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ABSTRACT

This note responds to some criticisms of my recent book In Defence of Objective

Bayesianism that were provided by Gregory Wheeler in his ‘Objective Bayesian

Calibration and the Problem of Non-convex Evidence’.

In his ‘Objective Bayesian Calibration and the Problem of Non-convex

Evidence’, Gregory Wheeler criticizes the principle I invoke in (Williamson

[2010]) for calibrating degrees of belief with chances. Bayesian epistemologists

commonly appeal to some sort of calibration norm that says that degrees of

belief should be calibrated to known chances. Typically, they invoke a prin-

ciple variously known as the Straight Rule, Miller’s Principle, or the Principal

Principle, which says that if one’s evidence E contains the claim that the chance

of proposition � is x, then one should set one’s degree of belief in � relative to

that evidence, PEð�Þ, to x, as long as one doesn’t have further evidence that

trumps or contradicts the chance statement.1 This type of principle calls for

generalization because often we don’t have precise chance values as evidence,

but constraints on chances—for example, the constraint that the chance of � is

at least 0.7. In (Williamson [2010]), I offer the following generalization:

C : PE 2 hP
�
i \ S:

Here P* is the set of chance functions that are compatible with evidence E; h�i

is the convex hull operator (i.e. if P, Q2 hXi then lP + (1� l)Q2 hXi for each

l2 [0, 1]); and S is a set of probability functions that satisfy structural

constraints imposed by evidence E—constraints on degrees of belief that

aren’t mediated by chances (I argue that structural constraints are generated

by evidence of qualitative causal connections or hierarchical relationships, for

instance.) In (Williamson [2010], Section 3.3), it is argued that a Calibration

1 Here, for the sake of brevity, we shall restrict our attention to single-case chance. See

(Williamson [2010], Sections 3.3, 10.2), and (Williamson [2011b]) on calibrating degrees of

belief to generic frequencies or propensities.
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norm such as the Straight Rule can be motivated by the desire to minimize

long-run loss, or the desire to minimize worst-case expected loss, when betting

according to one’s degrees of belief. This version of the calibration norm

invokes the convex hull operator, because one avoids sure loss in the long

run just when one bets according to degrees of belief that fall inside the convex

hull of the set of chance functions that are compatible with evidence (see

below). Convexity becomes intuitively plausible when one considers that one

knows, for any proposition, �, about the past (e.g. the proposition that Aristotle

was born on a Thursday), that its chance is now 0 or 1: it is implausible to

suggest that one should believe � to degree 0 or 1 in the absence of further

evidence; at the very least, some non-extreme degree of belief such as 1=2 or 1=7

should be deemed rational; such values are in hP*i but not in P*¼ {0, 1}.

In Section 2 of his paper, Gregory Wheeler objects that:

Since there are different ways to parameterize a set of chance

functions, and these different parameterizations yield different closed

convex hulls, it is misleading to refer to the convex hull of P*; yet, OBE

[i.e. objective Bayesian epistemology] is silent on how to construct the

correct one.

In fact, though, far from falling silent on this question, my book advocates one

particular parameterization throughout, and says this:

One can define a convex hull of a set of probability functions in various

ways, depending on how the probability functions are themselves

parameterised. Given the way the Probability norm was introduced

[. . .] it is natural (and quite standard) to define R¼ lP + (1� l)Q by

R(!)¼ lP(!) + (1� l)Q(!). But one might define a probability function

in other ways than by its values on the atomic states ! of the form

±A16. . .6±An. For example one might define a probability function P

by the values it gives to P (±Aij±A16 . . .6±Ai�1) for i¼ 1, . . . n. In

general one can not expect different parameterisations to yield the same

convex hulls (see, e.g., Haenni et al., 2011, §8.2.1). One of the advantages

of the standard parameterisation (which appeals to atomic states) is that

it does yield C1 [which says that if � 2 E and E is consistent then

PEð�Þ ¼ 1�: if P and Q give probability 1 to � then so will any convex

combination of P and Q. (Williamson [2010], p. 45)

Here A1, . . . , An are the atomic propositions of the propositional language in

question. The point is that different parameterizations are fit for different

purposes. The parameterization proposed by Wheeler in terms of P(±Aij±

A16 . . .6±Ai�1) for i¼ 1, . . . n is especially suited to characterizing probabil-

ity functions in the context of probabilistic networks. This is because prob-

abilistic networks are used to chart probabilistic independencies, and this

parameterization both (i) makes probabilistic independencies perspicuous

and (ii) can be used to ensure that a convex combination of two probability

functions that both satisfy a given independency will also satisfy that
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independency (see Haenni et al. [2011], section 8.1.2). On the other hand,

I would argue that the more typical parameterization in terms of P(±A1

6 . . .6±An), which is advocated in (Williamson [2010]), is better suited to

the context of Bayesian epistemology. This is because this parameterization

both (i) fits the motivation in terms of betting alluded to above, and (ii) can be

used to ensure that a convex combination of two probability functions that

both satisfy a constraint of the form P(�)¼ x also satisfies the same constraint.

This is desirable because it is reasonable to insist that if you know that the

chance of � is x then you ought to believe � to degree x (the Straight Rule).

To see the difference between these two parameterizations, consider the case

of three atomic propositions A, B, and C, and evidence which picks out the set

of possible chance functions P
�
¼ fP�1;P

�
2g, where P�1 gives probability 0.1 to

A6B6C and probability 0.9 to :A6:B6:C, while P�2 gives probability

0.1 to :A6B6:C and probability 0.9 to A6:B6C. These two possible

chance functions share some features: they both give probability 1 to the

proposition A$ C and they both render A and C probabilistically independ-

ent conditional on B. If one were to form the convex hull of P* in a

probabilistic-network coordinate system—using the parameters P(±A),

P(±Bj±A), P(±Cj±A6±B)—then every convex combination of P�1 and P�2
would render A and C probabilistically independent conditional on B, but

no proper convex combination would give probability 1 to A $ C. On the

other hand, if one were to form the convex hull hP*i in the atomic-state co-

ordinate system—using the parameters P(±A6±B6±C)—then every convex

combination would give probability 1 to A$C but no proper convex com-

bination would render A and C probabilistically independent conditional on

B. Contra Wheeler, in my book I am not silent as to which parameterization to

prefer, since I explicitly adopt the latter, atomic-state parameterization

throughout the book. Chance constraints of the form P*(A $ C)¼ 1

should, I argue, carry over to degrees of belief (via straightforward applica-

tions of the Straight Rule), whereas independence constraints of the form

P*(±Cj±A6±B)¼P*(±Cj±B) need not. Indeed, in Section 3, Wheeler ac-

knowledges that independence constraints should not carry over to degrees

of belief: tosses of a coin that is known to be biased may be probabilistically

independent with respect to chance but, of course, the outcome of the first toss

conveys useful information about the outcome of the second toss, so the tosses

need not be probabilistically independent with respect to rational degree of

belief.

*
We can then see that Wheeler’s first objection lacks bite. Wheeler claims

that Williamson ([2010]) falls silent on the correct way of parameterizing

probability functions when taking convex hulls, when in fact the book expli-

citly adopts one particular parameterization throughout and argues that
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parameterization should be preferred to the parameterization that Wheeler

suggests but later (rightly) rejects. So, while we disagree about whether

the book falls silent on this question, it appears that we agree that the

P(±Aij±A16 . . .6±Ai�1) parameterization should be avoided.

Later on in section 3, Wheeler casts doubt on a parameterization—such as

the atomic-state parameterization advocated in Williamson ([2010])—that

does not insist that tosses of a biased coin be dependent with respect to rational

degree of belief. The objection here is that even if the calibration norm leaves

open that PEðH2jH1Þ 6¼ PEðH2Þ, where Hi signifies a head at the i-th toss, the

objective Bayesian Equivocation norm, which says that degrees of belief

should equivocate sufficiently between atomic states, will prevent learning

from experience. It is true that equivocation will often yield an independency

of the form PEðH2jH1Þ ¼ PEðH2Þ, where such an independency is compatible

with the evidence after calibration (see, for example, Williamson [2010],

Theorem 6.3). It is also true that, if one were to learn solely by conditionalisa-

tion, such an independency would render learning from experience impossible,

since learning H1 would not raise the probability of H2. But, as stressed in the

book, objective Bayesian updating only agrees with conditionalization in cer-

tain circumstances. In this case, the objective Bayesian would say that if one

learns H1, one’s evidence changes to E0 ¼ E [ fH1g and one must then cali-

brate to this new evidence. Since E says that the bias is either 0.99 or 0.01 in

favour of heads, H2 has a much higher chance now that H1 is known and the

calibration norm forces PE0 ðH2Þ to calibrate to this chance information.

Hence, learning from experience is possible after all. The interested reader

may wish to turn to Williamson ([2011a]) for a detailed discussion of where

objective Bayesianism stands with respect to learning from experience and to

Williamson ([2011b]) for an extended example of the use of confidence interval

estimation methods, in conjunction with the calibration norm, to determine

rational degrees of belief such as PE0 ðH2Þ.

Wheeler erroneously suggests that my argument for the calibration norm in

terms of betting presumes that the set of chance functions delimited by evidence

is convex. This appears to be because he takes E¼hP*i \S to be a set of chance

functions. Clearly it is no such thing. The calibration norm C given above and in

the book makes it clear that while P* is a set of chance functions, hP*i \S is a

set of rational belief functions. Furthermore, that E is convex is not a presump-

tion but a consequence of the justification of the calibration norm: as mentioned

above, we need to appeal to the convex hull hP*i to avoid sure loss in betting

scenarios; S turns out to be convex because it is generated by equality con-

straints; the intersection of two convex sets is convex; hence E is convex.

Wheeler suggests that the avoidance of sure loss argument does not apply

when P* is not itself convex. To see that it can apply, consider the example

that Wheeler puts forward: a biased die where outcomes are independent and
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identically distributed (iid) with unknown bias P�1ðHiÞ ¼ 0:01 or

P�2ðHiÞ ¼ 0:51. Now, if the bias were known to be that of P�1 and bets were

placed according to some fixed PEðHiÞ ¼ q > 0:01, then the agent would be

sure that a stake-maker could choose positive stakes S to ensure that the

betting loss
Pn

i¼1ðq� IHi
ÞS, where IHi

is the indicator function for Hi, is posi-

tive for sufficiently large n—i.e. a certain loss (Williamson [2010], Section

3.3).2 Similarly, if q< 0.01 then negative stakes can be chosen for a sure

loss. But if the evidence equivocates between P�1 and P�2 and 0.01< q< 0.51

then there is no sure loss: if stakes are chosen positive then the long-run loss

will only be positive if P�ðHiÞ ¼ P�1ðHiÞ; on the other hand, if stakes are chosen

negative then the loss will only be positive if P�ðHiÞ ¼ P�2ðHiÞ; but of course

there is no information to tell between the two. However, if q> 0.51 then

stakes can be chosen positive and if q< 0.01 then stakes can be chosen nega-

tive for sure loss. Hence, contra Wheeler, the agent needs to ensure that her

betting quotients, q, lie in the convex hull in order to avoid certain loss.

Once degrees of belief are narrowed down to this convex hull, the question

arises as to whether some members of this convex hull are more appropriate

than others as belief functions. In (Williamson [2010], Section 3.4) it is argued

that those belief functions that equivocate sufficiently between the atomic

states are most appropriate because they control worst-case expected loss

(this is the equivocation norm, mentioned above). I argue there that if the

particular loss function in operation is unknown, as it usually is, then loga-

rithmic loss is appropriate as a default loss function. In which case, a belief

function is sufficiently equivocal just when it is sufficiently close to the func-

tion that gives each atomic state the same probability, where distance to this

function is explicated by Kullback–Leibler divergence. Equivalently, a belief

function is sufficiently equivocal just when it has sufficiently high entropy.

Wheeler takes issue with this when the evidence is asymmetric, as is the case in

the above example. I suppose his intuition is that it is best if one’s belief

function is equidistant between two possible chance functions, but without

any further justification it is hard to prefer that choice of belief function over

one that is sufficiently equivocal in the sense outlined above. One might try to

justify an ‘Equidistance’ norm by arguing that one should equivocate over

which value in the interval [0.01, 0.51] one should choose as one’s degree of

belief, and average over these possible choices to select the midpoint. But such

a move would be doubly undesirable to Wheeler, since it presumes not only

convexity but also some higher-order equivocation norm that advocates

2 As is usual in this sort of betting scenario, the agent and the stake-maker have access to the same

evidence. This evidence is assumed fixed, i.e. outcomes of previous tosses are not revealed before

a bet on Hi. If outcomes were revealed, the agent and the stake-maker would quickly learn which

of the two possible chance functions is the one in operation.
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equivocating over degrees of belief in a continuum—significantly more con-

tentious than the standard equivocation norm.

I don’t pretend to have said the last word about calibration in (Williamson

[2010]): I see the Straight Rule as a first approximation to the correct norm,

and I have merely tried to formulate a second approximation in the shape of

C. Certainly, more can be done to flesh out or improve upon C (see, for

example, Williamson [2011b]) and debates can still be had about the merits

of taking convex hulls.3 But I’m not convinced that Wheeler provides new

reasons to drop convexity. And, while I agree with Wheeler that there is scope

for argument about how best to parameterize probability functions for the

purposes of calibration, I deny Wheeler’s charge that I have failed to specify a

suitable parameterization.

Acknowledgement

I am very grateful to Gregory Wheeler and an anonymous referee for helpful

comments and to the British Academy for supporting this research.

SECL

Philosophy Department

University of Kent

Canterbury CT2 7NF, UK

j.williamson@kent.ac.uk

References

Haenni, R., Romeijn, J.-W., Wheeler, G. and Williamson, J. [2011]: Probabilistic Logics

and Probabilistic Networks, Dordrecht: Springer.

Kyburg, H. E. Jr and Pittarelli, M. [1996]: ‘Set-based Bayesianism’, IEEE Transactions

on Systems, Man, and Cybernetics, 26, pp. 324–39.

Williamson, J. [2010]: In Defence of Objective Bayesianism, Oxford: Oxford University

Press.

3 The example of Kyburg Jr and Pittarelli ([1996], Section IV.C) merits further discussion, for

instance. In their example, an agent bets on pairs of iid coin tosses, knowing that P*(H)2 [0.1,

0.5]. Taking the convex hull of functions defined on pairs of outcomes that satisfy this constraint

admits probability functions for which outcomes are not independent. And, if an agent were to

choose such a function, then she would be prone to a positive expected loss. One might argue

that this expected loss is undesirable enough to banish convex hulls from the calibration norm.

As it happens, the objective Bayesian procedure would not choose such a function in this case,

since it would choose the function P that equivocates between the atomic states, i.e., the P such

that P(HH)¼P(HT)¼P(TH)¼P(TT)¼ 0.25, which is compatible with the constraint and

which renders outcomes independent. Moreover, a P that satisfies independence would be

chosen whatever the endpoints of the interval in the constraint. So expected loss is not positive

in the presence of the Equivocation norm.

Nevertheless, if we set the equivocation norm aside and focus just on calibration, there is

clearly scope for further debate here about the merits of convexity.

Jon Williamson856



Williamson, J. [2011a]: ‘An Objective Bayesian Account of Confirmation’, in D. Dieks,

W. J. Gonzalez, S. Hartmann, T. Uebel and M. Weber (eds), Explanation,

Prediction, and Confirmation: New Trends and Old Ones Reconsidered, Dordrecht:

Springer, pp. 53–81.

Williamson, J. [2011b]: ‘Why Frequentists and Bayesians Need Each Other’,

Erkenntnis, doi:10.1007/s10670-011-9317-8, Epub ahead of print, 21 August 2011.

Calibration and Convexity 857




