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Objective Bayesian Nets

JON WILLIAMSON

1 Introduction .

Any theory of rationality must at some stage address the following key
question:

Belief Representation What is the best way to represent an agent’s ra-
tional belief state?

It is the aim of this paper to sketch a solution to the belief representation
problem.

The proposed solution has two facets. First, objective Bayesianism tells
us which degrees of belief an agent should adopt: she should adopt as her
belief function a probability funetion, from all those that satisfy constraints
imposed by her background knowledge, that is maximally non-committal,
i.e. that maximises entropy (§2). Second, recent developments in proba-
bilistic expert systems tell us how best to represent, a probability function:
a Bayesian net offers an efficient, clear and informative representation {§3).

Combining these two facets in §4, we use a Bayesian net to represent
the agent’s optimal belief function—such a Bayesian net will be called an
objective Bayesian net.

The method for constructing an objective Bayesian net given in §4 re-
quires that the agent’s background knowledge be formulated as a set of
quantitative constraints on her degrees of belief. However knowledge is of-
ten qualitative; the question arises as to how objective Bayesian nets can
be constructed in the presence of such knowledge. In §5 we shall see that
qualitative knowledge of influence relationships (e.g. causal influence) can
be transformed into quantitative constraints on degrees of belief.

An objective Bayesian net is derived from background knowledge. Thus
to understand how to perform an operation on an objective Bayesian net,
one should perform the corresponding operation on background knowledge
and derive the associated objective Bayesian net. For instance, when an
objective Bayesian net needs to be updated, the updated net should be the
same as the net generated by updated background knowledge (§6). The
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combination of two Bayesian nets should be the same as the net generated
by the combination of their associated knowledge bases (§7).

Having presented the theory of objective Bayesian nets in Part [, we turn
briefly to applications in Part II. We shall see that apart from their use
in a general theory of rationality, objective Bayesian nets also shed light
on a number of specific modes of reasoning. They can be used to perform
inference in a probabilistic logic (§8), to justify the assumptions behind
causal models (§9), to guide logical (§10) and semantic (§11) reasoning, and
to develop a framework for argumentation (§12) and recursive modelling

(§13).
Part I: Theory

2  Objective Bayesianism

Suppose a patient has a high fever, a dry cough and appears confused—to
what extent should one believe that he has Legionnaire’s disease?

Bayesians hold that an agent’s degrees of belief ought to satisfy the ax-
ioms of probability. Thus the above degree of belief has the form of a condi-
tional probability statement, p(l]fdc) where ! signifies that the patient has
Legionnaire’s disease, f that he has a high fever, d that he has a dry cough
and ¢ that he appears confused. Subjective Bayesians stop there and con-
sider an agent to be rational whatever probability function he adopts as her
initial belief function. But objective Bayesians go further, insisting (i) that
an agent’s degrees of belief should also respect background knowledge—they
should for example be calibrated with known frequencies (if she knows only
the incidence rate of Legionnaire’s disease in the poputation then p({} should
match that rate}-—and (ii) that the agent should commit to cutcomes only
to the extent warranted by background knowledge (e.g. if she knows nothing
concerning [ then she should not commit to {; instead she should equivocate
between ! and —I, i.e. set p(I) = p(—1} = 1/2).

More precisely, objective Bayesians suppose that an agent'’s background
knowledge 3 delimits a set [Pz of probability functions that are compatible
with that knowledge, and that the agent should choose a function p € g
that maximises entropy as her belief function. The entropy of a probability
function p is

(1) Hp)=- Y p(v)logp(v),

vel?

where {1 is the space of all possible indivisible outcomes, e.g. @ = {+{+f+d+e}.!

IThe notation +l refers to either I or —l; thus there are 24 indivisible outcomes,
~l=fod—e, =l—d—de,...,Ifde. We shall assume throughout that Q is finite. The ex-
tension to the infinite is discussed in [Williamson, 2005c, §19].
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Entropy is interpreted as a measure of the uncertainty or lack of commit-
ment of a probability function: the more middling the probabilities, the
higher the entropy and the higher the uncertainty; the nearer the probabil-
ities are to the extremes of 0 or 1, the lower the entropy and the more the
probability function commits to certain outcomes.2 A probability function
in Pg that has maximum entropy is compatible with background knowledge
but is maximally non-committal in other respects.® Such a probability func-
tion is to be desired as a representation of one’s degrees of belief because
it is guided by empirical information yet is on average maximally cautious
when it comes to risky decisions, which tend to be embarked upon when
one has more extreme degrees of belief.?

For a set Q of probability functions we shall write 2 1 Q as shorthand
for pe {g € Q: H(g) is maximised}. Objective Bayesians maintain then
that one should take p 1 Ps as one’s belief function, given background
knowledge 3. This principle is often called the mazimum entropy principle;
it considerably narrows down the values one can ascribe to p(l fde).®

Two questions remain: How should one best represent the probability
function p 1 P3? How should one calculate probabilities like p(l| fde)? One
can appeal to Bayesian nets to address these questions: a Bayesian net
offers an efficient and perspicuous representation of a probability function
and offers an efficient way to calculate conditional probabilities.

3  Bayesian Nets

Consider a domain V = {4y, A43,...,A,} of finitely many variables, each
of which has finitely many possible values. Let a;@A4, signify that a; is
an assignment of a value to variable A;. Associated with V there is set
v = {a1a2 - an : a;QA4;,1<i<n} of indivisible outcomes.

A Bayesian net py = (G, S) contains

¢ a directed acyclic graph G whose nodes are variables in V' (e.g. Fig. 1),

e a probability specification S which contains the probability distribu-
tion of each variable in V' conditional on its parents in G (Table 1
contains an example distribution—B, C, and D each take two possi-
ble values, superscripted by 0 and 1).

A Bayesian net is also subject to an assumption, the Markov Condition,
which holds that each variable A4, is probabilistically independent of its

2[Shannon, 1948].

3| Jaynes, 1957].

4[Williamson, 2005b).

5Plausibly P will be a closed convex set of probability functions, in which case p { P
is uniquely determined—see [Williamson, 2005a, §5.3]. g
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Figure 1. A directed acyclic graph.

Table 1. The probability distribution of D conditional on B and .
p(d°[B°)y = 0.7 p(d'|FPF) = 0.3
p(d®|b%1) = 0.9 p(d'|p%') = 0.1
p{d?['c®) = 0.2 p(d'|b*c?) = 0.8
p(d®|btel)y = 0.4  p(di|ble') = 0.6

non-descendants ND; in G conditional on its parents Par; in G, written
At‘ AL ND,‘ | PG.T',i.

A Bayesian net determines a unique probability function p over - since
the Markov Condition implies that

1]
plaraz - a,) = | | plas|par,),
i=1
where par;aPar; is determined by ajas- - a,, and since the probabilities
in this product are all contained in S.

A Bavesian net p offers an attractive representation of a probability func-
tion p for a number of reasons. First, p perspicuously represents probabilistic
independencies satisfied by p in the sense that one can simply read inde-
pendencies off the graph: for X, Y, Z ¢ V, X 1L Y | Z if Z blocks each
path between X and Y, i.e., for each path between 4; € X and A; e ¥,
there is some node on the path in Z whose adjacent arrows meet head-to-
tail or tail-to-tail, or there is a node on the path whose adjacent arrows
meet head-to-head and Z contains neither that node nor any of its descen-
dants. Second, p is an efficient representation in the sense that relatively
few probability specifiers p(a;|par;) determine a large number of probahil-
ities p{ajas - a,) (this depends on the structure of &: roughly speaking
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the sparser the graph G, the smaller the specification S). Third, p admits
efficient probabilistic inference: there are algorithms for quickly determin-
ing conditional probabilities from the Bayesian net (again, the efficiency of
these algorithms depends on the structure of the graph).

Bayesian nets are typically constructed in one of two ways. One is to
employ a machine learning methodology to construct a net that represents
the frequency distribution of a database of past observations of assignments
to variables in V. The other is to elicit a graph and probability specifiers
from an expert to construct a net that represents the expert’s (subjective
Bayesian) belief function. Here we are interested in objective Bayesian prob-
ability rather than frequency or subjective Bayesian probability—clearly
neither of these two approaches are appropriate for representing an objec-
tive Bayesian belief function. We thus need a technique for constructing
a Bayesian net that represents a probability function, from all those that
satisfies constraints imposed by background knowledge, that maximises en-

tropy.

4  Objective Bayesian Nets

An objective Bayesian net, or obnet for short, is a Bayesian net that repre-
sents an objective Bayesian probability function p, i.e. a probability func-
tion that maximises entropy subject to constraints imposed by background
knowledge 3.

An objective Bayesian net can be constructed using the following strat-

gyt
Step 1 determine conditional independencies that p T Ps must satisfy,

Step 2 represent these by a directed acyclic graph G that satisfies the
Markov Condition with respect to p,

Step 3 maximise entropy to calculate the numerical parameters p(a;|par;)
in the probability specification 5.

We shall briefly run through each of these steps in turn—this procedure
for constructing an objective Bayesian net is presented in more detail in
[Williamson, 2005a, §§5.6-5.7].

Step 1: Determine Conditional Independencies

We shall suppose 8 can be construed as probabilistic constraints my,.-., Ty
on the probability function p. For example, 71 might be p(a;]az)=0.7, and
72 might be p(azes) = plas)’plaz).

8[Neapolitan, 1990].
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1, (1)
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Figure 2. Constraint graph.

Ay

Construct an undirected graph, the constraint graph, by taking the vari-
ables in V' as nodes and by connecting two nodes with an edge if they occur
in the same constraint.

Suppose, for example, that V = {4,,..., 45}, m is a constraint involving
A and A, 7y involves Aa, A3, Ay, 73 involves Az, As, and 7y involves A,.
Then the constraint graph is depicted in Fig. 2.

The constraint graph tells us about probabilistic independencies that the
maximum entropy function will satisfy, since the following key property
holds:” if Z separates X from Y in the constraint graph then X 1LY | Z
for p 1 Pgs.

In Fig. 2, for example, A2 separates 4; from Az, A4 and Ag, so we know
that a maximum entropy function renders A; probabilistically independent
of Az, Ay and As conditional on Aj.

Step 2: Construct a Graph Satisfying the Markov Condition

One can transform the constraint graph into a directed acyclic graph G that
satisfies the Markov Condition via the following algorithm:®
» triangulate the constraint graph,
¢ re-order V according to maximum cardinality search,
e let Dy,..., D, be the cliques of the triangulated constraint graph ordered
according to highest labelled node,
i-1 L

o set By =D;n(JlZ  Diyforj=1,...,1,
o set F; = DA\E; for j=1,...,1,
¢ take variables in V as the nodes of &,
e add an arrow from each vertex in Ej; to each vertex in F; (j = 1,...,1),
s ensure that there is an arrow between each pair of vertices in D; (j =
1,...,1).

The resulting directed graph often looks much like the undirected con-
straint graph—in our example & is depicted in Fig. 3.

7[Williamson, 2005a, Theorem 5.3}, _ ‘
83%ee [Williamson, 2005a, §5.7] for an explanation of the graph-theoretic terminology.
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Figure 3. Graph satisfying the Markov Condition.

Step 3: Determine Probability Specification

Having found a graph G that satigfies the Markov Condition, to construct
an objective Bayesian net it only remains to determine the probability dis-
tribution of each variable conditional on its parents.

Here it helps to rewrite the entropy equation as H = i Hi where

H==Y| 1] aslper;) |logp(apar,),
AjeAnc;

{Ane; being the set of ancestors of A; in G.)

One can then use numerical optimisation techniques or Lagrange mul-
tiplier methods to find the parameters plas|par;) that maximise entropy.
This entropy maximisation problem will in practice be a smaller problem
than the original problem of maximising entropy over the whole domain
(Equation 1) since there will in practice be far fewer parameters of the form
pla;|par;) than there were of the form p(v) = p(ayay,. .y @y) (this is be-
cause in practice while one may know of many observations or constraints,
each constraint tends to involve relatively few variables in comparison with
7, as n becomes large, so @ tends to be sparse).

We see then that by pursuing this three-step procedure it is quite straight-
forward to construct an obnet, given a set of probabilistic constraints.

Quantitative probabilistic constraints are clearly required in order to ap-
ply the maximum entropy principle. However background knowledge does
not always take the form of a set of quantitative constraints on degrees of
belief-—-an agent may know of qualitative causal relationships, for instance.
The task of converting qualitative constraints into quantitative constraints
is a significant challenge for objective Bayesianism.? We shall see next how
qualitative knowledge of influence relationships (e.g. causal influences) can
be converted into quantitative constraints on an agent’s belief function p.

#[Williamson, 2005¢, §18].
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5  Influence Relations

We turn now to the question of how one can construct an objective Bayesian
net when background knowledge includes qualitative knowledge of influence
relationships.

We shall take the following to be the defining feature of the notion of
influence: learning of the existence of new variables that are not influences
of the other variables should not change degrees of belief concerning those
other variables.'?

The causal relation, for example, is an influence relation. If an agent
learns of a new variable that is known not to be a cause of any the variables
she already knew about, then this new information provides no reason for
the agent to change her degrees of belief concerning those other variables.
n the absence of any reason for change, her degrees of belief should stay
the same. (In contrast, learning of new causes may motivate a change in
degrees of belief: at first glance the flooding of glacial valleys in Kyrgyzstan
and the insect population of southern England seem quite unrelated, but
the knowledge that global warming affects both these variables may warrant
an increase in the degree to which one believes insect populations will rise
given that glacial flooding is increasing.) Causality and other examples of
influence relationships will be discussed in Part IL.

Given the above implicit definition of influence, it is straightforward to
sce that qualitative knowledge concerning influences can be transferred into
quantitative constraints on degrees of belief. Suppose V 2 U is a set of
variables containing variables in U together with other variables that are
known not to be influences of variables in I7. As long as any other knowledge
concerning variables in VAU does not itself warrant a change in degrees of
belief on U, then p} ;; = p,, i.e. one’s belief function on the whole domain
¥ formed on the basis of all one’s background knowledge 3, when restricted
to U7, should match the belief function one would have adopted on domain
U given just the part 3 of one’s knowledge involving U. Thus knowledge
of influences is transferred into equality constraints on degrees of belief.

Ouce qualitative knowledge has been transferred into quantitative con-
straints on degrees of belief, the three-step procedure of §4 for constructing
an objective Bayesian net can be directly applied. However, the fact that
the new constraints are equality constraints leads to a simplification: these
new constraints can be ignored in Step 1 of the process.!! We thus have a
slightly modified three-step procedure:

Step 1 determine conditional independencies that p T P3 must satisty from

19[Williamson, 2005a, §11.4].
11 {williamson, 2005a, Theorem 5.6].
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the constraint graph, ignoring constraints yielded by knowledge of in-
fluences,

Step 2 represent these independencies by a directed acyclic graph & that
satisfies the Markov Condition with respect to p,

Step .3 maximise entropy to calculate the numerical parameters p(a;|par;)
in tl}ﬂ probability specification S (remembering to take equality con-
straints yielded by knowledge of influences into account).

Thus knowledge of influences does not add to the complexity of an objective
Bayesian net, in the sense that the graph in the net is just as sparse as it
would have been if there were no such knowledge,

A further simplification is possible in the case in which the agent knows
all the influence relationships amongst the variables and has no quantitative
knowledge that overrides the equality constraints generated by these influ-
ence relationships (n.b. quantitative information regarding the strengths of
the influence relationships will not override the equality constraints).!? As
long as the influence graph—i.e. the directed graph in which there is an
arrow from variable A to variable B if and only if A directly influences
B s acyclic, we can go straight to Step 2: the influence graph itsell sat-
isfies the Markov Condition.® Step 3 is also simpler in this case: we can
inaximise entropy by maximising each component H; of the modified en-
tropy equation sequentially (rather than maximising their sum).!* This
breaks down the entropy maximisation problem into n smaller problems.
In this case, then, the objective Bayesian net is just the inuence graph
plus sequentially-determined conditional probability distributions.

Having discussed the construction of obnets, we now turn to how they
might be updated (§6) and combined (§7).

6 Updating

An objective Bayesian net represents the degrees of belief that an agent
should adopt and these rational degrees of belief are determined by the
agent’s background knowledge. So when her background knowledge changes,
go too should the obnet. The extent to which the net changes will depend
on the extent to which background knowledge changes.

If the new knowledge consists of an observation o of the values of some
of the variables, then the new probability function p' 1 Py (0} is just the
old function conditional on the observation, i.e. p' = p(-|0) where p 1 Pg.*®

12[williamson, 2005a, pp. 99-100].
13[Williamson, 2005a, Theorem 5.7,
14[Williamson, 2005a, Theorem 5.8],
15[Williams, 1980, pp. 134-135)].
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This type of update is known as Bayesian conditionalisation. Tt is simple to
modify a Bayesian net to represent its Bayesian conditionalisation update:
the graph in the net remains the same but the probability specification gets
updated using standard propagation algorithms.'®

More generally, when the new knowledge consists of new constraints on
the agent’s degrees of belief that are consistent with the old constraints, the
new probability function p' 1 P is the probability function satistying I
that is closest to the old function p | Py in the sense that it minimises the
cross entropy distance to p, d(p',p) = X, p'(v) log ' (v)/p(v).)T Thus we
need to modify the objective Bayesian net p representing p { Pa to form its
cross entropy update p' that represents the p' € Py which minimises d(p', p).
This involves reconstructing the part of the graph of p that involves variables
in the new constraints and their ancestors in the graph and updating the

associated conditional probability distributions; the rest of the net stays the

same. '8

In other cases, the whole net may need be reconstructed. If the new
constraints are inconsistent with the old, background knowledge can not be
simply augmented, it must change: some element of background knowledge
must be repealed to eradicate the inconsistency. In this case a new objective
Bayesian net must be constructed around the changed constraints, via the
three-step procedure of §4 and §5. Similarly if the new knowledge consists
of knowledge of new variables as well as new constraints, a reconstruction
of the net will be required, unless the new knowledge does not warrant a
change of degrees of belief involving the old variables (in particular if the
new variables are known not to be influences of the old). In this latter case
one can just augment the old net by adding the new variables to the graph,
adding arrows to the new variables from old variables that occur in the same
constraints (and amongst new variables that occur in the same constraints)
and adding the probability distributions of new variables conditional on
their parents.

We see then that the updating of an objective Bayesian net hinges on the
updating of background knowledge. This yields a foundational approach
to updating—the warrant for degrees of belief, background knowledge, is
the crucial determinant of those degrees of belief; one does not update by
cohering with past degrees of belief but by satisfying constraints imposed
by this knowledge.

18[Neapolitan, 1990, Chapters 6-7).

N Db g #. Here p’ 1 Py is the function minimising d(p', ¢}, where ¢ is the central
function that gives the same probability to each elementary outcome [Paris, 1994, p.
120]. As long as constraints are all affine, this as the same function as that found by
minimising d(p, ¢} first and then minimising d(p’, p)- -see [Williams, 1980, pp. 139-140].

18 Williamson, 20054, §12.11].
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7  Combining

In .eer?ain circumstances it is useful to consider the combination p of two
objective Bayesian nets q and ¢, written p = g xv. (More generally, given a
set 12 of obnets we can denote their combination by p = *0.) For éxample

two or more agents .rna.y need to come to some consensus and act as on(;
:EEE;& 11(;(;1) ;E?Qquestlon arises as to which belief function this group agent

From the foundational point of view, the combination of a set of obnets
should be determined from the combination of the set of background knowl-
edge bases that underpin the respective obnets: p = g * v should represent
p 1 ng‘ where 8 = « x4, the combination of the knowledge base y that
determines q and the knowledge base § that determines r.
So the combination of obnets boils down to the combination of knowledge

bases: How should knowledge bases be combined? 'This is a rather subtle
quest_lon that turns on the origins of the constraints in the knowledge bases

Counsider an example. Suppose Quentin’s background knowledge contains.
the constraint ¢(a) = 0.7, while Ronette’s background knowledge & contains
r(_a) = 0.8. Clearly these are incompatible assignments of probability if
r?amterpreted as constraints on a single function p. But the way this incon-

sistency is resolved depends on the origins of these constraints. Suppose

that both constraints originated from observed frequencies: for Quentin g

falls under a reference class which has observed frequency 0.7 of a-type out-

comes, while for Ronette a falls under a reference class which has observed

frequency 0.8 of a-type outcomes. If Ronette’s reference class is narrower
than Quentin’s, then her constraint should override Quentin’s, and only
the constraint p(a) = 0.8 should appear in the combined knovx:ledge base
# = vy *4. On the other hand, if neither reference class is narrower than the
other then neither constraint is defeated by the other and the best one can
do is include the constraint p(a) € [0.7,0.8] in 4.2° In general, we can sa
that Pg is the smallest closed convex set of probability function’ls generatezlr
by undefeated constraints in v u 4.

In sum then, a combination of objective Bayesian nets will depend on
defeasibility relationships amongst constraints in the associated knowledge
bages. If one agent’s knowledge is better than all the others’ then the group
obnet should match that agent’s obnet. Typically though the combined

obnet will need to be constructed afresh from the combined background
knowledge.

1%[Gillies, 1991).
20[Wi]liﬂ.ﬂlﬂ0n, 2005a, §5.3].
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Part II: Applications

We shall now quickly run through some applications of the theory devel-
oped above. A more detailed treatment is given in [Williamson, 2005a].

8 Probability Logic
The simplest probability logics are concerned with questions of the form:
given premiss sentences and their probabilities, what probability should
attach to a conclusion sentence?

For instance,

’
034, 07 g g,

a1 A a2 (—ay v ag) — as,"%ag v ag,
is short for the following question: given that ay A —ap has probability 0.9,
(=4 v az) — ag has probability 0.2, as v a3 has probability 0.3 and a4 has
probability 0.7, what probability should as — a; have?

Such questions can be given an objective Bayesian interpretation: sup-
posing background knowledge consists of the constraints p(a; A —a2) =
0.9, p((—ay v az) — as) = 0.2,p(as v ag) = 0.3,p(as) = 0.7, what degree of
belief should be awarded to ag — a7

An objective Bayesian net can be constructed to answer this question.
The first step is to determine conditional independencies that must he sat-
isfied by the probability function, out of all those that satisfy these con-
straints, that maximises entropy. To do this we link variables that occur in
the same constraint, as in Fig. 2; separation in this graph determines con-
ditional independencies. The second step is to transform this graph into a
directed acyclic graph satisfying the Markov Condition, such as Fig. 3. The
third step is to maximise entropy to determine the probability distribution
of each variable conditional on its parents in the directed graph. This yields
a Bayesian net. Finally we use the net to calculate the probability of the
conclusion

plas — a1) = p{—as A ar) +plas A ar) + p(—as A —ay)
pla1) + p(—as|-a1)(1 — pla1))

N

Thus we must calculate p(a;) and p(—as|—a1) from the net, which can be
done using standard algorithms,

This application of obnets to probability logic is quite straightforward
because background knowledge is quantitative. Other applications use the
apparatus of §5 to exploit qualitative knowledge, as we shall now see.

Objective Bayesian Nets 725

9  Causal Modelling

Many types of causal model (e.g. structural equation models) consist of in-
formation about the qualitative causal relationships amongst a set of vari-
ables together with the quantitative strengths of these causal relationships.
In order to easily infer a causal model from data, a number of fundamental
assumptions are made about connections between causal relationships and
empirical phenomena. Perhaps the key assumption is the following:

Causal Markov Condition (CMC) each variable is probabilistically in-
dependent of its non-effects conditional on its direct causes.

A fundamental problem facing proponents of causal modelling is the ques-
tion of the justification of the Causal Markov Condition. One approach-
taken by [Pearl, 2000] for example—is to make a number of other assump-
tions that are collectively stronger than the CMC and which together imply
CMC. For example Pearl assumes universal determinism, that variables are
functions of just their direct causes and error terms that are not in the
variable set, and that error terms are probabilistically independent.

Objective Bayesian nets offer a less drastic solution to this conundrum.
The components of the causal model can be thought of as an agent’s back-
ground knowledge 3. As we saw in §5, causality is an influence relation, and
if 3 contains just causal relationships and their strengths then the graph
in the obnet generated by £ is just the causal graph. By construction, the
Markov Condition is guaranteed to hold for this graph. But the Markov
Condition for the causal graph is just the Causal Markov Condition. Thus
the Causal Markov Condition must hold, where the probabilities that CMC
talks about are interpreted as the degrees of belief that an agent ought to
adopt if all she knows is the causal model.

Thus objective Bayesian nets offer a framework for causal reasoning. But
obnets can also be applied to other influence relations. We shall turn to
other examples of influence relations now.

10 Logical Reasoning

A sentence @ is a logical influence of sentence b if either a or —a is a necessary
component of some set of sentences that logically imply either b or —b,
i.e. +a,d = +b for some sentence d, and d ¥ +b.

By analogy with causal influence, logical influence is plausibly an influ-
ence relation: learning of variables that are not logical influences of the
others provides no reason to change one’s degrees of belief concerning those
other variables. Hence objective Bayesian nets can be used to represent an
agent’s degrees of belief in sentences given qualitative knowledge of logical
influence relationships.
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Figure 4. A logical influence graph.

For example, suppose 3 consists of the following proof:
¢ — 9 |hypothesis|
: 8 — ¢ [hypothesis]
(0 (6— ) = (8 — ¢) — (9~ v) foxxiom]
(¢ — 1) — (8 — (¢ — v)) [axiom)]
L8 (6 - ) [by L, 4]
(= 0)— (68— ) (3.5
: 9 — {2, 6] .
This proof vields not only qualitative knowledge of logical influences but

L o o

=1 & U

also quantitative constraints, namely p(bs|b1bs) = 1, plbslbabs) = 1, p(br]babs) =

1, where variable B; takes assignment b; (respectively —b;) just when the
sentence on line i of the proof is true (respectively false). Then t.he graph
in the obnet generated by 3 maps the structure of the proof, as in F.‘lg. 4,
The probability specification in the obnet contains the probabilities yielded
by the quantitative constraints p(bs|bibs) = 1, p{bg|bsbs) = 1, p(b7|bgl.)(,:)'=
1, p(—bs|bybs) = 0,p(—bs|babs) = 0, p(—br|babs) =10; all othver.;frobablhtles
in the specification, e.g. p(bg|—babs), will be set to 5 by maximising entropy.
This net can then be used to calculate arbitrary probabilities, e.g. p(bi|—br).

11 Semantic Reasoning

A concept a is a semantic influence of concept b if a (o.r i.ts complemen.t) is
a b (or its complement). For example, flu is a semantic influence of virus,
because 'flu is a virus. . ' ’

Plausibly, semantic influence is an influence relation. Learning that 1fiu
and herpes are both viruses provides no reason to change degrees of belief
involving 'flu and herpes: one’s degree of belief that a patient has herpes
given that he has "flu and that they are both viruses should be the. same
as it would be in the absence of the knowledge that they are both viruses.
Thus learning of non-semantic-influences should not change degree.s of belief
over other variables. (On the other hand, learning of semantic mﬂu,ence.:s
may warrant a change in degrees of belief: learning of 'flu and tl}at flu is
a short-term illness and a virus may increase one’s degree of belief that a
patient has virus given that he has a short-term illness.)
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Figure 5. A semantic influence graph.

Since semantic influence is an influence relation, objective Bayesian nets
can be used to represent an agent’s degrees of belief given qualitative se-
mantic knowledge. Suppose the agent’s background knowledge # consists
of the following semantic knowledge:
¢ ’flu is a virus,

s herpes is a virus,
e ’flu is a short-term illness,
e herpes is not a short-term illness,

This consists of qualitative semantic knowledge, but also imposes the
constraints p(v|fx) = 1,p(v|hz) = 1,p(s|fz) = 1,p(—s|hz) = 1, where v
signifies virus, f ’flu, h herpes, s short-term illness and z is an arbitrary
assignment. The resulting obnet will consist of the semantic graph Fig. 5 (a
semantic graph is sometimes called a semantic network in Al) together with
the entropy maximising probability specifiers e.g. p(v|fh) = 1, p(v|f—h) =
Lp{v|=fh) = 1,p(v|~f—h) = 1/2. One can use the obnet to calculate
probabilities such as p(hjvs).

12 Argumentation

A proposition a is an argumentaetive influence of proposition b if a, or its
negation, is an argument in favour of, or against, 5. Plausibly, this is another
example of an influence relationship: learning of propositions that are not
argumentative influences of other propositions does not warrant a change
in one’s degrees of belief involving the other propositions.

If so, an objective Bayesian net can be used to represent an agent’s degrees
of belief given knowledge of argumentation structure. As before, given full
knowledge of argumentation structure, the obnet will consist, of an argument
graph together with probability specifiers that maximise entropy.

13  Recursive Modelling

In a recursive model the values that variables take may themselves be struc-
tured, containing further variables. Such models can be used to represent
nested relationships. For example, the fact that smoking causes cancer
causes governments to restrict tobacco advertising. This can be represented



728 Jon Williamson

by a recursive model of the form SC — A where §C is a variable taking
value § — C or value S A= C, S represents smoking, C' cancer and A
advertising, the latter three variables just take the value true or false, and
the arrow ropresents causal connection. Another example: Fig. 4 can be
thought of as a recursive model if each variable B; takes as one value the
gentence ou line ¢ of the proof used to generate the graph.

A variable A is superior to variable B if B occurs at a lower level to
A. In the above causal model, SC is superior to 5 and ', but not to A.
Arguably, superiority is an influence relation: learning of more structure at
lower levels does not warrant a change in degrees of belief concerning higher
levels. Full knowledge of superiority relationships leads to an obnet which
contains arrows from superiors to their direct inferiors.

In fact a recursive model soon leoks quite complicated if all these superi-
ority arrows are included in the model. But one can eliminate them from the
model if one imposes a new Markov Condition, called the Recursive Markov
Condition, which holds that each variable is probabilistically independent
of those other variables that are neither its inferiors nor at the same level,
conditional on its direct superiors. This yields a recursive Bayesian net,
a formalism that is explored in some detail in [Williamson and Gabbay,
2005).

14 Concluding Remarks

We have explored a new, third way of constructing a Bayesian net: like a
subjectively elicited Bayesian net, an objective Bayesian net represents an
agent’s degrees of belief; like a Bayesian net learned from a frequency distri-
bution, an obnet is objectively determined from data. Objective Bayesian
nets combine the best aspects of the other two methods: an obnet can make
use of frequency information where available, but can also incorporate qual-
itative knowledge that is not reflected in frequencies.

A theory of rationality must tell us about knowledge (how it should be
gleaned, updated, combined, and so on}, about belief, and about decision-
making, and must also offer a practical framework for their integration.
Objective Bayesian nets provide the belief module: given knowledge, an
obnet can be constructed to represent the agent’s degrees of belief; given
an obnet, a decision theory can advise the agent as to which decisions to
make on the basis of her beliefs. Objective Bayesian nets are thus a crucial
component of our normative toolkit.
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