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Introduction

For this course I assume everybody is familiar with the basic theory
of orthogonal polynomials:

Definition∫
pn(x)pm(x) dµ(x) = δm,n, m, n ∈ N.

Location of zeros

Three term recurrence relation:

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), n ≥ 1,

Classical orthogonal polynomials: Jacobi - Laguerre - Hermite
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Plan of the course

lecture 1: Definitions + basic properties

lecture 2: Hermite-Padé, Multiple Hermite polynomials

lecture 3: Multiple Laguerre polynomials (first and second kind)

lecture 4: Multiple Jacobi polynomials:
Jacobi-Angelesco + Jacobi-Piñeiro

lecture 5: Riemann-Hilbert problem
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Definition: type I MOPS

Let r ∈ N and let µ1, . . . , µr be positive measures on the real line,
for which all the moments exist.

We use multi-indices ~n = (n1, n2, . . . , nr ) ∈ Nr and denote their
length by |~n| = n1 + n2 + · · ·+ nr .

Definition (type I)

Type I multiple orthogonal polynomials for ~n consist of the vector
(A~n,1, . . . ,A~n,r ) of r polynomials, with deg A~n,j ≤ nj − 1, for which∫

xk
r∑

j=1

A~n,j(x) dµj(x) = 0, 0 ≤ k ≤ |~n| − 2,

with normalization∫
x |~n|−1

r∑
j=1

A~n,j(x) dµj(x) = 1.
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Definition: type II MOPS

Definition (type II)

The type II multiple orthogonal polynomial for ~n is the monic
polynomial P~n of degree |~n| for which∫

xkP~n(x) dµj(x) = 0, 0 ≤ k ≤ nj − 1,

for 1 ≤ j ≤ r .
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Normal indices

a multi-index ~n is normal if the type I vector (A~n,1, . . . A~n,r ) exists
and is unique

⇐⇒

if the monic type II multiple orthogonal polynomial P~n exists and is
unique

⇐⇒

det


M

(1)
n1

M
(2)
n2

...

M
(r)
nr

 6= 0, M
(j)
nj =


m

(j)
0 m

(j)
1 · · · m

(j)
|~n|−1

m
(j)
1 m

(j)
2 · · · m

(j)
|~n|

...
... · · ·

...

m
(j)
nj−1 m

(j)
nj · · · m

(j)
|~n|+nj−2

 ,

m
(j)
k =

∫
xk dµj(x).
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Special systems: Angelesco systems

Definition (Angelesco system)

The measures (µ1, . . . , µr ) are an Angelesco system if the
supports of the measures are subsets of disjoint intervals ∆j , i.e.,
supp(µj) ⊂ ∆j and ∆i ∩∆j = ∅ whenever i 6= j .

Usually one allows that the intervals are touching, i.e.,
◦

∆i ∩
◦

∆j= ∅
whenever i 6= j .
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Special systems: Angelesco systems

Theorem (Angelesco, Nikishin)

The type II multiple orthogonal polynomial P~n has exactly nj

distinct zeros on
◦

∆j for 1 ≤ j ≤ r .

Corollary

Every multi-index ~n is normal (an Angelesco system is perfect).

Exercise

Show that every A~n,j has nj − 1 zeros on
◦

∆j .
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Special systems: AT systems

Definition

The functions ϕ1, . . . , ϕn are a Chebyshev system on [a, b] if
every linear combination

∑n
i=1 aiϕi with (a1, . . . , an) 6= (0, . . . , 0)

has at most n − 1 zeros on [a, b].

Definition (AT-system)

The measures (µ1, . . . , µr ) are an AT-system on the interval [a, b]
if the measures are all absolutely continuous with respect to a
positive measure µ on [a, b], i.e., dµj(x) = wj(x) dµ(x)
(1 ≤ j ≤ r), and for every ~n the functions

w1(x), xw1(x), . . . , xn1−1w1(x), w2(x), xw2(x), . . . , xn2−1w2(x),

. . . , wr (x), xwr (x), . . . , xnr−1wr (x)

are a Chebyshev system on [a, b].
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Special systems: AT-systems

Theorem

For an AT-system the function

Q~n(x) =
r∑

j=1

A~n,j(x)wj(x)

has exactly |~n| − 1 sign changes on (a, b).

Theorem

If (µ1, . . . , µr ) is an AT-system, then the type II multiple
orthogonal polynomial P~n has exactly |~n| distinct zeros on (a, b).

Corollary

Every multi-index in an AT-system is normal (an AT-system is
perfect).
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Special systems: Nikishin systems

Introduced by E.M. Nikishin in 1980.

Definition (Nikishin system for r = 2)

A Nikishin system of order r = 2 consists of two measures (µ1, µ2),
both supported on an interval ∆2, and such that

dµ2(x)

dµ1(x)
=

∫
∆1

dσ(t)

x − t
,

where σ is a positive measure on an interval ∆1 and ∆1 ∩∆2 = ∅.

Theorem (Nikishin, Driver-Stahl)

A Nikishin system of order two is perfect.
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Special systems: Nikishin systems

Notation: 〈σ1, σ2〉 is a measure which is absolutely continuous
with respect to σ1 and for which the Radon-Nikodym derivative is
a Stieltjes transform of σ2:

d〈σ1, σ2〉(x) =

(∫
dσ2(t)

x − t

)
dσ1(x).

Definition (Nikishin system for general r)

A Nikishin system of order r on an interval ∆r is a system of r
measures (µ1, µ2, . . . , µr ) supported on ∆r such that µj = 〈µ1, σj〉
(2 ≤ j ≤ r), where (σ2, . . . , σr ) is a Nikishin system of order r − 1
on an interval ∆r−1 and ∆r ∩∆r−1 = ∅.
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Special systems: Nikishin systems

Theorem (Fidalgo Prieto and López Lagomasino)

Every Nikishin system is perfect.

Proof.

Ask Guillermo or Ulises.
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Biorthogonality

In most cases the measures (µ1, . . . , µr ) are absolutely continuous
with respect to one fixed measure µ:

dµj(x) = wj(x) dµ(x), 1 ≤ j ≤ r .

We then define the type I function

Q~n(x) =
r∑

j=1

A~n,j(x)wj(x).

Property (biorthogonality)

∫
P~n(x)Q~m(x) dµ(x) =


0, if ~m ≤ ~n,

0, if |~n| ≤ |~m| − 2,

1, if |~n| = |~m| − 1.
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Recurrence relations

Nearest neighbor recurrence relations for type II MOPS

xP~n(x) = P~n+~e1
(x) + b~n,1P~n(x) +

r∑
j=1

a~n,jP~n−~ej
(x),

...

xP~n(x) = P~n+~er
(x) + b~n,rP~n(x) +

r∑
j=1

a~n,jP~n−~ej
(x).

~ej = (0, . . . , 0,

j︷︸︸︷
1 , 0, . . . , 0)
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Recurrence relations

Nearest neighbor recurrence relations for type I MOPS

xQ~n(x) = Q~n−~e1
(x) + b~n−~e1,1Q~n(x) +

r∑
j=1

a~n,jQ~n+~ej
(x),

...
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Recurrence relations

Theorem (Van Assche)

The recurrence coefficients (a~n,1, . . . , a~n,r ) and (b~n,1, . . . , b~n,r )
satisfy the partial difference equations

b~n+~ei ,j − b~n,j = b~n+~ej ,i − b~n,i

r∑
k=1

a~n+~ej ,k −
r∑

k=1

a~n+~ei ,k = det

(
b~n+~ej ,i b~n,i

b~n+~ei ,j b~n,j

)
,

a~n,i

a~n+~ej ,i
=

b~n−~ei ,j − b~n−~ei ,i

b~n,j − b~n,i

for all 1 ≤ i 6= j ≤ r .
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Recurrence relations

Let (~nk)k≥0 be a path in Nr starting from ~n0 = ~0, such that
~nk+1 − ~nk = ~ei for some 1 ≤ i ≤ r . Then

xP~nk
(x) = P~nk+1

(x) +
r∑

j=0

β~nk ,jP~nk−j
(x).

An important case is the stepline:

~nk = (

j︷ ︸︸ ︷
i + 1, . . . , i + 1, i , . . . i︸ ︷︷ ︸

r−j

) k = ri + j , 0 ≤ j ≤ r − 1.
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Christoffel-Darboux formula

Theorem (Daems and Kuijlaars)

Let (~nk)0≤k≤N be a path in Nr starting from ~n0 = ~0 and ending in
~nN = ~n (where N = |~n|), such that ~nk+1 − ~nk = ~ei for some
1 ≤ i ≤ r . Then

(x−y)
N−1∑
k=0

P~nk
(x)Q~nk+1

(y) = P~n(x)Q~n(y)−
r∑

j=1

a~n,jP~n−~ej
(x)Q~n+~ej

(y).

The sum depends only on the endpoints of the path in Nr and not
on the path between these points.
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