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@ Orthogonal polynomials
© Properties of classical orthogonal polynomials
© Quasi-orthogonality and semiclassical orthogonal polynomials

@ The hypergeometric function
@ The »F; function
@ Real zeros of 2 F; polynomials
@ Hilbert-Klein formulas
@ Jacobi’'s formula
@ A modification of the division algorithm

© Convergence of Padé approximants for a hypergeometric
function
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Wallis was the first person to use the term "hypergeometric” to mean " more
than geometric”.
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Wallis was the first person to use the term "hypergeometric” to mean " more
than geometric”.

In 1812, Gauss presented to the Royal Society of Sciences at Géttingen his
famous paper in which he considered the infinite series

a)k b)kZ

2F1(abCZ_1+Z )k' s

lz] <1,

where the parameters a, b, ¢ and z may be real or complex and

Mo+ k)
Me)

is Pochhammer’s symbol, also known as the shifted factorial.

() =afa+1)...(a+k—-1)=
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Wallis was the first person to use the term "hypergeometric” to mean " more
than geometric”.

In 1812, Gauss presented to the Royal Society of Sciences at Géttingen his
famous paper in which he considered the infinite series
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where the parameters a, b, ¢ and z may be real or complex and
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is Pochhammer’s symbol, also known as the shifted factorial.

c#0,—1,—2 ... since

() =afa+1)...(a+k—-1)=

(=mk =0, k>n

we have division by zero.
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Wallis was the first person to use the term "hypergeometric” to mean " more
than geometric”.

In 1812, Gauss presented to the Royal Society of Sciences at Géttingen his
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is Pochhammer’s symbol, also known as the shifted factorial.

c#0,—1,—2 ... since

() =afa+1)...(a+k—-1)=

(=mk =0, k>n
we have division by zero.

Putting a = ¢ and b = 1, we recover the elementary geometric series Y.~ z~.
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Wallis was the first person to use the term "hypergeometric” to mean " more
than geometric”.

In 1812, Gauss presented to the Royal Society of Sciences at Géttingen his
famous paper in which he considered the infinite series

oo

2Fi(a, b; ¢; 2) Z (2)( [3:,2 oz <1,

where the parameters a, b, ¢ and z may be real or complex and

Mo+ k)
Me)

is Pochhammer’s symbol, also known as the shifted factorial.

() =afa+1)...(a+k—-1)=

c#0,—1,—2 ... since
(=mk =0, k>n
we have division by zero.

Putting a = ¢ and b = 1, we recover the elementary geometric series Y.~ z~.

The infinite series converges for |z| < 1 (see Assignment 2, Exercise 1) and this
radius of convergence can be extended by analytic continuation, so that 2F; is
a single valued analytic function of z on Cpg ).
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For k,n € N,

(=) = (,1)k7(n Z!k)! for0< k<n
0 fork>n+1.
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For k,n € N,

n!

) for0< k<n
(m = T
0 fork>n+1.
When a (or b) is a negative integer, say a = —n, the series terminates

k
2Fi(—n, bcz)—1+za)kc)73(|7 lz] < 1,

and reduces to a polynomial of degree n and convergence does not enter the
discussion.
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For k,n € N,

n!

) for0< k<n
(m = T
0 fork>n+1.
When a (or b) is a negative integer, say a = —n, the series terminates

k
2Fi(—n, bcz)—1+za)kc)73(|7 lz] < 1,

and reduces to a polynomial of degree n and convergence does not enter the
discussion.

When b and c are real, the zeros must occur in complex conjugate pairs.
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For k,n € N,

1 for0< k<n
(7n)k =] ( ) (n = k)l
0 fork>n+1.
When a (or b) is a negative integer, say a = —n, the series terminates
2Fi(=n, b; c; z)—1+za)k)73(|7 lz] < 1,

and reduces to a polynomial of degree n and convergence does not enter the
discussion.

When b and c are real, the zeros must occur in complex conjugate pairs.

Questions

@ What is the asymptotic distribution of non-real zeros? [Boggs, Driver,
Duren, Johnston, Jordaan, Kuijlaars, Méller, Orive, Srivastava, Zhou,
Wang, Martinez-Finkelshtein, Martinez-Gonzales]

@ When are all n zeros real and what is their location?

@ Why are interested in real zeros?
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Klein's result

Theorem (Klein, 1890)
Let F = 2F1 (—n, b; c; z) where b, c € R and ¢ > 0.

(i) For b> c+ n, all zeros of F are real and lie in (0,1).

(i) Forc+j—1<b<c+j,j=1,2,...,n; F hasj real zeros in (0,1). If
(n—J) is odd, F has one additional real zero in (1,00).

(iii) For0 < b < c, if nis odd, F has one real zero in (1, 0).

(iv) For—j<b< —j+1,j=1,2,...,n, F has j real negative zeros. If
(n—J) is odd, F has one additional real zero in (1,0).

(v) For b < —n, all zeros of F are real and lie in (—o0, 0).
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Figure: Values of b and c¢ for which 2F1(—n, b; ¢; z) has n real simple
zeros in the intervals (0,1), (—o0,0) are indicated by the blue and green
regions respectively.
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Hilbert-Klein formulas

@ The Hilbert-Klein formulas give number of zeros of Jacobi polynomials in
the intervals (—1,1), (—o0, —1) and (1, c0).

@ Stated in Szegd's book

@ Also known to Stieltjes
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Hilbert-Klein formulas

@ The Hilbert-Klein formulas give number of zeros of Jacobi polynomials in
the intervals (—1,1), (—o0, —1) and (1, c0).

@ Stated in Szegd's book

@ Also known to Stieltjes

—no+pB+1+4+n _ n! (@, B)
2F ( a1 ,Z) = 7(04—}— 1)"73,, (w)

where w =1 — 2z:

l<w<oo < —o00o0<z<0
—o<w< -1 & 1<z<x
—-l<w<l & 0<z<l1
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Jacobi's formula

Jacobi's formula [Rodrigues, 1816; lvory, 1822; Jacobi, 1827]

—-na+B+1+n _\ n! (.B)(1 _
zFl( o ,z) = arn P 22). (1)
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Jacobi's formula

Jacobi's formula [Rodrigues, 1816; lvory, 1822; Jacobi, 1827]

—-na+B+1+n _\ n! (.B)(1 _
zFl( o ,z) = arn P 22). (1)

Rodrigues type formulas are usually derived from the underlying differential
equation (very tedious and quite difficult!).
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Jacobi's formula

Jacobi's formula [Rodrigues, 1816; lvory, 1822; Jacobi, 1827]

—-na+B+1+n _\ n! (.B)(1 _
zFl( o ,z) = arn P 22). (1)

Rodrigues type formulas are usually derived from the underlying differential
equation (very tedious and quite difficult!).

We shall prove the Rodrigues formula for hypergeometric polynomials directly.

Kerstin Jordaan Properties of orthogonal polynomials



Jacobi's formula

Jacobi's formula [Rodrigues, 1816; lvory, 1822; Jacobi, 1827]

B I
2F1( n’azf—li—l—’_n?z):ﬁ aﬁ(lfzz) (1)

Rodrigues type formulas are usually derived from the underlying differential
equation (very tedious and quite difficult!).

We shall prove the Rodrigues formula for hypergeometric polynomials directly.

Recall Leibnitz' formula for the nth derivative of the product of two functions

O (6 = Z( ) 008" )
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Jacobi's formula

Jacobi's formula [Rodrigues, 1816; lvory, 1822; Jacobi, 1827]

B I
2F1( n’azf——li—l—’_n?z):ﬁ a@(1722) (1)

Rodrigues type formulas are usually derived from the underlying differential
equation (very tedious and quite difficult!).

We shall prove the Rodrigues formula for hypergeometric polynomials directly.

Recall Leibnitz' formula for the nth derivative of the product of two functions

& e = Z( ) 008" )

Theorem (Jacobi’s formula)

Forn e N

1—c _z c+n—b n 1 bc
2F1(—n; b; ¢; z) = %;ﬂ [Zc+n_ (1-2) ] (2)
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(b )(1 _ Z)b c—1
—1)(=1)(b—c)(b—c —1)(1 — z)b72
D b—c)b—c—1)..(b—c—k+1)(1—z)" <k
c—b)(c—b+1).(c—b+k—-1)(1—-z)*
€ Bkt =2 3)
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(b )(1 _ Z)b c—1
—1)(=1)(b—c)(b—c —1)(1 — z)b72
D b—c)b—c—1)..(b—c—k+1)(1—z)" <k
c—b)(c—b+1).(c—b+k—-1)(1—-z)*
€ Bkt =2 3)

Also |f g(z) = z‘H’n*l7
g/(z) =(c+n—1)z° c+n—2
g//(z) = (C +n— 1)(C +n— 2)zc+n 3
g(n,k)(z) =(c+n—-1)(c+n—-2)...(c+n—(n—k)) Setn—(n—k)-1
(et n-1)(e - 2o+ 2
1

_ (On jern-

() @)

Kerstin Jordaan Properties of orthogonal polynomials



Then, using Leibnitz formula, ( ) and (4) the RHS of (2) is equal to

Zl c( )c+n b
(c)

1 c(l )c+n b

(n k) (Z)

(¢)n 2
> (1) e Z)"(lfz)k
—-gy et (2

=(1-2)"2FR (—n,c—b; P )

1—z
= 2F1(—n, b; ¢; z) by Pfaff’s transformation

()«

Theorem (Pfaff’s transformation)

If|x] <1and|x/(1-x)] <1, ¢c>b,

2Fi(a, b;c;x) = (1 — x) %2R < o ) .

1—x
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The orthogonality of the polynomial F(z) = 2Fi(—n, b; c; z) follows in a
transparent way from Rodrigues’ formula and it is interesting to see how the
interval of orthogonality varies with the parameters b and c.

Theorem

Let n € Ny, b, c € R and —c ¢ No. Then F(z) = 2Fi (—n, b; ¢; 2) is the n™
degree orthogonal polynomial for the n-dependent positive weight function
|z¢71(1 — 2)P=°="| on the intervals

(i) (0,1) forc>0andb>c+n—1;

(i) (1,00) forc+n—1<b<1—n;

(iii) (=00,0) forc >0and b<1—n

and has exactly n real, simple zeros on these intervals.
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Proof of (i)

We must show that if g¢(z) is an arbitrary polynomial of degree £ < n, then for
c>0,b>c+n—1, we have

/o F(2)g(2)z" "1 —z)"“"dz =0

Kerstin Jordaan Properties of orthogonal polynomials



Proof of (i)

We must show that if g¢(z) is an arbitrary polynomial of degree £ < n, then for
c>0,b>c+n—1, we have

1
/ F(2)ge(z)z" (1 —2)"“""dz=0
0
Now from Rodrigues’ formula (2),

()az"" Y (1= 2)"“"F(z) = D" |:Zc+n—1(1 _ Z)b—c]

dzn’

() /0 (1 ) (2)gu(2) dz = /0 1 {07 [~ 2] L gul2) e

where D" = Thus
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Proof of (i)

We must show that if g¢(z) is an arbitrary polynomial of degree £ < n, then for
c>0,b>c+n—1, we have

1
/ F(2)ge(z)z" (1 —2)"“""dz=0
0
Now from Rodrigues’ formula (2),

()az"" Y (1= 2)"“"F(z) = D" |:Zc+n—1(1 _ Z)b—c]

dzn’
() /0 (1 ) (2)gu(2) dz = /0 1 {07 [~ 2] L gul2) e

Integrate the right hand side by parts n times, each time differentiating ge(z)
and integrating the expression in curly brackets.

where D" = Thus
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Proof of (i)

We must show that if g¢(z) is an arbitrary polynomial of degree £ < n, then for
c>0,b>c+n—1, we have

1
/ F(2)ge(z)z" (1 —2)"“""dz=0
0
Now from Rodrigues’ formula (2),

()az"" Y (1= 2)"“"F(z) = D" |:Zc+n—1(1 _ Z)b—c]

dz"
() /0 (1 ) (2)gu(2) dz = /0 1 {07 [~ 2] L gul2) e

Integrate the right hand side by parts n times, each time differentiating ge(z)
and integrating the expression in curly brackets. We obtain

[{or a2 fata= (v [ 20 e

" (1)< 1Dk [Zc—l+n (1- z)b—c] pk-1 [ge(z)]E:

k=1
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Now we have

() / 71— 2)" " F(2)gu(2) dz
= () [ 2T 2D ) ¢

DD [ET - D @) )

k=1
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Now we have
1
(c),,/ 2Nl = 2)" 7 "F(2)gu(z) dz
0

- (—1)"/0 2711 — 2)P°D" [go(2)] dz
i Z SRANCE [25_1“ (1- Z)b_c} D" g(2)] Z: (5)

k=1

Each term in the sum (5) contains a product of powers of z and powers of

(1 — z), where the lowest and highest powers of z are ¢ and (¢ +n—1)
respectively. The lowest and highest powers of (1 — z) are (b—c—n+1) and
(b — c) respectively.
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Now we have
1
(c),,/ 2Nl = 2)" 7 "F(2)gu(z) dz
0

= (-1)" / Z7H(1 — 2)P D" [go(2)] dz

i Z SRANCE [25_1“ (1- Z)b_c} D" g(2)] Z: (5)

k=1

Each term in the sum (5) contains a product of powers of z and powers of

(1 — z), where the lowest and highest powers of z are ¢ and (¢ +n—1)
respectively. The lowest and highest powers of (1 — z) are (b—c—n+1) and
(b — c) respectively.

Hence, the boundary terms will all vanish when ¢ >0and b > c+n—1.
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Now we have
1
(c),,/ 2Nl = 2)" 7 "F(2)gu(z) dz
0

= (-1)" / Z7H(1 — 2)P D" [go(2)] dz

i Z SRANCE [25_1“ (1- Z)b_c} D" g(2)] Z: (5)

k=1

Each term in the sum (5) contains a product of powers of z and powers of

(1 — z), where the lowest and highest powers of z are ¢ and (¢ +n—1)
respectively. The lowest and highest powers of (1 — z) are (b—c—n+1) and
(b — c) respectively.

Hence, the boundary terms will all vanish when ¢ >0and b > c+n—1.

We have shown that forc >0, b>c+n—1and ¢ < n,

/0 F(2)gi(2)z ' (1 —2)> " "dz =0
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Remark
Using the hypergeometric representation of Jacobi polynomials

—na+pB+1+n n! (@,8)
F 1z ) = ———— Py —
2F1 ( a1 ,z) o+ 1)"73,, (1-2z), (6)

we see that the orthogonality relation of Jacobi polynomials pih )(x) for
a, B > —1 follows on replacing

b=a+pf+n+1
c=a+1

Z_lfx
2

1
/ 2Fi(—n, b; ¢; 2)ge(2)z" (1 — 2)° " "dz =0
0

forc>0,b>c+n—1.
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Figure: Values of b and c¢ for which 2F1(—n, b; ¢; z) has n real simple
zeros in the intervals (0,1), (—o0,0) and (1,00) are indicated by the
blue, green and red regions.
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Klein's result vs orthogonality

Klein's result:
@ Pertains to general 2 F; functions
@ Proof uses complex geometric argument

@ Results for other parameter values follow from Pfaff's transformation:

2Fi(—n,b;c;z) = %gﬁ(—n, b;l—n+b—c;1-—2)

- All zeros of F lie in (—00,0) for b< —n+1and ¢ >0
is equivalent to

- All zeros of F liein (1,00) for b< —n+landc<b+1—n
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Klein's result vs orthogonality

Klein's result:
@ Pertains to general 2 F; functions
@ Proof uses complex geometric argument

@ Results for other parameter values follow from Pfaff's transformation:

2Fi(—n,b;c;z) = %gﬁ(—n, b;l—n+b—c;1-—2)

- All zeros of F lie in (—00,0) for b< —n+1and ¢ >0
is equivalent to
- All zeros of F liein (1,00) for b< —n+landc<b+1—n

Klein's result and orthogonality yield the same parameter values.
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Question:

@ s this the whole story?
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Question:

@ s this the whole story?

Answer: [Dominici, Johnston, & Jordaan]

@ An algorithm based on a modification of the division algorithm
[Schmeisser, 1993] extends parameter values where > F1 polynomials have
only real zeros

@ The location of the real zeros for these parameter values can be obtained.
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The algorithm

Recall that given two polynomials f(x) and g(x), with deg(f) > deg(g), there
exist unique polynomials g(x) and r(x) such that

f(x) = a(x)g(x) + r(x)
with deg(r) < deg(g).

Denote the leading coefficient of a polynomial
f(x) = anx"+an—1x""1 4+ ... 4 a9 by lc(f) = a,.
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Let f(x) be a real polynomial with deg(f) = n > 2.
Define
fo(x) := f(x) and fi(x) = f(x)

and proceed for k = 1,2, ... as follows.
If deg(fx) > 0 perform the division of fi_1 by fx to obtain

fi—1(x) = qe—1(x)fi(x) = ne(x).

Define
foa(x) = re(x) if r(x) £ 0
YT () i r(x) =0

Terminate the algorithm when f; is constant and generate the sequence of

numbers ¢, ¢, ... where
/C(fk+1) .
f 0
Ck = /C(fkfl) ! rk(X) ?é .
0 if n(x)=0
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With the same notation as for the algorithm, we have

Theorem (Rahman & Schmeisser, 2002)

Let f be a polynomial of degree n with real coefficients. Then

1. f has only real zeros if and only if the above algorithm produced n — 1
non-negative numbers ci, . .., Co—1.

2. The zeros of f are all real and simple if and only if the numbers
c,...,Cch—1 are all positive.
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Applying the algorithm to ,F; polynomials

Computational implementation using Maple 13 shows that the restrictions
placed on the ranges of parameters b, ¢ € R given by Klein's result and
orthogonality are not the best possible and that there are other values of b,
¢ € R for which 2F; (—n, b; ¢; z) have n real simple zeros.

The results obtained are proven analytically.

The intervals where the real zeros are located for the "new” values of b and ¢
are determined.
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@ The zeros of ,F1 (=2, b; c; z) are real and simple if and only if either:

(i) ce<—-1landc< b<0.
(i) =1<c<0andb>0orb<ec.
(i) ¢>0 and b<0orc<b.

@ The zeros of 2F1 (=3, b; c; z) are real and simple if and only if either:

(i) c<—2 andl+c<b<—1.
(i) 2<c<-1 and-1<b<1l+ec
(iii) ¢>—-1,c#0and b< -1 orb>c+1.
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for which 2 F1 (=2, b; ¢; 2)
has only real simple zeros
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Main result

The zeros of 2F1 (—n, b; c; z) are real and simple for all n > 4 if and only if

(C, b) € Ri1UR2UTR3UTRs where

Ri = {c+n—-2<b<2—n},
R2 = {c>-1, b<2—n},
Rs = {c>-1, b>n—2, b>c+n—2},
Rs = {-1<c<0, c+n—-2<b<n-—2}.
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Figure: Values of b and ¢ for which yFy(—n, b;c;z), n=4,5,... hasn
real simple zeros
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Real zeros of ,F; polynomials

Question:

@ Why are real zeros important?
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Real zeros of ,F; polynomials

Question:

@ Why are real zeros important?
Answer:

@ Applications:

e Canonical divisors in weighted Bergman spaces: Proof of the
main result depended on knowledge of the location of the
zeros of a »F; function [Weir, 2002]

e Poles and convergence of Padé approximants for »F1(a, 1; ¢; )
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