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Plan of the course

lecture 1: Definitions 4+ basic properties
lecture 2: Hermite-Padé, Multiple Hermite polynomials
lecture 3: Multiple Laguerre polynomials (first and second kind)

lecture 4: Multiple Jacobi polynomials:
Jacobi-Angelesco + Jacobi-Pifieiro

lecture 5: Riemann-Hilbert problem
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Riemann-Hilbert problem for MOPS

Fokas, Its and Kitaev! formulated a Riemann-Hilbert problem (for
2 x 2 matrices) that characterizes orthogonal polynomials.

1A.S. Fokas, A. Its, A.V. Kitaev, The isomonodromy approach to matrix
models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), no. 2,
395-430
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Riemann-Hilbert problem for MOPS

Fokas, Its and Kitaev! formulated a Riemann-Hilbert problem (for
2 x 2 matrices) that characterizes orthogonal polynomials.

There is a Riemann-Hilbert problem (for (r +1) x (r + 1)
matrices) that characterizes multiple orthogonal polynomials (W.
Van Assche, J.S. Geronimo, A.B.J. Kuijlaars, 2001). Suppose that
dpj(x) = wj(x) dx (1 <j <r)

1A.S. Fokas, A. Its, A.V. Kitaev, The isomonodromy approach to matrix
models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), no. 2,
395-430

Walter Van Assche Multiple Orthogonal Polynomials



Riemann-Hilbert problem for MOPS

Fokas, Its and Kitaev! formulated a Riemann-Hilbert problem (for
2 x 2 matrices) that characterizes orthogonal polynomials.

There is a Riemann-Hilbert problem (for (r +1) x (r + 1)
matrices) that characterizes multiple orthogonal polynomials (W.
Van Assche, J.S. Geronimo, A.B.J. Kuijlaars, 2001). Suppose that
dpj(x) = wj(x) dx (1 <j <r)

Find Y = C — CUr+1)x(r+1) for which
Q Y is analyticon C\ R.

1A.S. Fokas, A. Its, A.V. Kitaev, The isomonodromy approach to matrix
models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), no. 2,
395-430
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Riemann-Hilbert problem for MOPS

@ The boundary values Yy (x) = lim 04+ Y(x £ i€) exist for
x € R and satisfy

—_

wi(x) wa(x) -+ we(x)

o
=
o
o

Yi(x) = Y-(x)

o
o
—_
X
m
=
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Riemann-Hilbert problem for MOPS

© Y behaves near infinity as

ZIl 0

—ny

Y(z) = (l—l—(’)(l/z)) z=" | , z— 00

Walter Van Assche Multiple Orthogonal Polynomials



Riemann-Hilbert problem for MOPS

© Y behaves near infinity as

ZI 0
y(z):(/+0(1/z)) ar . zox

0 z=nr

@ [some condition near the endpoints of the supports of
e ]
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Theorem (VA, Geronimo, Kuijlaars)

If mand @ — € (1 < j < r) are normal indices, then

P(z2) 21 (X)Wl(X) dx . % Pa()wr(x) 4.
. ™ n—e& \(X)wi{x ™ Pﬁfef(ixz)wr(x)
Y( ) —2miviPr_g(z) —m fﬁ dx - —m [ L= dx
Z) = . .
c Ps_ & (x)wy(x Pﬁ,g‘ X)wp(x
—27rl'y,P,7 a(z) -/ % dx - =y [ % dx

where

1
; = W = /an_lpﬁ_é'jlll/j(X) dx, 1<j<r.
j j
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Riemann-Hilbert problem for MOPS

Theorem (VA, Geronimo, Kuijlaars)
If M and @ — € (1 < j < r) are normal indices, then

f Cz)%(xx) dx 2miAz1(z) - 2miAg.(2)

Qi (%)
o A A aAnan@) o ahse,(2)

Y— T(Z) — 27i ?7

Qﬁ' & ' '
2 [ EED A chAnga(d) o Ghnal2)
where
z"i
Aiirg(2) = —= + lower order terms.

ci(m)
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Nikishin system

Introduced by E.M. Nikishin in 1980.
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Nikishin system

Introduced by E.M. Nikishin in 1980.

@ up is absolutely continuous with respect to 1
o The Radon-Nikodym derivative is

o [c,d] is disjoint from [a, b].
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Nikishin system

Introduced by E.M. Nikishin in 1980.

@ up is absolutely continuous with respect to 1
o The Radon-Nikodym derivative is

o [c,d] is disjoint from [a, b].

We will take c < d < a < b.
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Multiple orthogonal polynomials for a Nikishin system

We consider the following case:
dui(x) = (x — a)%(b — x)? h1(x) dx = wi(x) dx, x € [a, b,

do(t) = (t — c)'(d — t)°ha(t) dt = wo(t)dt  t € [c,d],

where h; is analytic in a neighborhood of [a, b] and hy is analytic
in a neighborhood of [c, d].
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Multiple orthogonal polynomials for a Nikishin system

We consider the following case:
dui(x) = (x — a)%(b — x)? h1(x) dx = wi(x) dx, x € [a, b,

do(t) = (t — c)'(d — t)°ha(t) dt = wo(t)dt  t € [c,d],

where h; is analytic in a neighborhood of [a, b] and hy is analytic
in a neighborhood of [c, d].

b
/ xk (A,,ﬁm(x)—kw(x)B,,,m(x)) wi(x)dx =0, 0 <k < ntm-2,
a

w(x) = /d wa(t) dt.

X —t
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Riemann-Hilbert problem

We use the Riemann-Hilbert problem for X = Y~ T
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Riemann-Hilbert problem

We use the Riemann-Hilbert problem for X = Y~ T

Find X : C — C3*3 such that
Q X is analytic in C\ [a, b].
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Riemann-Hilbert problem

We use the Riemann-Hilbert problem for X = Y~ T

Find X : C — C3*3 such that
Q X is analytic in C\ [a, b].
Q limco+ X(x £ ie) = Xy (x) exists for x € (a, b) and

1 0 0
Xi(x) = X_(x) —2miwg (x) 1 0], x € (a, b).
—2miw(x)wi(x) 0 1
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Riemann-Hilbert problem

© Near infinity one has

z7"™m 0 0
X(z) = (H + (’)(1/2)) 0 z" 0|, zZ — 0.
0 0 zm
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Riemann-Hilbert problem

O Near infinity one has

z"m 0 0
X(z)(H-I—(’)(l/z))(g 2029”) z - 0.

@ Near a the behavior is

O(ra(2)) O(1) 0O(1)
X(z) =1 0(ra(2)) O(1) 0O(1) |, z— a,
O(ra(2)) O(1) O(1)

where
|z — a|®, -l1<a<0,
ra(z) =< log |z —al, a=0,
1, a > 0.
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Riemann-Hilbert problem

© Near infinity one has

Zm 9 0
X(z) = (H—i—(’)(l/z)) ( 0 z" O) , zZ — 0.

o

o

N
3

@ Near b the behavior is

O(np(2)) O(1) O(1)
X(z)= [ O(rs(2)) ©O(1) OQ1)|, z—b,

where
lz—b%, —1<p<0,
n(z) = { log|z — b, =0,
1, 6> 0.
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Riemann-Hilbert problem

The solution is

/b An.m(x) + w(x)Bp m(x) wi (x) dx An m(2) Bn.m(2)

zZ— X

b
X(Z) = Cl/ An+1,m(X) + W(X)Bn+1,m(X) Wl(X) dx C1An+1’m(2) Can+1’m(Z)

zZ— X

— Wl(X) dx C2An,m+1(2) CQBn’erl(Z)

o [ Ama) - ) B

with ¢ = c1(n, m) and ¢ = c»(n, m) such that

c1Ant1,m(z) = z" + lower order terms,

¢2Bn.m+1(z) = z™ + lower order terms.
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Riemann-Hilbert analysis

The idea is to transform this Riemann-Hilbert problem for X to a
Riemann-Hilbert problem for R that behaves nicely, uniformly in C,

lim R(z)=1

n,m—o0

Then undo the transformations for the asymptotic behavior of X.

Walter Van Assche Multiple Orthogonal Polynomials



Riemann-Hilbert analysis

The idea is to transform this Riemann-Hilbert problem for X to a
Riemann-Hilbert problem for R that behaves nicely, uniformly in C,

lim R(z)=1

n,m—o0

Then undo the transformations for the asymptotic behavior of X.

First transformation:

1 0 0

U(z) = X(2) | © 1 0
d

0 / ;V2_()dt 1
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Riemann-Hilbert analysis

The idea is to transform this Riemann-Hilbert problem for X to a
Riemann-Hilbert problem for R that behaves nicely, uniformly in C,

lim R(z)=1

n,m—o0

Then undo the transformations for the asymptotic behavior of X.

First transformation:

1 0 0
U(z) = X(2) | © 1 0
d
0 / wat) gy q
c z—t

This brings in the measure do(t) = wa(t) dt on the interval [c, d]



Riemann-Hilbert problem for U

@ U is analytic in C\ ([a, b] U [c, d])
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Riemann-Hilbert problem for U

@ U is analytic in C\ ([a, b] U [c, d])
Q Jumps
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Riemann-Hilbert problem for U

@ Asymptotic behavior (here one needs m < n)
z7"™m 0 0
V4

U(z):<H+O(1/z)> 8 0" Zom, z - .
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Riemann-Hilbert problem for U

@ Asymptotic behavior (here one needs m < n)

Zm 0 0
U(z)(]l—l—O(l/z))(g zozom) z - .

© Behavior near a

O(rs(2)) O(1) O(1)
U(z) = | O(ra(2)) O(1) O(1) |, z—a
O(ra(2)) O(1) 0O(1)
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Riemann-Hilbert problem for U

@ Asymptotic behavior (here one needs m < n)

Zm 0 0
U(z)(]l—l—O(l/z))(g zozom) z - .

© Behavior near b
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Riemann-Hilbert problem for U

@ Asymptotic behavior (here one needs m < n)

Zm 0 0
U(z)(]l—l—O(l/z))(g zozom) z - .

© Behavior near ¢

O(1) O(re(2)) O(1)
U(z)=[0Q1) O(re(2)) ©O(1)|, z—c,
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Riemann-Hilbert problem for U

@ Asymptotic behavior (here one needs m < n)

z7"m 0 0
U(z) = (]I+(’)(1/z)> ( 0 z" 0) , z — o0.
0 0 z7
@ Behavior near d
O(1) O(ra(2)) O(1)
U(z)=|0(Q1) O(ra(2)) O(1)], z—d,
0(1) O(ra(2)) O(1)
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Vector equilibrium problem

Equilibrium problem:
21(n)+20} (v2) —2qul (v, v2) = inf (21()+2a3 () 200 s, p2) ).

1, 2 are probability measures, supp(u1) C [a, b],
supp(p2) C [c,d] and g1 = ;7

I(pas p2) = //Iog

dm( ) dpa(x).
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Vector equilibrium problem

Equilibrium problem:
21(n)+20} (v2) —2qul (v, v2) = inf (21()+2a3 () 200 s, p2) ).

1, 2 are probability measures, supp(u1) C [a, b],
supp(p2) C [c,d] and g1 = ;7

I(pas p2) = //Iog

@ 1 gives the asymptotic distribution of the zeros of
An.m(x) + w(x)Bnm(x) on [a, b]

dm( ) dpa(x).
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Vector equilibrium problem

Equilibrium problem:
21(n)+20} (v2) —2qul (v, v2) = inf (21()+2a3 () 200 s, p2) ).

{1, i are probability measures, supp(u1) C [a, b],
supp(p2) C [c,d] and g1 = ;7

I(pas p2) = //Iog

@ 1 gives the asymptotic distribution of the zeros of
An.m(x) + w(x)Bnm(x) on [a, b]
@ v, gives the asymptotic distribution of the zeros of B, ,, on

[c,d].
Walter Van Assche Multiple Orthogonal Polynomials
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Vector equilibrium problem

Variational conditions:

2U(X Vl) — qu( ) = 61, X € [a, b],
2q1U(X, I/2) — ( ; 1) = 52, X € [C, d],

where

U(x;u)=/log, . ,du(y)
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Riemann-Hilbert problem: g-functions

Introduce

b d
ai(z) = / log(z — x) dvi(x), g&(z) = / log(z — t) dv(t).
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Riemann-Hilbert problem: g-functions

Introduce

b
ai(z) = / log(z — x) dvy(x),

—U(x; 1),

gli(x) = —U(x,11) £ i,
—U(x;11) £ imp1(x),
—U(x; 1),

gzi(x) =9 —U(x, 1) + im,

—U(x;12) £ impa(x),

d
&(2) = / log(z — t) dun(t).

x > b,
x < a,
a<x<b,

p1(x) =

p2(x) =
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Riemann-Hilbert problem: second transformation

Normalizing the Riemann-Hilbert problem:

e(ntm)ei(z) 0 0
V(z) = LU(2) 0 e (tme@tme(z) g | 1
0 0 e~ me2(2)
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Riemann-Hilbert problem: second transformation

Normalizing the Riemann-Hilbert problem:

e(ntm)gi(z) 0 0
V(z) = LU(2) 0 e—(ntm)eg1(z)+mg(z) 0 L1
0 0 e—me(2)
where
e~ 5 (20 +6) 0 0
L= L(n,m)= 0 e (lh) 0
0 0 "5t (1 126)
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Riemann-Hilbert problem for V

@ Vis analytic on C\ ([a, b] U [c, d]).
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Riemann-Hilbert problem for V

@ Vis analytic on C\ ([a, b] U [c, d]).

Q Asymptotic behavior in normalized

V(z) =1+ 0(1/z), zZ — 0.
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Riemann-Hilbert problem for V

@ Vis analytic on C\ ([a, b] U [c, d]).

Q Asymptotic behavior in normalized
V(z) =1+ 0(1/z), zZ — 0.

@ Oscillatory jumps on (a, b) and (c, d)

e27ri(n+m)g01(x) 0 0
V. (x) = V_(x) ( —27iwg(x) e 2milntmlei(x) 0) ., x€(ab),
0 0 1

1 0 0
Vi(x)=V_(x) |0 e?rime=(x) 0 , x € (c,d).

0 —2miwy(x) e 2mime2(x)
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Riemann-Hilbert problem for V

@ Vis analytic on C\ ([a, b] U [c, d]).

Q Asymptotic behavior in normalized
V(z) =1+ 0(1/z), zZ — 0.

@ Oscillatory jumps on (a, b) and (c, d)

e27ri(n+m)g01(x) 0 0
Vi(x) = V_(x)( —27iwy(x) e 2milmmei) o | x € (ab),
0 0 1

1 0 0
Vi(x)=V_(x) |0 e?rime=(x) 0 , x € (c,d).

0 —2miwy(x) e 2mime2(x)

@ Behavior near a, b, ¢, d under control.
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Steepest descent for oscillatory Riemann-Hilbert problems

Deift and Zhou (1993) developed a method for obtaining the
asymptotic behavior (in our case for n, m — o) for oscillatory
Riemann-Hilbert problems. It starts with factoring the oscillatory
jump.
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Steepest descent for oscillatory Riemann-Hilbert problems

etrilmmi() 0 0 ®FFm 00
(27riw1(x) e—2mi(ntm)ei(x) 0) = (_Vl ootm O)

0 0 1 0 0 1

1L —o7™™/vy 0 0 1/vy 0\ /1 —®!"™/yy 0
=10 1 0] (- 0o offo 1 0
0 0 1 0 0 1/ \0 0 1
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Steepest descent for oscillatory Riemann-Hilbert problems

etrilmmi() 0 0 ®FFm 00
(27riw1(x) e—2mi(ntm)ei(x) 0) = (_Vl ootm 0)

0 0 1 0 0 1
1L —o7™™/vy 0 0 1/vy 0\ /1 —®!"™/yy 0
=10 1 0] (- o offo 1 0
0 0 1 o o 1/ \o 0 1

1 0 0 1 0 O

0 eZrimealx) 0 =10 &7 0

0 —2miwo(x) e 2mimea(x) 0 —wv &F

10 0 1 0 0 10 O
=0 1 —®F/wn 0 0 1/wm 01 —9"/wn
0 0 1 0 —w» O 00 1
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Opening the lenses

ne
Y
°
°
Y
°
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Opening the lenses

{ > @ @ > @

c d a b
,d ,b
Zfr Zi

c d a b
56 za,b

Walter Van Assche Multiple Orthogonal Polynomials



Riemann-Hilbert problem: third transformation

V(z), outside the lenses
1 o,y o

V(z) |0 1 0], inside the [a, b]-lens, upper part
0 0 1
1 =07y 0

V(z) |0 1 0], inside the [a, b]-lens, lower part

S(z) = 0 0 1

1 0 0

V(z) |0 1 /v |, inside the [c, d]-lens, upper part
0 0 1
1 0 0

V(z) [0 1 —d57/w |, inside the [c, d]-lens, lower part
0 0 1
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Riemann-Hilbert problem for S

@ S is analytic in C\ ([a, b] U [c,d] U &b U x9).
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Riemann-Hilbert problem for S

@ S is analytic in C\ ([a, b] U [c,d] U &b U x9).
@ S is normalized near infinity: S(z) =1+ O(1/2).
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Riemann-Hilbert problem for S

@ S is analytic in C\ ([a, b] U [c,d] U &b U x9).
@ S is normalized near infinity: S(z) =1+ O(1/2).

©Q Jumps
1 -,y o
S(z)]0 1 0|, zex?b,
0 0 1
0 1/V1 0
S(z)|-w 0 0}, z € (a,b),
0 0 1
Si(2) = 10 0
S(z)10 1 —®;"/wa |, z€xod,
0 0 1
1 0 0
S (z){0 0 1/w]|, z € (c,d).
0 —V 0
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Riemann surface SR

We need to extend ®; (defined originally on [a, b]) and ®,
(defined originally on [c, d]) to the complex plane.
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Riemann surface SR

We need to extend ®; (defined originally on [a, b]) and ®,
(defined originally on [c, d]) to the complex plane.
These functions live more naturally on a Riemann surface with

three sheets.
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Riemann surface SR

We need to extend ®; (defined originally on [a, b]) and ®,
(defined originally on [c, d]) to the complex plane.
These functions live more naturally on a Riemann surface with

three sheets.

— R
c d 2
q)ilz(x) — e:|:27ri<p1(x), q)g:(X) _ e:|:27ri<p2(x)

Walter Van Assche Multiple Orthogonal Polynomials



Oscillatory jumps — exponentially small jumps

Claim:
|P1(2)| > 1, ze€ yab
|d2(2)] > 1, ze€xod.
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Oscillatory jumps — exponentially small jumps

Claim:
|®1(2)] > 1, ze€X®b
|d2(2)] > 1, ze€xod.

As n, m — oo the jumps on ¥2? and 9 tend to I exponentially
fast.
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Oscillatory jumps — exponentially small jumps

Claim:
|P1(2)| > 1, ze€ yab
|d2(2)] > 1, ze€xod.

As n, m — oo the jumps on ¥2? and 9 tend to I exponentially
fast.

The main contribution to the Riemann-Hilbert matrix S will be the
jumps on [a, b] and [c, d].
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Global parametrix

We ignore the jumps that tend to I
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Global parametrix

We ignore the jumps that tend to I

The main contribution to S is the matrix N with satisfies the
Riemann-Hilbert problem

@ N is analytic in C\ ([a, b] U [c, d]).
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Global parametrix

We ignore the jumps that tend to I

The main contribution to S is the matrix N with satisfies the
Riemann-Hilbert problem

@ N is analytic in C\ ([a, b] U [c, d]).
@ N is normalized near infinity: N(z) =1+ O(1/z).
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Global parametrix

We ignore the jumps that tend to I

The main contribution to S is the matrix N with satisfies the
Riemann-Hilbert problem

@ N is analytic in C\ ([a, b] U [c, d]).

@ N is normalized near infinity: N(z) =1+ O(1/z).

Q Jumps
0 1/V1 O
Ny(x)=N_(x)|-wv» 0 0], x € (a, b),
0 0 1
1 0 0
Ni(x)=N_(x)|0 0 1/wm], x € (c,d).
0 —w 0
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Global parametrix

We ignore the jumps that tend to I

The main contribution to S is the matrix N with satisfies the
Riemann-Hilbert problem

@ N is analytic in C\ ([a, b] U [c, d]).

@ N is normalized near infinity: N(z) =1+ O(1/z).

Q Jumps
0 1/V1 O
Ny(x)=N_(x)|-wv» 0 0], x € (a, b),
0 0 1
1 0 0
Ni(x)=N_(x)|0 0 1/wm], x € (c,d).
0 —w 0

@ Convenient behavior near a, b, ¢, d.
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Szego functions

We write this global parametrix as

Di(x) 0 0 Di(z) 0O 0o\’
N(z) = 0 D>(o0) 0 No(z) 0 Dyz) O
0 0 D3(c0) 0 0 Ds(2)

where (D1, D,, D3) correspond to the Szegd functions of (v1, v2)
for the Riemann surface fR:
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Szego functions

We write this global parametrix as

Di(x) 0 0 Di(z) 0O 0o\’
N(z) = ( 0 D>(o0) 0 ) No(z) ( 0 Dyz) O )
0 0 D3(c0) 0 0 Ds(2)

where (D1, D,, D3) correspond to the Szegd functions of (v1, v2)
for the Riemann surface fR:

D1, Do, D3 are analytic in C\ ([a, b] U [c, d]), with Dx(o0) # 0 and
D5 (x) = v1(x) Dy (x),

Dy (x) = vl(X)Df(x), , x € [a, b],
D3 (x) = D5 (),

Dff (x) = Dy (%),

D (x) = vo(x)D5 (x), x € [c,d].
Dy (x) = va(x) D5 (x),
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Standardized global parametrix

The remaining matrix Ny satisfies the Riemann-Hilbert problem
@ N is analytic in C\ ([a, b] U [c, d]).
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@ N is analytic in C\ ([a, b] U [c, d]).
@ N is normalized near infinity: No(z) =1+ O(1/z2).
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Standardized global parametrix

The remaining matrix Ny satisfies the Riemann-Hilbert problem
@ N is analytic in C\ ([a, b] U [c, d]).
@ N is normalized near infinity: No(z) =1+ O(1/z2).
Q Jumps

o
—_
o O

Ne(x)=Ny(x)[-1 0 x € (a, b),

o
o
[y

—_

x € (c,d).

1
M) = M0 |0 0
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Standardized global parametrix

The remaining matrix Ny satisfies the Riemann-Hilbert problem
@ N is analytic in C\ ([a, b] U [c, d]).
@ N is normalized near infinity: No(z) =1+ O(1/z2).

Q Jumps
0 10
Ne(x)=Ny(x)|-1 0 0], x € (a, b),
0 01
1 0 0
Ny (x)=Ny(x)|0o 0 1], x € (c,d).
0 -1 0

@ Convenient behavior near a, b, ¢, d.
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Final transformation?

We now consider the matrix

R =SN1.
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Final transformation?

We now consider the matrix
R = SN

c,d a,b
75 £

o y&b
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Final transformation?

We now consider the matrix
R=SN"1.
R y b
c d a b

yo y2b

The jumps on these curves converge to the identity matrix L.
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Perturbation result for Riemann-Hilbert problems

Theorem

Suppose R, satisfies a normalized Riemann-Hilbert problem on a
k .
system ¥ = |J;_; X; of contours. Suppose that the jumps

Rf(x) =R, (x)J; xc€Xj
converge uniformly to the identity matrix
147 = Tloo =0.
Then R,, converges uniformly to the identity matrix

lim_[|Ra(2) ~ Il = 0.
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Final asymptotic result?

lim SN"'!=1 = lim S=N.

n—oo n—oo
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Final asymptotic result?

lim SN"'!=1 = lim S=N.

n—oo n—oo

For z on compact sets of C\ ([a, b] U [c, d]): outside the lenses
S=V
lim V =N.

n—o0
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Final asymptotic result?

lim SN"'!=1 = lim S=N.

n—oo n—oo

For z on compact sets of C\ ([a, b] U [c, d]): outside the lenses
S=V

lim V =N.

n—o0

For z on [a, b] or [c, d]: inside the lenses Sy = V, J;

Jim, Vel = s
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Final asymptotic result?

lim SN"'!=1 = lim S=N.

n—oo n—oo

For z on compact sets of C\ ([a, b] U [c, d]): outside the lenses
S=V

lim V =N.

n—o0

For z on [a, b] or [c, d]: inside the lenses Sy = V, J;

Jim, Vel = s

There is a problem: the jumps for SN~ on ¥2% and ¥ do not
converge uniformly to I. Uniformity is lost near a, b, c, d.
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Final asymptotic result?

lim SN"'!=1 = lim S=N.

n—oo n—oo

For z on compact sets of C\ ([a, b] U [c, d]): outside the lenses
S=V
lim V =N.

n—o0

For z on [a, b] or [c, d]: inside the lenses Sy = V, J;

Jim, Vel = s

There is a problem: the jumps for SN~ on ¥2% and ¥ do not
converge uniformly to I. Uniformity is lost near a, b, c, d.
A local analysis around a, b, ¢, d is needed.
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Local parametrices

In the neighborhood of a the Riemann-Hilbert problem for S looks
like I,
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Local parametrices

In the neighborhood of a the Riemann-Hilbert problem for S looks
like I,

We approximate it by a model RHP P, which matches the global
parametrix N on the boundary I'; with an error O(1/n).
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Local parametrices

In the neighborhood of a the Riemann-Hilbert problem for S looks
like I,

We approximate it by a model RHP P, which matches the global
parametrix N on the boundary I'; with an error O(1/n).

This model Riemann-Hilbert problem uses the Bessel function J,.
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Local parametrices

In the neighborhood of a the Riemann-Hilbert problem for S looks
like I,

We approximate it by a model RHP P, which matches the global
parametrix N on the boundary I'; with an error O(1/n).
This model Riemann-Hilbert problem uses the Bessel function J,.
@ Around b we need the Bessel function Js.
@ Around c we need the Bessel function J,.

o Around d we need the Bessel function Js.
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The final transformation!

R(2) SN=Y  zoutside [,,Tp, ¢, Mg,
z) =
SP1, zinside Te, e € {a,b,c,d}.
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The final transformation!

R(2) SN=Y  zoutside [,,Tp, ¢, Mg,
z) =
SP1, zinside Te, e € {a,b,c,d}.
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The final transformation!

R(2) SN=Y  zoutside [,,Tp, ¢, Mg,
z) =
SP1, zinside Te, e € {a,b,c,d}.

Then
[Rs — 1|l = O(1/n).
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Final asymptotic results
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Final asymptotic results

Theorem

Let (n, m) be multi-indices that tend to infinity but for which
m/(n+ m) = g1 remains constant, with 0 < q1 < 1/2. Then
uniformly on compact subsets of C\ (]a, b] U [c, d])

Anm(2) = [Ni(v1(2)) + O(1/n )]%)(('O)) (n+m)g1(2)—mga(2)+(n+-m)

— [N1(¥2(2)) + O(1/n )]% mga(2)+(n+m)(t1+2) /d do(t)

9
c z—t

and

Bn,m(z) = [N (¢2(2)) + O(1 /n)]DDL(ng)emgﬂz)*‘("-&-m)(ﬁ—l—fz)‘

2\Z
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Final asymptotic results

Furthermore

4 do
A,,,m(z)—l—B,,,m(z)/ d—(t)

c Z=10

= IMs(u(2)) + O(1/m)) X lrsmine)-mmtey o,
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Final asymptotic results: on (c, d)

Uniformly on closed subintervals of (c,d) one has

B m() = —2IMs (45 (x)) + O(1/n)] |D°+((oo>)| e

X cos(mwwg(x) —arg D, (x))
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Final asymptotic results: on (a, b)

Uniformly on closed subintervals of (a, b) one has

e o
An (%) + Bam(x) / 970 _ 2l (i () + O(1/m)]
D (OO) n+m)U(x;v1
X lD(}_We( +m)U( )cos((n + m)p1(x) — arg Df(x))
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Type Il multiple orthogonal polynomials

Take the inverse-transpose of the Riemann-Hilbert matrix:

7 Pn.m(z) fb Pn '”(t)wl(t) dt fb M dt
X = _71Pn—1,m(z) * *
’72Pn,m71(z) * *
where
1 b
% = / tn_lpn—l,m(t)Wl(t) dt,
1 ab
% = / tm_lpn,m—l(t)W(t)Wl(t) dt.
a
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Asymptotics for type |l polynomials

Theorem

Let (n, m) be multi-indices that tend to infinity but for which
m/(n+ m) = g1 remains constant, with 0 < q1 < 1/2. Then
uniformly on compact subsets of C \ [a, b]

D( ) n-—m)gi\z
Dl Mi(to(2)el B,

Bl ) =
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Asymptotics for type |l polynomials

Theorem

Let (n, m) be multi-indices that tend to infinity but for which
m/(n+ m) = g1 remains constant, with 0 < q1 < 1/2. Then
uniformly on compact subsets of C \ [a, b]

Do(2)

Prm(2) = ey M (Wo(e)el 7B,

For x on closed intervals of (a, b) one has

Prm(x) = 2120 (( ))‘[M(w))w(l/n)]

X sin((n + m)pi(x) + arg DJ(X)).
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