# Multiple Orthogonal Polynomials 

Walter Van Assche

Summer school on OPSF, University of Kent

26-30 June, 2017

## Introduction

For this course I assume everybody is familiar with the basic theory of orthogonal polynomials:

## Introduction

For this course I assume everybody is familiar with the basic theory of orthogonal polynomials:

- Definition

$$
\int p_{n}(x) p_{m}(x) d \mu(x)=\delta_{m, n}, \quad m, n \in \mathbb{N}
$$

## Introduction

For this course I assume everybody is familiar with the basic theory of orthogonal polynomials:

- Definition

$$
\int p_{n}(x) p_{m}(x) d \mu(x)=\delta_{m, n}, \quad m, n \in \mathbb{N}
$$

- Location of zeros


## Introduction

For this course I assume everybody is familiar with the basic theory of orthogonal polynomials:

- Definition

$$
\int p_{n}(x) p_{m}(x) d \mu(x)=\delta_{m, n}, \quad m, n \in \mathbb{N}
$$

- Location of zeros
- Three term recurrence relation:

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x), \quad n \geq 1
$$

## Introduction

For this course I assume everybody is familiar with the basic theory of orthogonal polynomials:

- Definition

$$
\int p_{n}(x) p_{m}(x) d \mu(x)=\delta_{m, n}, \quad m, n \in \mathbb{N}
$$

- Location of zeros
- Three term recurrence relation:

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x), \quad n \geq 1
$$

- Classical orthogonal polynomials: Jacobi - Laguerre - Hermite


## Plan of the course

## Plan of the course

## lecture 1: Definitions + basic properties

## Plan of the course

## lecture 1: Definitions + basic properties <br> lecture 2: Hermite-Padé, Multiple Hermite polynomials

## Plan of the course

lecture 1: Definitions + basic properties<br>lecture 2: Hermite-Padé, Multiple Hermite polynomials<br>lecture 3: Multiple Laguerre polynomials (first and second kind)

## Plan of the course

lecture 1: Definitions + basic properties
lecture 2: Hermite-Padé, Multiple Hermite polynomials
lecture 3: Multiple Laguerre polynomials (first and second kind)
lecture 4: Multiple Jacobi polynomials:
Jacobi-Angelesco + Jacobi-Piñeiro

## Plan of the course

## lecture 1: Definitions + basic properties

lecture 2: Hermite-Padé, Multiple Hermite polynomials
lecture 3: Multiple Laguerre polynomials (first and second kind)
lecture 4: Multiple Jacobi polynomials:
Jacobi-Angelesco + Jacobi-Piñeiro
lecture 5: Riemann-Hilbert problem

## Definition: type I MOPS

Let $r \in \mathbb{N}$ and let $\mu_{1}, \ldots, \mu_{r}$ be positive measures on the real line, for which all the moments exist.

## Definition: type I MOPS

Let $r \in \mathbb{N}$ and let $\mu_{1}, \ldots, \mu_{r}$ be positive measures on the real line, for which all the moments exist.
We use multi-indices $\vec{n}=\left(n_{1}, n_{2}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$ and denote their length by $|\vec{n}|=n_{1}+n_{2}+\cdots+n_{r}$.

## Definition: type I MOPS

Let $r \in \mathbb{N}$ and let $\mu_{1}, \ldots, \mu_{r}$ be positive measures on the real line, for which all the moments exist.
We use multi-indices $\vec{n}=\left(n_{1}, n_{2}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$ and denote their length by $|\vec{n}|=n_{1}+n_{2}+\cdots+n_{r}$.

## Definition (type I)

Type I multiple orthogonal polynomials for $\vec{n}$ consist of the vector $\left(A_{\vec{n}, 1}, \ldots, A_{\vec{n}, r}\right)$ of $r$ polynomials, with $\operatorname{deg} A_{\vec{n}, j} \leq n_{j}-1$, for which

$$
\int x^{k} \sum_{j=1}^{r} A_{\vec{n}, j}(x) d \mu_{j}(x)=0, \quad 0 \leq k \leq|\vec{n}|-2
$$

with normalization

$$
\int x^{|\vec{n}|-1} \sum_{j=1}^{r} A_{\vec{n}, j}(x) d \mu_{j}(x)=1
$$

## Definition: type II MOPS

## Definition (type II)

The type II multiple orthogonal polynomial for $\vec{n}$ is the monic polynomial $P_{\vec{n}}$ of degree $|\vec{n}|$ for which

$$
\int x^{k} P_{\vec{n}}(x) d \mu_{j}(x)=0, \quad 0 \leq k \leq n_{j}-1
$$

for $1 \leq j \leq r$.

## Normal indices

a multi-index $\vec{n}$ is normal if the type $I$ vector $\left(A_{\vec{n}, 1}, \ldots A_{\vec{n}, r}\right)$ exists and is unique

## Normal indices

a multi-index $\vec{n}$ is normal if the type $I$ vector $\left(A_{\vec{n}, 1}, \ldots A_{\vec{n}, r}\right)$ exists and is unique

if the monic type II multiple orthogonal polynomial $P_{\vec{n}}$ exists and is unique

## Normal indices

a multi-index $\vec{n}$ is normal if the type $I$ vector $\left(A_{\vec{n}, 1}, \ldots A_{\vec{n}, r}\right)$ exists and is unique

if the monic type II multiple orthogonal polynomial $P_{\vec{n}}$ exists and is unique

$$
\begin{array}{rc}
\operatorname{det}\left(\begin{array}{c}
M_{n_{1}}^{(1)}\left(\begin{array}{cccc}
M_{n_{2}}^{(2)} \\
\vdots \\
M_{n_{r}}^{(r)}
\end{array}\right) \neq 0, \quad M_{n_{j}}^{(j)}=\left(\begin{array}{cccc}
m_{0}^{(j)} & m_{1}^{(j)} & \cdots & m_{|\vec{n}|-1}^{(j)} \\
m_{1}^{(j)} & m_{2}^{(j)} & \cdots & m_{|\vec{n}|}^{(j)} \\
\vdots & \vdots & \cdots & \vdots \\
m_{n_{j}-1}^{(j)} & m_{n_{j}}^{(j)} & \cdots & m_{|\vec{n}|+n_{j}-2}^{(j)}
\end{array}\right), \\
m_{k}^{(j)}=\int x^{k} d \mu_{j}(x) .
\end{array}\right.
\end{array}
$$

## Special systems: Angelesco systems

## Definition (Angelesco system)

The measures $\left(\mu_{1}, \ldots, \mu_{r}\right)$ are an Angelesco system if the supports of the measures are subsets of disjoint intervals $\Delta_{j}$, i.e., $\operatorname{supp}\left(\mu_{j}\right) \subset \Delta_{j}$ and $\Delta_{i} \cap \Delta_{j}=\emptyset$ whenever $i \neq j$.

## Special systems: Angelesco systems

## Definition (Angelesco system)

The measures $\left(\mu_{1}, \ldots, \mu_{r}\right)$ are an Angelesco system if the supports of the measures are subsets of disjoint intervals $\Delta_{j}$, i.e., $\operatorname{supp}\left(\mu_{j}\right) \subset \Delta_{j}$ and $\Delta_{i} \cap \Delta_{j}=\emptyset$ whenever $i \neq j$.
Usually one allows that the intervals are touching, i.e., $\stackrel{\circ}{\Delta}_{i} \cap{\stackrel{\circ}{\Delta_{j}}=\emptyset}_{\emptyset}$ whenever $i \neq j$.

## Special systems: Angelesco systems

Theorem (Angelesco, Nikishin)
The type II multiple orthogonal polynomial $P_{\vec{n}}$ has exactly $n_{j}$ distinct zeros on ${\stackrel{\circ}{\Delta_{j}}}^{\text {for }} 1 \leq j \leq r$.

## Special systems: Angelesco systems

## Theorem (Angelesco, Nikishin)

The type II multiple orthogonal polynomial $P_{\vec{n}}$ has exactly $n_{j}$ distinct zeros on $\stackrel{\circ}{\Delta}_{j}$ for $1 \leq j \leq r$.

## Corollary

Every multi-index $\vec{n}$ is normal (an Angelesco system is perfect).

## Special systems: Angelesco systems

## Theorem (Angelesco, Nikishin)

The type II multiple orthogonal polynomial $P_{\vec{n}}$ has exactly $n_{j}$ distinct zeros on $\stackrel{\circ}{j}^{\text {for }} 1 \leq j \leq r$.

## Corollary

Every multi-index $\vec{n}$ is normal (an Angelesco system is perfect).

## Exercise

Show that every $A_{\vec{n}, j}$ has $n_{j}-1$ zeros on $\stackrel{\circ}{\Delta}_{j}$.

## Special systems: AT systems

## Definition

The functions $\varphi_{1}, \ldots, \varphi_{n}$ are a Chebyshev system on $[a, b]$ if every linear combination $\sum_{i=1}^{n} a_{i} \varphi_{i}$ with $\left(a_{1}, \ldots, a_{n}\right) \neq(0, \ldots, 0)$ has at most $n-1$ zeros on $[a, b]$.

## Special systems: AT systems

## Definition

The functions $\varphi_{1}, \ldots, \varphi_{n}$ are a Chebyshev system on $[a, b]$ if every linear combination $\sum_{i=1}^{n} a_{i} \varphi_{i}$ with $\left(a_{1}, \ldots, a_{n}\right) \neq(0, \ldots, 0)$ has at most $n-1$ zeros on $[a, b]$.

## Definition (AT-system)

The measures $\left(\mu_{1}, \ldots, \mu_{r}\right)$ are an AT-system on the interval $[a, b]$ if the measures are all absolutely continuous with respect to a positive measure $\mu$ on $[a, b]$, i.e., $d \mu_{j}(x)=w_{j}(x) d \mu(x)$ $(1 \leq j \leq r)$, and for every $\vec{n}$ the functions

$$
\begin{array}{r}
w_{1}(x), x w_{1}(x), \ldots, x^{n_{1}-1} w_{1}(x), w_{2}(x), x w_{2}(x), \ldots, x^{n_{2}-1} w_{2}(x) \\
\ldots, w_{r}(x), x w_{r}(x), \ldots, x^{n_{r}-1} w_{r}(x)
\end{array}
$$

are a Chebyshev system on $[a, b]$.

## Special systems: AT-systems

## Theorem

For an AT-system the function

$$
Q_{\vec{n}}(x)=\sum_{j=1}^{r} A_{\vec{n}, j}(x) w_{j}(x)
$$

has exactly $|\vec{n}|-1$ sign changes on $(a, b)$.

## Special systems: AT-systems

## Theorem

For an $A T$-system the function

$$
Q_{\vec{n}}(x)=\sum_{j=1}^{r} A_{\vec{n}, j}(x) w_{j}(x)
$$

has exactly $|\vec{n}|-1$ sign changes on $(a, b)$.

## Theorem

If $\left(\mu_{1}, \ldots, \mu_{r}\right)$ is an AT-system, then the type II multiple orthogonal polynomial $P_{\vec{n}}$ has exactly $|\vec{n}|$ distinct zeros on $(a, b)$.

## Special systems: AT-systems

## Theorem

For an $A T$-system the function

$$
Q_{\vec{n}}(x)=\sum_{j=1}^{r} A_{\vec{n}, j}(x) w_{j}(x)
$$

has exactly $|\vec{n}|-1$ sign changes on $(a, b)$.

## Theorem

If $\left(\mu_{1}, \ldots, \mu_{r}\right)$ is an AT-system, then the type II multiple orthogonal polynomial $P_{\vec{n}}$ has exactly $|\vec{n}|$ distinct zeros on $(a, b)$.

## Corollary

Every multi-index in an AT-system is normal (an AT-system is perfect).

## Special systems: Nikishin systems

Introduced by E.M. Nikishin in 1980.

## Special systems: Nikishin systems

Introduced by E.M. Nikishin in 1980.

## Definition (Nikishin system for $r=2$ )

A Nikishin system of order $r=2$ consists of two measures $\left(\mu_{1}, \mu_{2}\right)$, both supported on an interval $\Delta_{2}$, and such that

$$
\frac{d \mu_{2}(x)}{d \mu_{1}(x)}=\int_{\Delta_{1}} \frac{d \sigma(t)}{x-t}
$$

where $\sigma$ is a positive measure on an interval $\Delta_{1}$ and $\Delta_{1} \cap \Delta_{2}=\emptyset$.

## Special systems: Nikishin systems

Introduced by E.M. Nikishin in 1980.

## Definition (Nikishin system for $r=2$ )

A Nikishin system of order $r=2$ consists of two measures $\left(\mu_{1}, \mu_{2}\right)$, both supported on an interval $\Delta_{2}$, and such that

$$
\frac{d \mu_{2}(x)}{d \mu_{1}(x)}=\int_{\Delta_{1}} \frac{d \sigma(t)}{x-t}
$$

where $\sigma$ is a positive measure on an interval $\Delta_{1}$ and $\Delta_{1} \cap \Delta_{2}=\emptyset$.

## Theorem (Nikishin, Driver-Stahl)

A Nikishin system of order two is perfect.

## Special systems: Nikishin systems

Notation: $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ is a measure which is absolutely continuous with respect to $\sigma_{1}$ and for which the Radon-Nikodym derivative is a Stieltjes transform of $\sigma_{2}$ :

$$
d\left\langle\sigma_{1}, \sigma_{2}\right\rangle(x)=\left(\int \frac{d \sigma_{2}(t)}{x-t}\right) d \sigma_{1}(x)
$$

## Special systems: Nikishin systems

Notation: $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ is a measure which is absolutely continuous with respect to $\sigma_{1}$ and for which the Radon-Nikodym derivative is a Stieltjes transform of $\sigma_{2}$ :

$$
d\left\langle\sigma_{1}, \sigma_{2}\right\rangle(x)=\left(\int \frac{d \sigma_{2}(t)}{x-t}\right) d \sigma_{1}(x)
$$

## Definition (Nikishin system for general $r$ )

A Nikishin system of order $r$ on an interval $\Delta_{r}$ is a system of $r$ measures $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{r}\right)$ supported on $\Delta_{r}$ such that $\mu_{j}=\left\langle\mu_{1}, \sigma_{j}\right\rangle$ $(2 \leq j \leq r)$, where $\left(\sigma_{2}, \ldots, \sigma_{r}\right)$ is a Nikishin system of order $r-1$ on an interval $\Delta_{r-1}$ and $\Delta_{r} \cap \Delta_{r-1}=\emptyset$.

## Special systems: Nikishin systems

## Theorem (Fidalgo Prieto and López Lagomasino) <br> Every Nikishin system is perfect.

## Special systems: Nikishin systems

# Theorem (Fidalgo Prieto and López Lagomasino) 

Every Nikishin system is perfect.

## Proof.

Ask Guillermo

## Special systems: Nikishin systems

# Theorem (Fidalgo Prieto and López Lagomasino) 

Every Nikishin system is perfect.

## Proof.

Ask Guillermo or Ulises.

## Biorthogonality

In most cases the measures $\left(\mu_{1}, \ldots, \mu_{r}\right)$ are absolutely continuous with respect to one fixed measure $\mu$ :

$$
d \mu_{j}(x)=w_{j}(x) d \mu(x), \quad 1 \leq j \leq r
$$

We then define the type I function

$$
Q_{\vec{n}}(x)=\sum_{j=1}^{r} A_{\vec{n}, j}(x) w_{j}(x) .
$$

## Biorthogonality

In most cases the measures $\left(\mu_{1}, \ldots, \mu_{r}\right)$ are absolutely continuous with respect to one fixed measure $\mu$ :

$$
d \mu_{j}(x)=w_{j}(x) d \mu(x), \quad 1 \leq j \leq r
$$

We then define the type I function

$$
Q_{\vec{n}}(x)=\sum_{j=1}^{r} A_{\vec{n}, j}(x) w_{j}(x)
$$

## Property (biorthogonality)

$$
\int P_{\vec{n}}(x) Q_{\vec{m}}(x) d \mu(x)= \begin{cases}0, & \text { if } \vec{m} \leq \vec{n}, \\ 0, & \text { if }|\vec{n}| \leq|\vec{m}|-2, \\ 1, & \text { if }|\vec{n}|=|\vec{m}|-1\end{cases}
$$

## Recurrence relations

Nearest neighbor recurrence relations for type II MOPS

$$
\begin{gathered}
x P_{\vec{n}}(x)=P_{\vec{n}+\vec{e}_{1}}(x)+b_{\vec{n}, 1} P_{\vec{n}}(x)+\sum_{j=1}^{r} a_{\vec{n}, j} P_{\vec{n}-\vec{e}_{j}}(x), \\
\vdots \\
x P_{\vec{n}}(x)=P_{\vec{n}+\vec{e}_{r}}(x)+b_{\vec{n}, r} P_{\vec{n}}(x)+\sum_{j=1}^{r} a_{\vec{n}, j} P_{\vec{n}-\vec{e}_{j}}(x) . \\
\vec{e}_{j}=(0, \ldots, 0, \overbrace{1}^{j}, 0, \ldots, 0)
\end{gathered}
$$

## Recurrence relations

Nearest neighbor recurrence relations for type I MOPS

$$
\begin{aligned}
x Q_{\vec{n}}(x) & =Q_{\vec{n}-\vec{e}_{1}}(x)+b_{\vec{n}-\vec{e}_{1}, 1} Q_{\vec{n}}(x)+\sum_{j=1}^{r} a_{\vec{n}, j} Q_{\vec{n}+\vec{e}_{j}}(x), \\
& \vdots \\
x Q_{\vec{n}}(x) & =Q_{\vec{n}-\vec{e}_{r}}(x)+b_{\vec{n}-\vec{e}_{r}, r} Q_{\vec{n}}(x)+\sum_{j=1}^{r} a_{\vec{n}, j} Q_{\vec{n}+\vec{e}_{j}}(x) .
\end{aligned}
$$

## Recurrence relations

## Theorem (Van Assche)

The recurrence coefficients $\left(a_{\vec{n}, 1}, \ldots, a_{\vec{n}, r}\right)$ and $\left(b_{\vec{n}, 1}, \ldots, b_{\vec{n}, r}\right)$ satisfy the partial difference equations

$$
\begin{aligned}
b_{\vec{n}+\vec{e}_{i}, j}-b_{\vec{n}, j} & =b_{\vec{n}+\vec{e}_{j}, i}-b_{\vec{n}, i} \\
\sum_{k=1}^{r} a_{\vec{n}+\vec{e}_{j}, k}-\sum_{k=1}^{r} a_{\vec{n}+\vec{e}_{i}, k} & =\operatorname{det}\left(\begin{array}{ll}
b_{\vec{n}+\vec{e}_{j}, i} & b_{\vec{n}, i} \\
b_{\vec{n}+\vec{e}_{i}, j} & b_{\vec{n}, j}
\end{array}\right), \\
\frac{a_{\vec{n}, i}}{a_{\vec{n}+\vec{e}_{j}, i}} & =\frac{b_{\vec{n}-\vec{e}_{i}, j}-b_{\vec{n}-\vec{e}_{i}, i}}{b_{\vec{n}, j}-b_{\vec{n}, i}}
\end{aligned}
$$

for all $1 \leq i \neq j \leq r$.

## Recurrence relations

Let $\left(\vec{n}_{k}\right)_{k \geq 0}$ be a path in $\mathbb{N}^{r}$ starting from $\vec{n}_{0}=\overrightarrow{0}$, such that $\vec{n}_{k+1}-\vec{n}_{k}=\vec{e}_{i}$ for some $1 \leq i \leq r$. Then

$$
x P_{\vec{n}_{k}}(x)=P_{\vec{n}_{k+1}}(x)+\sum_{j=0}^{r} \beta_{\vec{n}_{k}, j} P_{\vec{n}_{k-j}}(x)
$$

## Recurrence relations

Let $\left(\vec{n}_{k}\right)_{k \geq 0}$ be a path in $\mathbb{N}^{r}$ starting from $\vec{n}_{0}=\overrightarrow{0}$, such that $\vec{n}_{k+1}-\vec{n}_{k}=\vec{e}_{i}$ for some $1 \leq i \leq r$. Then

$$
x P_{\vec{n}_{k}}(x)=P_{\vec{n}_{k+1}}(x)+\sum_{j=0}^{r} \beta_{\vec{n}_{k}, j} P_{\vec{n}_{k-j}}(x)
$$

An important case is the stepline:

$$
\vec{n}_{k}=(\overbrace{i+1, \ldots, i+1}^{j}, \underbrace{i, \ldots i}_{r-j}) \quad k=r i+j, 0 \leq j \leq r-1 .
$$

## Christoffel-Darboux formula

## Theorem (Daems and Kuijlaars)

Let $\left(\vec{n}_{k}\right)_{0 \leq k \leq N}$ be a path in $\mathbb{N}^{r}$ starting from $\vec{n}_{0}=\overrightarrow{0}$ and ending in $\vec{n}_{N}=\vec{n}$ (where $N=|\vec{n}|$ ), such that $\vec{n}_{k+1}-\vec{n}_{k}=\vec{e}_{i}$ for some $1 \leq i \leq r$. Then
$(x-y) \sum_{k=0}^{N-1} P_{\vec{n}_{k}}(x) Q_{\vec{n}_{k+1}}(y)=P_{\vec{n}}(x) Q_{\vec{n}}(y)-\sum_{j=1}^{r} a_{\vec{n}, j} P_{\vec{n}-\vec{e}_{j}}(x) Q_{\vec{n}+\vec{e}_{j}}(y)$.

## Christoffel-Darboux formula

## Theorem (Daems and Kuijlaars)

Let $\left(\vec{n}_{k}\right)_{0 \leq k \leq N}$ be a path in $\mathbb{N}^{r}$ starting from $\vec{n}_{0}=\overrightarrow{0}$ and ending in $\vec{n}_{N}=\vec{n}$ (where $N=|\vec{n}|$ ), such that $\vec{n}_{k+1}-\vec{n}_{k}=\vec{e}_{i}$ for some $1 \leq i \leq r$. Then
$(x-y) \sum_{k=0}^{N-1} P_{\vec{n}_{k}}(x) Q_{\vec{n}_{k+1}}(y)=P_{\vec{n}}(x) Q_{\vec{n}}(y)-\sum_{j=1}^{r} a_{\vec{n}, j} P_{\vec{n}-\vec{e}_{j}}(x) Q_{\vec{n}+\vec{e}_{j}}(y)$.

The sum depends only on the endpoints of the path in $\mathbb{N}^{r}$ and not on the path between these points.

## References

M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005 (paperback edition 2009)
$\theta$
E.M. Nikishin, V.N. Sorokin, Rational Approximations and Orthogonality, Translations of Mathematical Monographs 92, Amer. Math. Soc., Providence RI, 1991.
( A.I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998), 423-447.
A. Martínez-Finkelshtein, W. Van Assche, What is ... a multiple orthogonal polynomial?, Notices Amer. Math. Soc. 63 (2016), no. 9, 1029-1031.
国
W. Van Assche, Nearest neighbor recurrence relations for multiple orthogonal polynomials, J. Approx. Theory 163 (2011), 1427-1448.

