# Multiple Orthogonal Polynomials 

Walter Van Assche

Summer school on OPSF, University of Kent

26-30 June, 2017

## Plan of the course

## Plan of the course

## lecture 1: Definitions + basic properties

## Plan of the course

## lecture 1: Definitions + basic properties <br> lecture 2: Hermite-Padé, Multiple Hermite polynomials

## Plan of the course

lecture 1: Definitions + basic properties
lecture 2: Hermite-Padé, Multiple Hermite polynomials
lecture 3: Multiple Laguerre polynomials (first and second kind)

## Plan of the course

lecture 1: Definitions + basic properties
lecture 2: Hermite-Padé, Multiple Hermite polynomials
lecture 3: Multiple Laguerre polynomials (first and second kind)
lecture 4: Multiple Jacobi polynomials:
Jacobi-Angelesco + Jacobi-Piñeiro

## Plan of the course

lecture 1: Definitions + basic propertieslecture 2: Hermite-Padé, Multiple Hermite polynomialslecture 3: Multiple Laguerre polynomials (first and second kind)lecture 4: Multiple Jacobi polynomials:Jacobi-Angelesco + Jacobi-Piñeiro
lecture 5: Riemann-Hilbert problem

## Riemann-Hilbert problem for MOPS

Fokas, Its and Kitaev ${ }^{1}$ formulated a Riemann-Hilbert problem (for $2 \times 2$ matrices) that characterizes orthogonal polynomials.
${ }^{1}$ A.S. Fokas, A. Its, A.V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), no. 2, 395-430

## Riemann-Hilbert problem for MOPS

Fokas, Its and Kitaev ${ }^{1}$ formulated a Riemann-Hilbert problem (for $2 \times 2$ matrices) that characterizes orthogonal polynomials.

There is a Riemann-Hilbert problem (for $(r+1) \times(r+1)$ matrices) that characterizes multiple orthogonal polynomials (W. Van Assche, J.S. Geronimo, A.B.J. Kuijlaars, 2001). Suppose that $d \mu_{j}(x)=w_{j}(x) d x(1 \leq j \leq r)$

[^0]
## Riemann-Hilbert problem for MOPS

Fokas, Its and Kitaev ${ }^{1}$ formulated a Riemann-Hilbert problem (for $2 \times 2$ matrices) that characterizes orthogonal polynomials.

There is a Riemann-Hilbert problem (for $(r+1) \times(r+1)$ matrices) that characterizes multiple orthogonal polynomials (W. Van Assche, J.S. Geronimo, A.B.J. Kuijlaars, 2001). Suppose that $d \mu_{j}(x)=w_{j}(x) d x(1 \leq j \leq r)$

Find $Y=\mathbb{C} \rightarrow \mathbb{C}^{(r+1) \times(r+1)}$ for which
(1) $Y$ is analytic on $\mathbb{C} \backslash \mathbb{R}$.

[^1]
## Riemann-Hilbert problem for MOPS

(2) The boundary values $Y_{ \pm}(x)=\lim _{\epsilon \rightarrow 0+} Y(x \pm i \epsilon)$ exist for $x \in \mathbb{R}$ and satisfy

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{ccccc}
1 & w_{1}(x) & w_{2}(x) & \cdots & w_{r}(x) \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & \vdots & & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right), \quad x \in \mathbb{R} .
$$

## Riemann-Hilbert problem for MOPS

(3) $Y$ behaves near infinity as

$$
Y(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{ccccc}
z^{|\vec{n}|} & & & & 0 \\
& z^{-n_{1}} & & & \\
& & z^{-n_{2}} & & \\
& & & \ddots & \\
0 & & & & z^{-n_{r}}
\end{array}\right), \quad z \rightarrow \infty
$$

## Riemann-Hilbert problem for MOPS

(3) $Y$ behaves near infinity as

$$
Y(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{ccccc}
z^{|\vec{n}|} & & & & 0 \\
& z^{-n_{1}} & & & \\
& & z^{-n_{2}} & & \\
& & & \ddots & \\
0 & & & & z^{-n_{r}}
\end{array}\right), \quad z \rightarrow \infty
$$

( - some condition near the endpoints of the supports of $\mu_{1}, \ldots, \mu_{r}$ ]

## Riemann-Hilbert problem for MOPS

## Theorem (VA, Geronimo, Kuijlaars)

If $\vec{n}$ and $\vec{n}-\vec{e}_{j}(1 \leq j \leq r)$ are normal indices, then
$Y(z)=\left(\begin{array}{cccc}P_{\vec{n}}(z) & \frac{1}{2 \pi i} \int \frac{P_{\vec{n}}(x) w_{1}(x)}{x-z} d x & \cdots & \frac{1}{2 \pi i} \int \frac{P_{\vec{n}}(x) w_{r}(x)}{x-r} d x \\ -2 \pi i \gamma_{1} P_{\vec{n}-\vec{e}_{1}}(z) & -\gamma_{1} \int \frac{P_{\vec{n}-\vec{e}_{1}}(x) w_{1}(x)}{x-z} d x & \cdots & -\gamma_{1} \int \frac{P_{\vec{n}-\vec{e}_{1}}(x) w_{r}(x)}{x-z} d x \\ \vdots & \vdots & \cdots & \vdots \\ -2 \pi i \gamma_{r} P_{\vec{n}-\vec{e}_{r}}(z) & -\gamma_{r} \int \frac{P_{\vec{n}-\vec{e}_{r}}(x) w_{1}(x)}{x-z} d x & \cdots & -\gamma_{r} \int \frac{P_{\vec{n}-\vec{e}_{r}}(x) w_{r}(x)}{x-z} d x\end{array}\right)$
where

$$
\frac{1}{\gamma_{j}}=\frac{1}{\gamma_{j}(\vec{n})}=\int x^{n_{j}-1} P_{\vec{n}-\vec{e}_{j}} w_{j}(x) d x, \quad 1 \leq j \leq r
$$

## Riemann-Hilbert problem for MOPS

## Theorem (VA, Geronimo, Kuijlaars)

If $\vec{n}$ and $\vec{n}-\vec{e}_{j}(1 \leq j \leq r)$ are normal indices, then

$$
Y^{-T}(z)=\left(\begin{array}{cccc}
\int \frac{Q_{\overrightarrow{\vec{r}}}(x)}{z-x} d x & 2 \pi i A_{\vec{n}, 1}(z) & \cdots & 2 \pi i A_{\vec{n}, r}(z) \\
\frac{c_{1}}{2 \pi i} \int \frac{Q_{\vec{n}+\vec{e}_{1}}(x)}{z-x} d x & c_{1} A_{\vec{n}+\vec{e}_{1}, 1}(z) & \cdots & c_{1} A_{\vec{n}+\vec{e}_{1}, r}(z) \\
\vdots & \vdots & \cdots & \vdots \\
\frac{c_{r}}{2 \pi i} \int \frac{Q_{\vec{n}+\vec{e}_{r}}(x)}{z-x} d x & c_{r} A_{\vec{n}+\vec{e}_{r}, 1}(z) & \cdots & c_{r} A_{\vec{n}+\vec{e}_{r}, r}(z)
\end{array}\right)
$$

where

$$
A_{\vec{n}+\vec{e}_{j}}(z)=\frac{z^{n_{j}}}{c_{j}(\vec{n})}+\text { lower order terms. }
$$

## Nikishin system

Introduced by E.M. Nikishin in 1980 .

## Nikishin system

Introduced by E.M. Nikishin in 1980.

- $\mu_{2}$ is absolutely continuous with respect to $\mu_{1}$


## Nikishin system

Introduced by E.M. Nikishin in 1980.

- $\mu_{2}$ is absolutely continuous with respect to $\mu_{1}$
- The Radon-Nikodym derivative is

$$
\frac{d \mu_{2}}{d \mu_{1}}=w(x)=\int_{c}^{d} \frac{d \sigma(t)}{x-t}
$$

## Nikishin system

Introduced by E.M. Nikishin in 1980.

- $\mu_{2}$ is absolutely continuous with respect to $\mu_{1}$
- The Radon-Nikodym derivative is

$$
\frac{d \mu_{2}}{d \mu_{1}}=w(x)=\int_{c}^{d} \frac{d \sigma(t)}{x-t}
$$

- $[c, d]$ is disjoint from $[a, b]$.


## Nikishin system

Introduced by E.M. Nikishin in 1980.

- $\mu_{2}$ is absolutely continuous with respect to $\mu_{1}$
- The Radon-Nikodym derivative is

$$
\frac{d \mu_{2}}{d \mu_{1}}=w(x)=\int_{c}^{d} \frac{d \sigma(t)}{x-t}
$$

- $[c, d]$ is disjoint from $[a, b]$.

We will take $c<d<a<b$.

## Multiple orthogonal polynomials for a Nikishin system

We consider the following case:

$$
\begin{aligned}
d \mu_{1}(x)=(x-a)^{\alpha}(b-x)^{\beta} h_{1}(x) d x=w_{1}(x) d x, \quad x \in[a, b], \\
d \sigma(t)=(t-c)^{\gamma}(d-t)^{\delta} h_{2}(t) d t=w_{2}(t) d t \quad t \in[c, d],
\end{aligned}
$$

where $h_{1}$ is analytic in a neighborhood of $[a, b]$ and $h_{2}$ is analytic in a neighborhood of $[c, d]$.

## Multiple orthogonal polynomials for a Nikishin system

We consider the following case:

$$
\begin{aligned}
& d \mu_{1}(x)=(x-a)^{\alpha}(b-x)^{\beta} h_{1}(x) d x=w_{1}(x) d x, \quad x \in[a, b], \\
& d \sigma(t)=(t-c)^{\gamma}(d-t)^{\delta} h_{2}(t) d t=w_{2}(t) d t \quad t \in[c, d],
\end{aligned}
$$

where $h_{1}$ is analytic in a neighborhood of $[a, b]$ and $h_{2}$ is analytic in a neighborhood of $[c, d]$.

$$
\begin{gathered}
\int_{a}^{b} x^{k}\left(A_{n, m}(x)+w(x) B_{n, m}(x)\right) w_{1}(x) d x=0, \quad 0 \leq k \leq n+m-2 \\
w(x)=\int_{c}^{d} \frac{w_{2}(t)}{x-t} d t
\end{gathered}
$$

## Riemann-Hilbert problem

We use the Riemann-Hilbert problem for $X=Y^{-T}$

## Riemann-Hilbert problem

We use the Riemann-Hilbert problem for $X=Y^{-T}$
Find $X: \mathbb{C} \rightarrow \mathbb{C}^{3 \times 3}$ such that

## Riemann-Hilbert problem

We use the Riemann-Hilbert problem for $X=Y^{-T}$
Find $X: \mathbb{C} \rightarrow \mathbb{C}^{3 \times 3}$ such that
(1) $X$ is analytic in $\mathbb{C} \backslash[a, b]$.

## Riemann-Hilbert problem

We use the Riemann-Hilbert problem for $X=Y^{-T}$
Find $X: \mathbb{C} \rightarrow \mathbb{C}^{3 \times 3}$ such that
(1) $X$ is analytic in $\mathbb{C} \backslash[a, b]$.
(2) $\lim _{\epsilon \rightarrow 0^{+}} X(x \pm i \epsilon)=X_{ \pm}(x)$ exists for $x \in(a, b)$ and

$$
X_{+}(x)=X_{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 \pi i w_{1}(x) & 1 & 0 \\
-2 \pi i w(x) w_{1}(x) & 0 & 1
\end{array}\right), \quad x \in(a, b)
$$

## Riemann-Hilbert problem

(3) Near infinity one has

$$
X(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

## Riemann-Hilbert problem

(3) Near infinity one has

$$
X(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

(-) Near a the behavior is

$$
X(z)=\left(\begin{array}{ccc}
\mathcal{O}\left(r_{a}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{a}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{a}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1)
\end{array}\right), \quad z \rightarrow a,
$$

where

$$
r_{a}(z)= \begin{cases}|z-a|^{\alpha}, & -1<\alpha<0 \\ \log |z-a|, & \alpha=0 \\ 1, & \alpha>0\end{cases}
$$

## Riemann-Hilbert problem

(0) Near infinity one has

$$
X(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

(-) Near $b$ the behavior is

$$
X(z)=\left(\begin{array}{ccc}
\mathcal{O}\left(r_{b}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{b}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{b}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1)
\end{array}\right), \quad z \rightarrow b
$$

where

$$
r_{b}(z)= \begin{cases}|z-b|^{\beta}, & -1<\beta<0 \\ \log |z-b|, & \beta=0 \\ 1, & \beta>0\end{cases}
$$

## Riemann-Hilbert problem

The solution is

$$
X(z)=\left(\begin{array}{ccc}
\int_{a}^{b} \frac{A_{n, m}(x)+w(x) B_{n, m}(x)}{z-x} w_{1}(x) d x & A_{n, m}(z) & B_{n, m}(z) \\
c_{1} \int_{a}^{b} \frac{A_{n+1, m}(x)+w(x) B_{n+1, m}(x)}{z-x} w_{1}(x) d x & c_{1} A_{n+1, m}(z) & c_{1} B_{n+1, m}(z) \\
c_{2} \int_{a}^{b} \frac{A_{n, m+1}(x)+w(x) B_{n, m+1}(x)}{z-x} w_{1}(x) d x & c_{2} A_{n, m+1}(z) & c_{2} B_{n, m+1}(z)
\end{array}\right)
$$

with $c_{1}=c_{1}(n, m)$ and $c_{2}=c_{2}(n, m)$ such that

$$
\begin{aligned}
& c_{1} A_{n+1, m}(z)=z^{n}+\text { lower order terms } \\
& c_{2} B_{n, m+1}(z)=z^{m}+\text { lower order terms. }
\end{aligned}
$$

## Riemann-Hilbert analysis

The idea is to transform this Riemann-Hilbert problem for $X$ to a Riemann-Hilbert problem for $R$ that behaves nicely, uniformly in $\mathbb{C}$,

$$
\lim _{n, m \rightarrow \infty} R(z)=\mathbb{I} .
$$

Then undo the transformations for the asymptotic behavior of $X$.

## Riemann-Hilbert analysis

The idea is to transform this Riemann-Hilbert problem for $X$ to a Riemann-Hilbert problem for $R$ that behaves nicely, uniformly in $\mathbb{C}$,

$$
\lim _{n, m \rightarrow \infty} R(z)=\mathbb{I}
$$

Then undo the transformations for the asymptotic behavior of $X$.

## First transformation:

$$
U(z)=X(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \int_{c}^{d} \frac{w_{2}(t)}{z-t} d t & 1
\end{array}\right)
$$

## Riemann-Hilbert analysis

The idea is to transform this Riemann-Hilbert problem for $X$ to a Riemann-Hilbert problem for $R$ that behaves nicely, uniformly in $\mathbb{C}$,

$$
\lim _{n, m \rightarrow \infty} R(z)=\mathbb{I}
$$

Then undo the transformations for the asymptotic behavior of $X$.

## First transformation:

$$
U(z)=X(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \int_{c}^{d} \frac{w_{2}(t)}{z-t} d t & 1
\end{array}\right)
$$

This brings in the measure $d \sigma(t)=w_{2}(t) d t$ on the interval $[c, d]$

## Riemann-Hilbert problem for $U$

(1) $U$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$

## Riemann-Hilbert problem for $U$

(1) $U$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$

- Jumps

$$
\begin{array}{ll}
U_{+}(x)=U_{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 \pi i w_{1}(x) & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & x \in(a, b), \\
U_{+}(x)=U_{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 \pi i w_{2}(x) & 1
\end{array}\right), & x \in(c, d) .
\end{array}
$$

## Riemann-Hilbert problem for $U$

(3) Asymptotic behavior (here one needs $m \leq n$ )

$$
U(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

## Riemann-Hilbert problem for $U$

(3) Asymptotic behavior (here one needs $m \leq n$ )

$$
U(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

(1) Behavior near a

$$
U(z)=\left(\begin{array}{ccc}
\mathcal{O}\left(r_{a}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{a}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{a}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1)
\end{array}\right), \quad z \rightarrow a
$$

## Riemann-Hilbert problem for $U$

(3) Asymptotic behavior (here one needs $m \leq n$ )

$$
U(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

(1) Behavior near $b$

$$
U(z)=\left(\begin{array}{ccc}
\mathcal{O}\left(r_{b}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{b}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1) \\
\mathcal{O}\left(r_{b}(z)\right) & \mathcal{O}(1) & \mathcal{O}(1)
\end{array}\right), \quad z \rightarrow b
$$

## Riemann-Hilbert problem for $U$

(3) Asymptotic behavior (here one needs $m \leq n$ )

$$
U(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

(1) Behavior near c

$$
U(z)=\left(\begin{array}{lll}
\mathcal{O}(1) & \mathcal{O}\left(r_{c}(z)\right) & \mathcal{O}(1) \\
\mathcal{O}(1) & \mathcal{O}\left(r_{c}(z)\right) & \mathcal{O}(1) \\
\mathcal{O}(1) & \mathcal{O}\left(r_{c}(z)\right) & \mathcal{O}(1)
\end{array}\right), \quad z \rightarrow c
$$

## Riemann-Hilbert problem for $U$

(3) Asymptotic behavior (here one needs $m \leq n$ )

$$
U(z)=(\mathbb{I}+\mathcal{O}(1 / z))\left(\begin{array}{ccc}
z^{-n-m} & 0 & 0 \\
0 & z^{n} & 0 \\
0 & 0 & z^{m}
\end{array}\right), \quad z \rightarrow \infty
$$

(1) Behavior near d

$$
U(z)=\left(\begin{array}{ccc}
\mathcal{O}(1) & \mathcal{O}\left(r_{d}(z)\right) & \mathcal{O}(1) \\
\mathcal{O}(1) & \mathcal{O}\left(r_{d}(z)\right) & \mathcal{O}(1) \\
\mathcal{O}(1) & \mathcal{O}\left(r_{d}(z)\right) & \mathcal{O}(1)
\end{array}\right), \quad z \rightarrow d
$$

## Vector equilibrium problem

## Equilibrium problem:

$2 I\left(\nu_{1}\right)+2 q_{1}^{2} I\left(\nu_{2}\right)-2 q_{1} I\left(\nu_{1}, \nu_{2}\right)=\inf _{\mu_{1}, \mu_{2}}\left(2 I\left(\mu_{1}\right)+2 q_{1}^{2} I\left(\mu_{2}\right)-2 q_{1} I\left(\mu_{1}, \mu_{2}\right)\right)$,
$\mu_{1}, \mu_{2}$ are probability measures, $\operatorname{supp}\left(\mu_{1}\right) \subset[a, b]$, $\operatorname{supp}\left(\mu_{2}\right) \subset[c, d]$ and $q_{1}=\frac{m}{n+m}$

$$
I\left(\mu_{1}, \mu_{2}\right)=\int_{c}^{d} \int_{a}^{b} \log \frac{1}{|x-y|} d \mu_{1}(x) d \mu_{2}(x)
$$

## Vector equilibrium problem

## Equilibrium problem:

$2 I\left(\nu_{1}\right)+2 q_{1}^{2} I\left(\nu_{2}\right)-2 q_{1} I\left(\nu_{1}, \nu_{2}\right)=\inf _{\mu_{1}, \mu_{2}}\left(2 I\left(\mu_{1}\right)+2 q_{1}^{2} I\left(\mu_{2}\right)-2 q_{1} I\left(\mu_{1}, \mu_{2}\right)\right)$,
$\mu_{1}, \mu_{2}$ are probability measures, $\operatorname{supp}\left(\mu_{1}\right) \subset[a, b]$, $\operatorname{supp}\left(\mu_{2}\right) \subset[c, d]$ and $q_{1}=\frac{m}{n+m}$

$$
I\left(\mu_{1}, \mu_{2}\right)=\int_{c}^{d} \int_{a}^{b} \log \frac{1}{|x-y|} d \mu_{1}(x) d \mu_{2}(x)
$$

- $\nu_{1}$ gives the asymptotic distribution of the zeros of

$$
A_{n, m}(x)+w(x) B_{n, m}(x) \text { on }[a, b]
$$

## Vector equilibrium problem

## Equilibrium problem:

$2 I\left(\nu_{1}\right)+2 q_{1}^{2} I\left(\nu_{2}\right)-2 q_{1} I\left(\nu_{1}, \nu_{2}\right)=\inf _{\mu_{1}, \mu_{2}}\left(2 I\left(\mu_{1}\right)+2 q_{1}^{2} I\left(\mu_{2}\right)-2 q_{1} I\left(\mu_{1}, \mu_{2}\right)\right)$,
$\mu_{1}, \mu_{2}$ are probability measures, $\operatorname{supp}\left(\mu_{1}\right) \subset[a, b]$, $\operatorname{supp}\left(\mu_{2}\right) \subset[c, d]$ and $q_{1}=\frac{m}{n+m}$

$$
I\left(\mu_{1}, \mu_{2}\right)=\int_{c}^{d} \int_{a}^{b} \log \frac{1}{|x-y|} d \mu_{1}(x) d \mu_{2}(x)
$$

- $\nu_{1}$ gives the asymptotic distribution of the zeros of $A_{n, m}(x)+w(x) B_{n, m}(x)$ on $[a, b]$
- $\nu_{2}$ gives the asymptotic distribution of the zeros of $B_{n, m}$ on $[c, d]$.


## Vector equilibrium problem

## Variational conditions:

$$
\begin{array}{ll}
2 U\left(x ; \nu_{1}\right)-q_{1} U\left(x ; \nu_{2}\right)=\ell_{1}, & x \in[a, b], \\
2 q_{1} U\left(x ; \nu_{2}\right)-U\left(x ; \nu_{1}\right)=\ell_{2}, & x \in[c, d],
\end{array}
$$

where

$$
U(x ; \mu)=\int \log \frac{1}{|x-y|} d \mu(y)
$$

## Riemann-Hilbert problem: $g$-functions

Introduce

$$
g_{1}(z)=\int_{a}^{b} \log (z-x) d \nu_{1}(x), \quad g_{2}(z)=\int_{c}^{d} \log (z-t) d \nu_{2}(t)
$$

## Riemann-Hilbert problem: g-functions

Introduce

$$
g_{1}(z)=\int_{a}^{b} \log (z-x) d \nu_{1}(x), \quad g_{2}(z)=\int_{c}^{d} \log (z-t) d \nu_{2}(t)
$$

$$
\begin{aligned}
& g_{1}^{ \pm}(x)=\left\{\begin{array}{ll}
-U\left(x ; \nu_{1}\right), & x>b, \\
-U\left(x, \nu_{1}\right) \pm i \pi, & x<a, \\
-U\left(x ; \nu_{1}\right) \pm i \pi \varphi_{1}(x), & a<x<b,
\end{array} \quad \varphi_{1}(x)=\int_{x}^{b} d \nu_{1}(t),\right. \\
& g_{2}^{ \pm}(x)=\left\{\begin{array}{ll}
-U\left(x ; \nu_{2}\right), & x>d, \\
-U\left(x, \nu_{2}\right) \pm i \pi, & x<c, \\
-U\left(x ; \nu_{2}\right) \pm i \pi \varphi_{2}(x), & c<x<d,
\end{array} \quad \varphi_{2}(x)=\int_{x}^{d} d \nu_{2}(t),\right.
\end{aligned}
$$

## Riemann-Hilbert problem: second transformation

Normalizing the Riemann-Hilbert problem:

$$
V(z)=L U(z)\left(\begin{array}{ccc}
e^{(n+m) g_{1}(z)} & 0 & 0 \\
0 & e^{-(n+m) g_{1}(z)+m g_{2}(z)} & 0 \\
0 & 0 & e^{-m g_{2}(z)}
\end{array}\right) L^{-1}
$$

## Riemann-Hilbert problem: second transformation

Normalizing the Riemann-Hilbert problem:

$$
V(z)=L U(z)\left(\begin{array}{ccc}
e^{(n+m) g_{1}(z)} & 0 & 0 \\
0 & e^{-(n+m) g_{1}(z)+m g_{2}(z)} & 0 \\
0 & 0 & e^{-m g_{2}(z)}
\end{array}\right) L^{-1}
$$

where

$$
L=L(n, m)=\left(\begin{array}{ccc}
e^{-\frac{n+m}{3}\left(2 \ell_{1}+\ell_{2}\right)} & 0 & 0 \\
0 & e^{\frac{n+m}{3}\left(\ell_{1}-\ell_{2}\right)} & 0 \\
0 & 0 & e^{\frac{n+m}{3}\left(\ell_{1}+2 \ell_{2}\right)}
\end{array}\right)
$$

## Riemann-Hilbert problem for $V$

- $V$ is analytic on $\mathbb{C} \backslash([a, b] \cup[c, d])$.


## Riemann-Hilbert problem for $V$

- $V$ is analytic on $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(0) Asymptotic behavior in normalized

$$
V(z)=\mathbb{I}+\mathcal{O}(1 / z), \quad z \rightarrow \infty .
$$

## Riemann-Hilbert problem for $V$

(1) $V$ is analytic on $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) Asymptotic behavior in normalized

$$
V(z)=\mathbb{I}+\mathcal{O}(1 / z), \quad z \rightarrow \infty
$$

(0) Oscillatory jumps on $(a, b)$ and $(c, d)$

$$
\begin{aligned}
& V_{+}(x)=V_{-}(x)\left(\begin{array}{ccc}
e^{2 \pi i(n+m) \varphi_{1}(x)} & 0 & 0 \\
-2 \pi i w_{1}(x) & e^{-2 \pi i(n+m) \varphi_{1}(x)} & 0 \\
0 & 0 & 1
\end{array}\right), \quad x \in(a, b), \\
& V_{+}(x)=V_{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{2 \pi i m \varphi_{2}(x)} & 0 \\
0 & -2 \pi i w_{2}(x) & e^{-2 \pi i m \varphi_{2}(x)}
\end{array}\right), \quad x \in(c, d) .
\end{aligned}
$$

## Riemann-Hilbert problem for $V$

(1) $V$ is analytic on $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) Asymptotic behavior in normalized

$$
V(z)=\mathbb{I}+\mathcal{O}(1 / z), \quad z \rightarrow \infty
$$

(0) Oscillatory jumps on $(a, b)$ and $(c, d)$

$$
\begin{aligned}
& V_{+}(x)=V_{-}(x)\left(\begin{array}{ccc}
e^{2 \pi i(n+m) \varphi_{1}(x)} & 0 & 0 \\
-2 \pi i w_{1}(x) & e^{-2 \pi i(n+m) \varphi_{1}(x)} & 0 \\
0 & 0 & 1
\end{array}\right), \quad x \in(a, b), \\
& V_{+}(x)=V_{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{2 \pi i m \varphi_{2}(x)} & 0 \\
0 & -2 \pi i \omega_{2}(x) & e^{-2 \pi i m \varphi_{2}(x)}
\end{array}\right), \quad x \in(c, d) .
\end{aligned}
$$

(-) Behavior near $a, b, c, d$ under control.

## Steepest descent for oscillatory Riemann-Hilbert problems

Deift and Zhou (1993) developed a method for obtaining the asymptotic behavior (in our case for $n, m \rightarrow \infty$ ) for oscillatory Riemann-Hilbert problems. It starts with factoring the oscillatory jump.

## Steepest descent for oscillatory Riemann-Hilbert problems

$$
\begin{aligned}
& \left(\begin{array}{ccc}
e^{2 \pi i(n+m) \varphi_{1}(x)} & 0 & 0 \\
-2 \pi i w_{1}(x) & e^{-2 \pi i(n+m) \varphi_{1}(x)} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\Phi_{1}^{n+m} & 0 \\
\\
-v_{1} & \Phi_{1}^{n+m} \\
0 & 0 \\
0 & 1
\end{array}\right) \\
= & \left(\begin{array}{ccc}
1 & -\Phi_{1}^{n+m} / v_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 / v_{1} & 0 \\
-v_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -\bar{\Phi}_{1}^{n+m} / v_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

## Steepest descent for oscillatory Riemann-Hilbert problems

$$
\begin{aligned}
&\left(\begin{array}{ccc}
e^{2 \pi i(n+m) \varphi_{1}(x)} & 0 & 0 \\
-2 \pi i w_{1}(x) & e^{-2 \pi i(n+m) \varphi_{1}(x)} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\Phi_{1}^{n+m} & 0 \\
-v_{1} & \bar{\Phi}_{1}^{n+m} \\
0 & 0 \\
0 & 0
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1 & -\Phi_{1}^{n+m} / v_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 / v_{1} & 0 \\
-v_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -\bar{\Phi}_{1}^{n+m} / v_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{2 \pi i m \varphi_{2}(x)} & 0 \\
0 & -2 \pi i w_{2}(x) & e^{-2 \pi i m \varphi_{2}(x)}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \Phi_{2}^{m} & 0 \\
0 & -v_{2} & \Phi_{2}^{m}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -\Phi_{2}^{m} / v_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 / v_{2} \\
0 & -v_{2} & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -\bar{\Phi}^{m} / v_{2} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

## Opening the lenses



## Opening the lenses



## Riemann-Hilbert problem: third transformation

$$
S(z)=\left\{\begin{array}{cll}
V(z), & & \text { outside the lenses } \\
V(z)\left(\begin{array}{ccc}
1 & \Phi_{1}^{-(n+m)} / v_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & \text { inside the }[a, b] \text {-lens, upper part } \\
V(z)\left(\begin{array}{ccc}
1 & -\Phi_{1}^{-(n+m)} / v_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & \text { inside the }[a, b] \text {-lens, lower part } \\
V(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \Phi_{2}^{-m} / v_{2} \\
0 & 0 & 1
\end{array}\right), & \text { inside the }[c, d] \text {-lens, upper part } \\
V(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -\Phi_{2}^{-m} / v_{2} \\
0 & 0 & 1
\end{array}\right), & \text { inside the }[c, d] \text {-lens, lower part }
\end{array}\right.
$$

## Riemann-Hilbert problem for $S$

- $S$ is analytic in $\mathbb{C} \backslash\left([a, b] \cup[c, d] \cup \Sigma^{a, b} \cup \Sigma^{c, d}\right)$.


## Riemann-Hilbert problem for $S$

- $S$ is analytic in $\mathbb{C} \backslash\left([a, b] \cup[c, d] \cup \Sigma^{a, b} \cup \Sigma^{c, d}\right)$.
( $S$ is normalized near infinity: $S(z)=\mathbb{I}+\mathcal{O}(1 / z)$.


## Riemann-Hilbert problem for $S$

© $S$ is analytic in $\mathbb{C} \backslash\left([a, b] \cup[c, d] \cup \Sigma^{a, b} \cup \Sigma^{c, d}\right)$.

- $S$ is normalized near infinity: $S(z)=\mathbb{I}+\mathcal{O}(1 / z)$.
- Jumps

$$
S_{+}(z)= \begin{cases}S_{-}(z)\left(\begin{array}{ccc}
1 & -\Phi_{1}^{-(n+m)} / v_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & z \in \Sigma^{a, b}, \\
S_{-}(z)\left(\begin{array}{ccc}
0 & 1 / v_{1} & 0 \\
-v_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right), & z \in(a, b), \\
S_{-}(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -\Phi_{2}^{-m} / v_{2} \\
0 & 0 & 1
\end{array}\right), & z \in \Sigma^{c, d} \\
S_{-}(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 / v_{2} \\
0 & -v_{2} & 0
\end{array}\right), & z \in(c, d)\end{cases}
$$

## Riemann surface $\Re$

We need to extend $\Phi_{1}$ (defined originally on $[a, b]$ ) and $\Phi_{2}$ (defined originally on $[c, d]$ ) to the complex plane.

## Riemann surface $\Re$

We need to extend $\Phi_{1}$ (defined originally on $[a, b]$ ) and $\Phi_{2}$ (defined originally on $[c, d]$ ) to the complex plane.
These functions live more naturally on a Riemann surface with three sheets.


## Riemann surface $\mathfrak{R}$

We need to extend $\Phi_{1}$ (defined originally on $[a, b]$ ) and $\Phi_{2}$ (defined originally on $[c, d]$ ) to the complex plane.
These functions live more naturally on a Riemann surface with three sheets.


$$
\Phi_{1}^{ \pm}(x)=e^{ \pm 2 \pi i \varphi_{1}(x)}, \quad \Phi_{2}^{ \pm}(x)=e^{ \pm 2 \pi i \varphi_{2}(x)}
$$

## Oscillatory jumps $\rightarrow$ exponentially small jumps

Claim:

$$
\begin{cases}\left|\Phi_{1}(z)\right|>1, & z \in \Sigma^{a, b}, \\ \left|\Phi_{2}(z)\right|>1, & z \in \Sigma^{c, d} .\end{cases}
$$

## Oscillatory jumps $\rightarrow$ exponentially small jumps

Claim:

$$
\begin{cases}\left|\Phi_{1}(z)\right|>1, & z \in \Sigma^{a, b} \\ \left|\Phi_{2}(z)\right|>1, & z \in \Sigma^{c, d} .\end{cases}
$$

As $n, m \rightarrow \infty$ the jumps on $\Sigma^{a, b}$ and $\Sigma^{c, d}$ tend to $\mathbb{I}$ exponentially fast.

## Oscillatory jumps $\rightarrow$ exponentially small jumps

Claim:

$$
\begin{cases}\left|\Phi_{1}(z)\right|>1, & z \in \Sigma^{a, b} \\ \left|\Phi_{2}(z)\right|>1, & z \in \Sigma^{c, d} .\end{cases}
$$

As $n, m \rightarrow \infty$ the jumps on $\Sigma^{a, b}$ and $\Sigma^{c, d}$ tend to $\mathbb{I}$ exponentially fast.

The main contribution to the Riemann-Hilbert matrix $S$ will be the jumps on $[a, b]$ and $[c, d]$.

## Global parametrix

We ignore the jumps that tend to $\mathbb{I}$.

## Global parametrix

We ignore the jumps that tend to $\mathbb{I}$.
The main contribution to $S$ is the matrix $N$ with satisfies the Riemann-Hilbert problem
(1) $N$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.

## Global parametrix

We ignore the jumps that tend to $\mathbb{I}$.
The main contribution to $S$ is the matrix $N$ with satisfies the Riemann-Hilbert problem
(1) $N$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) $N$ is normalized near infinity: $N(z)=\mathbb{I}+\mathcal{O}(1 / z)$.

## Global parametrix

We ignore the jumps that tend to $\mathbb{I}$.
The main contribution to $S$ is the matrix $N$ with satisfies the Riemann-Hilbert problem
(1) $N$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) $N$ is normalized near infinity: $N(z)=\mathbb{I}+\mathcal{O}(1 / z)$.
© Jumps

$$
\begin{array}{ll}
N_{+}(x)=N_{-}(x)\left(\begin{array}{ccc}
0 & 1 / v_{1} & 0 \\
-v_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right), & x \in(a, b), \\
N_{+}(x)=N_{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 / v_{2} \\
0 & -v_{2} & 0
\end{array}\right), & x \in(c, d) .
\end{array}
$$

## Global parametrix

We ignore the jumps that tend to $\mathbb{I}$.
The main contribution to $S$ is the matrix $N$ with satisfies the Riemann-Hilbert problem
(1) $N$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) $N$ is normalized near infinity: $N(z)=\mathbb{I}+\mathcal{O}(1 / z)$.
(3) Jumps

$$
\begin{array}{ll}
N_{+}(x)=N_{-}(x)\left(\begin{array}{ccc}
0 & 1 / v_{1} & 0 \\
-v_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right), & x \in(a, b), \\
N_{+}(x)=N_{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 / v_{2} \\
0 & -v_{2} & 0
\end{array}\right), & x \in(c, d) .
\end{array}
$$

(-) Convenient behavior near $a, b, c, d$.

## Szegő functions

We write this global parametrix as
$N(z)=\left(\begin{array}{ccc}D_{1}(\infty) & 0 & 0 \\ 0 & D_{2}(\infty) & 0 \\ 0 & 0 & D_{3}(\infty)\end{array}\right) N_{0}(z)\left(\begin{array}{ccc}D_{1}(z) & 0 & 0 \\ 0 & D_{2}(z) & 0 \\ 0 & 0 & D_{3}(z)\end{array}\right)^{-1}$
where $\left(D_{1}, D_{2}, D_{3}\right)$ correspond to the Szegő functions of $\left(v_{1}, v_{2}\right)$ for the Riemann surface $\mathfrak{R}$ :

## Szegő functions

We write this global parametrix as

$$
N(z)=\left(\begin{array}{ccc}
D_{1}(\infty) & 0 & 0 \\
0 & D_{2}(\infty) & 0 \\
0 & 0 & D_{3}(\infty)
\end{array}\right) N_{0}(z)\left(\begin{array}{ccc}
D_{1}(z) & 0 & 0 \\
0 & D_{2}(z) & 0 \\
0 & 0 & D_{3}(z)
\end{array}\right)^{-1}
$$

where $\left(D_{1}, D_{2}, D_{3}\right)$ correspond to the Szegő functions of $\left(v_{1}, v_{2}\right)$ for the Riemann surface $\mathfrak{R}$ :
$D_{1}, D_{2}, D_{3}$ are analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$, with $D_{k}(\infty) \neq 0$ and

$$
\begin{aligned}
& \left\{\begin{array}{l}
D_{2}^{+}(x)=v_{1}(x) D_{1}^{-}(x), \\
D_{2}^{-}(x)=v_{1}(x) D_{1}^{+}(x), \\
D_{3}^{+}(x)=D_{3}^{-}(x),
\end{array}\right. \\
& \left\{\begin{array}{l}
D_{1}^{+}(x)=D_{1}^{-}(x), \\
D_{3}^{+}(x)=v_{2}(x) D_{2}^{-}(x), \\
D_{3}^{-}(x)=v_{2}(x) D_{2}^{+}(x),
\end{array}\right.
\end{aligned}
$$

## Standardized global parametrix

The remaining matrix $N_{0}$ satisfies the Riemann-Hilbert problem
(1) $N_{0}$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.

## Standardized global parametrix

The remaining matrix $N_{0}$ satisfies the Riemann-Hilbert problem
(1. $N_{0}$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) $N_{0}$ is normalized near infinity: $N_{0}(z)=\mathbb{I}+\mathcal{O}(1 / z)$.

## Standardized global parametrix

The remaining matrix $N_{0}$ satisfies the Riemann-Hilbert problem
(1) $N_{0}$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) $N_{0}$ is normalized near infinity: $N_{0}(z)=\mathbb{I}+\mathcal{O}(1 / z)$.

- Jumps

$$
\begin{array}{ll}
N_{0}^{+}(x)=N_{0}^{-}(x)\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), & x \in(a, b), \\
N_{0}^{+}(x)=N_{0}^{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), & x \in(c, d) .
\end{array}
$$

## Standardized global parametrix

The remaining matrix $N_{0}$ satisfies the Riemann-Hilbert problem
(1) $N_{0}$ is analytic in $\mathbb{C} \backslash([a, b] \cup[c, d])$.
(2) $N_{0}$ is normalized near infinity: $N_{0}(z)=\mathbb{I}+\mathcal{O}(1 / z)$.

- Jumps

$$
\begin{array}{ll}
N_{0}^{+}(x)=N_{0}^{-}(x)\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), & x \in(a, b), \\
N_{0}^{+}(x)=N_{0}^{-}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), & x \in(c, d) .
\end{array}
$$

( Convenient behavior near $a, b, c, d$.

## Final transformation?

We now consider the matrix

$$
R=S N^{-1}
$$

## Final transformation?

We now consider the matrix

$$
R=S N^{-1}
$$



## Final transformation?

We now consider the matrix

$$
R=S N^{-1}
$$



The jumps on these curves converge to the identity matrix $\mathbb{I}$.

## Perturbation result for Riemann-Hilbert problems

## Theorem

Suppose $R_{n}$ satisfies a normalized Riemann-Hilbert problem on a system $\Sigma=\bigcup_{i=1}^{k} \Sigma_{i}$ of contours. Suppose that the jumps

$$
R_{n}^{+}(x)=R_{n}^{-}(x) J_{i} \quad x \in \Sigma_{i}
$$

converge uniformly to the identity matrix

$$
\lim _{n \rightarrow \infty}\left\|J_{i}-\mathbb{I}\right\|_{\infty}=0
$$

Then $R_{n}$ converges uniformly to the identity matrix

$$
\lim _{n \rightarrow \infty}\left\|R_{n}(z)-\mathbb{I}\right\|_{\infty}=0
$$

## Final asymptotic result?

$$
\lim _{n \rightarrow \infty} S N^{-1}=\mathbb{I} \Rightarrow \lim _{n \rightarrow \infty} S=N
$$

## Final asymptotic result?

$$
\lim _{n \rightarrow \infty} S N^{-1}=\mathbb{I} \quad \Rightarrow \lim _{n \rightarrow \infty} S=N
$$

For $z$ on compact sets of $\mathbb{C} \backslash([a, b] \cup[c, d])$ : outside the lenses $S=V$

$$
\lim _{n \rightarrow \infty} V=N
$$

## Final asymptotic result?

$$
\lim _{n \rightarrow \infty} S N^{-1}=\mathbb{I} \quad \Rightarrow \lim _{n \rightarrow \infty} S=N
$$

For $z$ on compact sets of $\mathbb{C} \backslash([a, b] \cup[c, d])$ : outside the lenses $S=V$

$$
\lim _{n \rightarrow \infty} V=N
$$

For $z$ on $[a, b]$ or $[c, d]$ : inside the lenses $S_{+}=V_{+} J_{+}$

$$
\lim _{n \rightarrow \infty} V_{+} J_{+}=N_{+}
$$

## Final asymptotic result?

$$
\lim _{n \rightarrow \infty} S N^{-1}=\mathbb{I} \quad \Rightarrow \lim _{n \rightarrow \infty} S=N
$$

For $z$ on compact sets of $\mathbb{C} \backslash([a, b] \cup[c, d])$ : outside the lenses $S=V$

$$
\lim _{n \rightarrow \infty} V=N
$$

For $z$ on $[a, b]$ or $[c, d]$ : inside the lenses $S_{+}=V_{+} J_{+}$

$$
\lim _{n \rightarrow \infty} V_{+} J_{+}=N_{+}
$$

There is a problem: the jumps for $S N^{-1}$ on $\Sigma^{a, b}$ and $\Sigma^{c, d}$ do not converge uniformly to $\mathbb{I}$. Uniformity is lost near $a, b, c, d$.

## Final asymptotic result?

$$
\lim _{n \rightarrow \infty} S N^{-1}=\mathbb{I} \quad \Rightarrow \lim _{n \rightarrow \infty} S=N
$$

For $z$ on compact sets of $\mathbb{C} \backslash([a, b] \cup[c, d])$ : outside the lenses $S=V$

$$
\lim _{n \rightarrow \infty} V=N
$$

For $z$ on $[a, b]$ or $[c, d]$ : inside the lenses $S_{+}=V_{+} J_{+}$

$$
\lim _{n \rightarrow \infty} V_{+} J_{+}=N_{+}
$$

There is a problem: the jumps for $S N^{-1}$ on $\Sigma^{a, b}$ and $\Sigma^{c, d}$ do not converge uniformly to $\mathbb{I}$. Uniformity is lost near $a, b, c, d$. A local analysis around $a, b, c, d$ is needed.

## Local parametrices

In the neighborhood of $a$ the Riemann-Hilbert problem for $S$ looks like


## Local parametrices

In the neighborhood of $a$ the Riemann-Hilbert problem for $S$ looks like


We approximate it by a model RHP $P_{a}$ which matches the global parametrix $N$ on the boundary $\Gamma_{a}$ with an error $\mathcal{O}(1 / n)$.

## Local parametrices

In the neighborhood of $a$ the Riemann-Hilbert problem for $S$ looks like


We approximate it by a model RHP $P_{a}$ which matches the global parametrix $N$ on the boundary $\Gamma_{a}$ with an error $\mathcal{O}(1 / n)$.

This model Riemann-Hilbert problem uses the Bessel function $J_{\alpha}$.

## Local parametrices

In the neighborhood of $a$ the Riemann-Hilbert problem for $S$ looks like


We approximate it by a model RHP $P_{a}$ which matches the global parametrix $N$ on the boundary $\Gamma_{a}$ with an error $\mathcal{O}(1 / n)$.

This model Riemann-Hilbert problem uses the Bessel function $J_{\alpha}$.

- Around $b$ we need the Bessel function $J_{\beta}$.
- Around $c$ we need the Bessel function $J_{\gamma}$.
- Around $d$ we need the Bessel function $J_{\delta}$.


## The final transformation!

$$
R(z)= \begin{cases}S N^{-1}, & z \text { outside } \Gamma_{a}, \Gamma_{b}, \Gamma_{c}, \Gamma_{d}, \\ S P_{e}^{-1}, & z \text { inside } \Gamma_{e}, e \in\{a, b, c, d\} .\end{cases}
$$

## The final transformation!

$$
R(z)= \begin{cases}S N^{-1}, & z \text { outside } \Gamma_{a}, \Gamma_{b}, \Gamma_{c}, \Gamma_{d}, \\ S P_{e}^{-1}, & z \text { inside } \Gamma_{e}, e \in\{a, b, c, d\} .\end{cases}
$$



## The final transformation!

$$
R(z)= \begin{cases}S N^{-1}, & z \text { outside } \Gamma_{a}, \Gamma_{b}, \Gamma_{c}, \Gamma_{d}, \\ S P_{e}^{-1}, & z \text { inside } \Gamma_{e}, e \in\{a, b, c, d\} .\end{cases}
$$



Then

$$
\left\|R_{n}-\mathbb{I}\right\|=\mathcal{O}(1 / n)
$$

## Final asymptotic results

## Final asymptotic results

## Theorem

Let $(n, m)$ be multi-indices that tend to infinity but for which $m /(n+m)=q_{1}$ remains constant, with $0<q_{1} \leq 1 / 2$. Then uniformly on compact subsets of $\mathbb{C} \backslash(] a, b] \cup[c, d])$

$$
\begin{aligned}
& A_{n, m}(z)=\left[N_{1}\left(\psi_{1}(z)\right)+\mathcal{O}(1 / n)\right] \frac{D_{0}(\infty)}{D_{1}(z)} e^{(n+m) g_{1}(z)-m g_{2}(z)+(n+m) \ell_{1}} \\
& -\left[N_{1}\left(\psi_{2}(z)\right)+\mathcal{O}(1 / n)\right] \frac{D_{0}(\infty)}{D_{2}(z)} e^{m g_{2}(z)+(n+m)\left(\ell_{1}+\ell_{2}\right)} \int_{c}^{d} \frac{d \sigma(t)}{z-t}
\end{aligned}
$$

and

$$
B_{n, m}(z)=\left[N_{1}\left(\psi_{2}(z)\right)+\mathcal{O}(1 / n)\right] \frac{D_{0}(\infty)}{D_{2}(z)} e^{m g_{2}(z)+(n+m)\left(\ell_{1}+\ell_{2}\right)}
$$

## Final asymptotic results

## Theorem

Furthermore

$$
\begin{aligned}
& A_{n, m}(z)+B_{n, m}(z) \int_{c}^{d} \frac{d \sigma(t)}{z-t} \\
& \quad=\left[N_{1}\left(\psi_{1}(z)\right)+\mathcal{O}(1 / n)\right] \frac{D_{0}(\infty)}{D_{1}(z)} e^{(n+m) g_{1}(z)-m g_{2}(z)+(n+m) \ell_{1}}
\end{aligned}
$$

## Final asymptotic results: on ( $c, d$ )

## Theorem

Uniformly on closed subintervals of $(c, d)$ one has

$$
\begin{aligned}
& B_{n, m}(x)=-2\left[N_{1}\left(\psi_{1}^{+}(x)\right)+\mathcal{O}(1 / n)\right] \frac{D_{0}(\infty)}{\left|D_{2}^{+}(x)\right|} e^{-m U\left(x ; \nu_{2}\right)} \\
& \times \cos \left(m \pi \varphi_{2}(x)-\arg D_{2}^{+}(x)\right) .
\end{aligned}
$$

## Final asymptotic results: on $(a, b)$

## Theorem

Uniformly on closed subintervals of $(a, b)$ one has

$$
\begin{aligned}
& A_{n, m}(x)+B_{n, m}(x) \int_{c}^{d} \frac{d \sigma(t)}{x-t}=2\left[N_{1}\left(\psi_{1}^{+}(x)\right)+\mathcal{O}(1 / n)\right] \\
& \quad \times \frac{D_{0}(\infty)}{\left|D_{1}^{+}(x)\right|} e^{(n+m) U\left(x ; \nu_{1}\right)} \cos \left((n+m) \varphi_{1}(x)-\arg D_{1}^{+}(x)\right) .
\end{aligned}
$$

## Type II multiple orthogonal polynomials

Take the inverse-transpose of the Riemann-Hilbert matrix:

$$
X^{-T}=\left(\begin{array}{ccc}
P_{n, m}(z) & \int_{a}^{b} \frac{P_{n, m}(t) w_{1}(t)}{t-z} d t & \int_{a}^{b} \frac{P_{n, m}(t) w(t) w_{1}(t)}{t-z} d t \\
-\gamma_{1} P_{n-1, m}(z) & * & * \\
\gamma_{2} P_{n, m-1}(z) & * & *
\end{array}\right)
$$

where

$$
\begin{aligned}
\frac{1}{\gamma_{1}} & =\int_{a}^{b} t^{n-1} P_{n-1, m}(t) w_{1}(t) d t \\
\frac{1}{\gamma_{2}} & =\int_{a}^{b} t^{m-1} P_{n, m-1}(t) w(t) w_{1}(t) d t
\end{aligned}
$$

## Asymptotics for type II polynomials

## Theorem

Let $(n, m)$ be multi-indices that tend to infinity but for which $m /(n+m)=q_{1}$ remains constant, with $0<q_{1} \leq 1 / 2$. Then uniformly on compact subsets of $\mathbb{C} \backslash[a, b]$

$$
P_{n, m}(z)=\frac{D_{0}(z)}{D_{0}(\infty)} N_{1}\left(\psi_{0}(z)\right) e^{(n+m) g_{1}(z)}
$$

## Asymptotics for type II polynomials

## Theorem

Let $(n, m)$ be multi-indices that tend to infinity but for which $m /(n+m)=q_{1}$ remains constant, with $0<q_{1} \leq 1 / 2$. Then uniformly on compact subsets of $\mathbb{C} \backslash[a, b]$

$$
P_{n, m}(z)=\frac{D_{0}(z)}{D_{0}(\infty)} N_{1}\left(\psi_{0}(z)\right) e^{(n+m) g_{1}(z)}
$$

For $x$ on closed intervals of $(a, b)$ one has

$$
\begin{aligned}
P_{n, m}(x)=2 i \frac{\left|D_{0}^{+}(x)\right|}{D_{0}(\infty)}[ & \left.N_{1}\left(\psi_{0}^{+}(x)\right)+\mathcal{O}(1 / n)\right] \\
& \times \sin \left((n+m) \varphi_{1}(x)+\arg D_{0}^{+}(x)\right)
\end{aligned}
$$

## References

圊
P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 (1993), no. 2, 295-368.
M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One

Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005 (paperback edition 2009) ; in particular Chapter 23.

Guillermo López Lagomasino, Walter Van Assche, Riemann-Hilbert analysis for a Nikishin system, Math. Sbornik (submitted), arXiv:1612.07108 [math.CA]
W. Van Assche, J.S. Geronimo, A.B.J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, in 'Special Functions 2000: Current Perspective and Future Directions', (J. Bustoz, M.E.H. Ismail, S.K. Suslov, eds.), NATO Science Series II. Mathematics, Physics and Chemistry, Vol. 30, Kluwer, Dordrecht, 2001, pp. 23-59.


[^0]:    ${ }^{1}$ A.S. Fokas, A. Its, A.V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), no. 2, 395-430

[^1]:    ${ }^{1}$ A.S. Fokas, A. Its, A.V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), no. 2, 395-430

