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Power series

A formal power series is an expression

f (z) =
∞∑
j=0

ajz
j , aj ∈ C , j = 0, 1, 2, 2, . . .

For an integer ` ≥ 0, we write

f (z) = O(z`)

if a0 = a1 = a2 = . . . = a`−1 = 0.

We write f (z) ≡ 0 if aj = 0 ∀j ≥ 0.
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The Padé Approximant

The [m/n] Padé approximant for a formal power series

f (z) =
∞∑
k=0

tkz
k

is a rational function
Pmn(z)

Qmn(z)

:=
[m
n

]
(z)

of type (m, n)such that

f (z)Qmn(z)− Pmn(z) = O(zm+n+1)

as z → 0.

The Padé approximant is a rational function Pmn(z)/Qmn(z) that agrees with
f (z) up through order m + n.

The name comes from Henri Eugene Padé, a student of Hermite, who
completed his thesis in 1892, but the approximant goes back to Cauchy and
Jacobi.

Kerstin Jordaan Properties of orthogonal polynomials
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Theorem

Let f (z) be a formal power series.

Then ∀m, n ≥ 0, [m
n

]
(z) =

P(z)

Q(z)

exists and is unique.

Further, if after cancelling common factors in P and Q, we obtain

[m/n] = P̂/Q̂,

then Q̂(0) 6= 0 and

f (z)− [m/n](z) = O(zm+n+1−`),

where
` = min

{
n − deg Q̂, m − deg P̂

}
.
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Existence

Writing

P(z) =
m∑
j=0

pjz
j ,

Q(z) =
n∑

j=0

qjz
j ,

f (z) =
∞∑
j=0

ajz
j ,

the condition
(fQ − P)(z) = O(zm+n+1)

becomes (
∞∑
j=0

ajz
j

)(
n∑

k=0

qkz
k

)
−

m∑
j=0

pjz
j = O(zm+n+1).
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Consider the product of the two series(
∞∑
j=0

ajz
j

)(
n∑

k=0

qkz
k

)
=
∞∑
j=0

n∑
k=0

aj qk z
j+k .

Introduce new indices of summation s and t by k = s and j = t − s. Then
k + j = t and, since the old indices are restricted by j ≥ 0 and 0 ≤ k ≤ n, we
have 0 ≤ s ≤ n and t − s ≥ 0, i.e. s ≤ t.

It follows that summation over t runs from 0 to ∞ while summation over s
runs from 0 to min(t, n) and hence(

∞∑
j=0

ajz
j

)(
n∑

k=0

qkz
k

)
=
∞∑
t=0

min(t,n)∑
s=0

at−s qs z
t

or equivalently, changing back to dummy indices k and j

=
∞∑
j=0

min(n,j)∑
k=0

aj−k qk

 z j .
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Now we can write (fQ − P)(z) = O(zm+n+1) as

∞∑
j=0

min{n, j}∑
k=0

qk aj−k

 z j −
m∑
j=0

pj z
j = O(zm+n+1) (1)

Recalling that the coefficients of z0, z , z2, . . . , zm+n are all zero on RHS of (1),
we have {∑min(j, n)

k=0 qk aj−k − pj = 0, j = 0, 1, 2, . . . ,m∑min(j, n)
k=0 qk aj−k = 0, j = m + 1, m + 2, . . . ,m + n

(2)

(2) is a system of (m + n + 1) homogeneous linear equations in the
(m + n + 2) variables p0, p1, . . . , pm, q0, q1, . . . , qn.

Since there are more variables than equations, (2) has a non-trivial solution i.e.
not all of p0, . . . , pm, q0, . . . , q = 0.

Note that if Q ≡ 0 is such a solution, i.e. if q0 = q1 = . . . = qn = 0, then the
first equation in (2) yields pj = 0, j = 0, 1, 2, . . . ,m, which is a contradiction.

Thus Q 6= 0 and [m/n] exists.
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Uniqueness

Suppose P1/Q1 is also [m/n].

Then

(fQ − P)(z) = O(zm+n+1) (3)

(fQ1 − P1)(z) = O(zm+n+1). (4)

Then (3) ×Q1(z)− (4)× Q(z) :

P1(z)Q(z)− P(z)Q1(z) = O(zm+n+1). (5)

Since P1(z)Q(z)− P(z)Q1(z) is a polynomial of degree ≤ m + n, and (5) tells
us that this polynomial has a zero at the origin of order (m + n + 1), it follows
that

P1(z)Q(z)− P(z)Q1(z) ≡ 0

or
P(z)/Q(z) ≡ P1(z)/Q1(z),

so [m/n](z) is unique.
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Consider [m/n] = P/Q and assume that we can write, for some non-negative
integer r with r ≤ m and n, and some polynomial S , that

P(z) = z r S(t)P̂(z)

Q(z) = z rS(t)Q̂(z)

where S(0) 6= 0 and P̂, Q̂ have no common factors.

Since
z rS(z)((f Q̂(z)− P̂(z))) = (fQ − P)(z) = O(zm+n+1),

we can multiply by 1
S(z)

since S(0) 6= 0 to deduce z r (f Q̂ − P̂)(z) = O(zm+n+1)
which means

(f Q̂ − P̂)(z) = O(zm+n+1−r ) (7)
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We now claim that Q̂(0) 6= 0:

If Q̂(0) = 0, since r ≤ n, (7) shows that P̂(0) is also zero.

Then P̂ and Q̂ have a common factor namely z , a contradiction.

So Q̂(0) 6= 0.

Thus we can multiply (10) by 1/Q̂(z) to obtain

f (z)− P̂(z)

Q̂(z)
= 0(zm+n+1−r ).

Finally, from (6),

m ≥ deg (P) = r + deg(S) + deg(P̂)

≥ r + deg (P̂), so that

r ≤ m − deg (P̂). Similarly, r ≤ n − deg(Q̂), so if

` = min
{
n − deg(Q̂), m − deg(P̂)

}
, we have r ≤ `. Hence

m + n + 1− r ≥ m + n + 1− `

and
f (z)− [m/n](z) = O(zm+n+1−`).
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` = min
{
n − deg(Q̂), m − deg(P̂)

}
, we have r ≤ `. Hence

m + n + 1− r ≥ m + n + 1− `

and
f (z)− [m/n](z) = O(zm+n+1−`).
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Padé table

The [m/n] Padé approximants for f can be arranged to form the Padé table of
f .

[0/0] [0/1] [0/2] [0/3] [0/4] . . .
[1/0] [1/1] [1/2] [1/3] [1/4] . . .
[2/0] [2/1] [2/2] [2/3] [2/4] . . .
[3/0] [3/1] [3/2] [3/3] [3/4] . . .
[4/0] [4/1] [4/2] [4/3] [4/4] . . .

...
...

...
...

...
. . .

Notice that the first column of the table is the sequence of partial sums of
f (z) =

∑∞
j=0 ajz

j .

[m/0] =
m∑
j=0

ajz
j

.

A Padé approximant is normal if it occurs only once in the Padé table.

The Padé table is normal if each entry in the table is normal.
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Structure of the Padé table

The Padé table has a special structure.

Theorem (Padé)

The Padé table of a formal power series f (z) consists of square blocks of size
r , 1 ≤ r ≤ ∞, for which

(a) All elements in a square block are identical;

(b) No other entries in the Padé table of f are the same as elements in this
block;

(c) If [m̂/n̂] = P̂/Q̂ is the top left hand corner of a square block, then
deg(P̂) = m̂, deg(Q̂) = n̂, Q(0) 6= 0 and if r =∞,

f (z)− [m̂/n̂](z) ≡ 0

i.e. f is a rational function.
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Padé approximant for 2F1(a, 1; c ; z)

Theorem (Padé, 1907)

Let c /∈ Z
−

and let m ≥ n − 1. Then the denominator polynomial in the [m/n]

Padé approximant Pmn(z)/Qmn(z) for 2F1(a, 1; c; z) is given by

Qmn(z) = 2F1(−n,−a−m;−c −m − n + 1; z)

and

Rmn(z) = Qmn(z) 2F1(a, 1; c ; z)− Pmn(z)

= Smn zm+n+1
2F1(a + m + 1, n + 1; c + m + n + 1; z)

where

Smn = n!
(a)m+1(c − a)n

(c)m+n(c + m)n+1
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[0/0] [0/1] [0/2] [0/3] [0/4] [0/5] . . .
[1/0] [1/1] [1/2] [1/3] [1/4] [1/5] . . .
[2/0] [2/1] [2/2] [2/3] [2/4] [2/5] . . .
[3/0] [3/1] [3/2] [3/3] [3/4] [3/5] . . .
[4/0] [4/1] [4/2] [4/3] [4/4] [4/5] . . .
[5/0] [5/1] [5/2] [5/3] [5/4] [5/5] . . .

...
...

...
...

...
...

. . .

Kerstin Jordaan Properties of orthogonal polynomials



Padé approximant for 2F1(a, 1; c ; z)

Theorem (van Rossum, 1955)

If a, c, c − a /∈ Z
−

, the Padé approximants for 2F1(a, 1; c; z) are normal for
m ≥ n − 1.

Theorem (de Bruin, 1976)

The Padé table for the hypergeometric series 2F1(a, 1; c; z) with c > a > 0 is
normal.
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The numerator polynomial

We do not have a closed form for the numerator polynomial of the Padé
approximants for 2F1(a, 1; c; z) so we do not know where the zeros of the
approximant lie. The numerator polynomial Pmn(z) is determined by

f (z)Qmn(z)− Pmn(z) = 0(zm+n+1)

since Qmn(z) is known.

For m = n − 1, Pmn(z) is the polynomial we obtain from the first (m + 1)
terms in the product

2F1(a, 1; c; z) 2F1(−n,−a−m;−c −m − n + 1; z)
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The numerator polynomial

Thus

Pmn(z) =
m∑
r=0

r∑
l=0

(a)r−l(−n)l(−a−m)l
(−c −m − n + 1)l(c)r−l l!

z r

for 0 ≤ r ≤ m.

Example

For a = 2, c = 6, m = 3 and n = 4,

P34(z) = 1− 4

3
z +

344

693
z2 − 1

22
z3

which is not equal to 2F1(−3, α;β; z) for any α, β.
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Poles of the Padé approximant for 2F1(a, 1; c ; z)

Corollary

For c /∈ Z
−

and m ≥ n − 1, the poles of the [m/n] Padé approximant for

2F1(a, 1; c; z) lie in the intervals

(i) (0, 1) if a < c < 1−m − n

(ii) (1,∞) if c > a > n −m − 1

(iii) (−∞, 0) if a > n −m − 1 and c < 1−m − n.

Remark

(ii) If m ≥ n − 1 and c > a > 0 we have normality in the Padé table and the
poles of the Padé approximant lie on the cut (1,∞)
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The poles of the Padé approximant and convergence in the
table

The location and behavior of the zeros and poles of Padé approximants
for various special functions, as well as the asymptotic zero and pole
distribution, has been studied by many authors, most notably E. Saff and
R. Varga [1978]

The convergence of different types of sequences in the Padé table has
been studied extensively.

Exponential function [Perron, 1957]

1F1(1; c ; z) with c /∈ Z−
[de Bruin, 1976]
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Convergence in the Padé table for 2F1(a, 1; c ; z), c > a > 0

Lemma

For m ≥ n − 1 and c > a > 0 we have that

Rmn(z) = Qmn(z)2F1(a, 1; c ; z)− Pmn(z)

= Smn zm+n+1
2F1(a + m + 1, n + 1; c + m + n + 1; z)

tends to zero uniformly in z as m→∞, n/m→ ρ with 0 < ρ ≤ 1 on compact
subsets of |z | < 1.
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The Padé table

[0/0] [0/1] [0/2] [0/3] [0/4] [0/5] . . .
[1/0] [1/1] [1/2] [1/3] [1/4] [1/5] . . .
[2/0] [2/1] [2/2] [2/3] [2/4] [2/5] . . .
[3/0] [3/1] [3/2] [3/3] [3/4] [3/5] . . .
[4/0] [4/1] [4/2] [4/3] [4/4] [4/5] . . .
[5/0] [5/1] [5/2] [5/3] [5/4] [5/5] . . .

...
...

...
...

...
...

. . .
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Convergence in the Padé table for 2F1(a, 1; c ; z), c > a > 0

Theorem

Let a, c, c − a /∈ Z
−

and m ≥ n − 1. For c > a > 0, the sequence of [m/n]
Padé approximants

Pmn(z)

Qmn(z)

converges to

2F1(a, 1; c; z)

for m→∞, n/m→ ρ with 0 < ρ ≤ 1, uniformly in z on compact subsets of
|z | < 1.

Kerstin Jordaan Properties of orthogonal polynomials


	Orthogonal polynomials
	Properties of classical orthogonal polynomials
	Quasi-orthogonality and semiclassical orthogonal polynomials
	The hypergeometric function
	Convergence of Padé approximants for a hypergeometric function
	Padé approximation
	Padé approximant for 2F1(a,1;c;z)
	Poles of the Padé approximant
	Convergence in the Padé table


