathematicians regularly require degrees of
belief in mathematical propositions, and these are apportioned according the
mathematical and physical evidence available at the time.” The degrees of
belief are instrumental in deciding whether to tackle a proof of a proposition
(it may be worth tackling if the belief in the conclusion conditional on the
premises is above a certain threshold) and in predicting from which area
a possible proof will come (a conclusion may be more probable conditional
on one set of premises or intermediary lemma than on another). To apply
Bayesian proof networks to this type of problem we must recognise first
that a parent of a node in the graph need not be one rule of inference
away from the node. Just as a causal graph may represent, causality on the
macro-scale as well as the micro-scale, so too Bayesian proof networks may
represent arguments involving large logical steps, as well as proofs like the
one exemplified above. Second, just as in the causal case, an agent may
not know of all the relevant logical factors or logical relations, and the proof
network need not represent a complete proof — the proof graph will still be a
dag. Thus the proof network includes the premises, conclusion and various
other facts or conjectures which are considered relevant to the problem.
The arrows in the network represent the flow of the proposed proof, and
the probability specifiers represent the degrees of belief in each particular
proposition, conditional on states of their parents. In this way a Bayesian
proof network can be used to represent a belief function over a realistic
mathematical problem, and to evaluate the conjectures and proposed proof
paths.

Proof planning is not just important in mathematics. Whatever the
domain and whatever the logic, if the proof theory relies on axiomatic de-
duction then finding a proof is likely to be a hard problem.”® Automated
theorem proving is now a large field of research, with applications ranging
from software verification to robotics, but few systems tackle uncertainty in
a fundamental way. Bayesian proof networks offer a practical opportunity
for doing so. Moreover, proof planning is not the only application of such
networks. Any domain of reasoning which requires the assessment of logi-
cally complex and connected variables may benefit from the approach, just
as causal Bayesian networks are important for any kind of reasoning with
causal variables, for example diagnosis, prediction and causal explanation.

75[Corfield, 2000].
76[Bundy, 1999], [Bundy, 2000].
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6 SUMMARY

The choice of an appropriate interpretation of probability is of key impor-
tance, especially when it comes to combining probability with logic. Many
logical approaches to probability ultimately fail from a philosophical point
of view because of the uniqueness problem on infinite domains. However,
probability logic can be sustained either by using a more general conception
of partial entailment, by appealing to objective probability, or by sticking
to finite domains. Bayesian networks take this latter approach and offer
a way out of the practical problems that face a logic which incorporates
probability, but again we must be careful about how we interpret probabil-
ity. Probability for logic is best interpreted subjectively, using constraining
principles like Jaynes’ maximum entropy principle, if we wants to tap the
power of Bayesian networks.

This power lies not only at the computational level, but also at the level
of applications: Bayesian networks lead rather naturally to a causal logic
and a proof logic. The causal logic may be applied to the problem posed
at the beginning of this chapter by constructing a causal graph and prob-
ability specification (or bounds on these probability values), and using the
associated Bayesian network to calculate the probability of X’s house be-
ing burgled, given that her window is open and she hears an alarm. The
proof logic may be applied to proof planning. Further extensions may be
possible, and in the future we may expect some sort of integration between
these extensions, either horizontally, where languages may involve mixtures
of causal and logically complex variables for instance, or vertically where
one logic is applied to a domain of causal variables and then a metalogic is
applied to the logically complex sentences formed over that domain.
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