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I hope you all 
attended this course:



HERMITE-PADÉ OR MULTIPLE O.P.



Electrostatic 
toolbox for R

Stress level:



A FAMOUS FAMILY (OF POLYNOMIALS)
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For ↵,� > �1 they form a well-known family of orthogonal poly-

nomials on [�1, 1]:
Z 1

�1
P

(↵,�)
n (x)xk(1� x)↵(1 + x)�dx = 0, k = 0, 1, . . . , n� 1.

In consequence, all zeros of P (↵,�)
n are simple and lie on (�1, 1).

Stieltjes (1885) gave an electrostatic interpretation to these zeros:
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ELECTROSTATIC MODEL



For K ⇢ C compact, the Robin constant is

 = min {I(µ) : µ unit measure on K}

The unique minimizer µK , such that I(µK) = , is the equilibrium
measure of K.

Also, V µK
(z) = �gD(z,1), where g(·,K) is the Green function

of D = C \K with pole at 1.

ELECTROSTATIC MODEL



In the case of the “standard” (Hermitian) orthogonality,
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for

~µ = (µ1, . . . , µk)
vector-valued measures

~' = ('1, . . . ,'k)
vector of external fields

k ⇥ k hermitian matrix of interactions

A � 0

the total energy

E(~µ, ~') = h~µ,A~µi+ 2
kX

j=1

Z
'j dµj
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Angelesco case:
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for

~µ = (µ1, . . . , µk)
vector-valued measures

~' = ('1, . . . ,'k)
vector of external fields

k ⇥ k hermitian matrix of interactions

A � 0

ELECTROSTATIC MODEL

k = 2

Nikishin case:

the total energy

E(~µ, ~') = h~µ,A~µi+ 2
kX
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Electrostatics on
the plane

Stress level:



HERMITE-PADÉ FOR CUBIC WEIGHT
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NON-HERMTIAN ORTHOGONALITY



VECTOR CRITICAL MEASURES
vector-valued measures

~µ = (µ1, µ2, µ3)
vector of external fields

~' =
�
Re(z3),Re(z3), 0

�

the total energy

E(~µ, ~') = h~µ,A~µi+ 2

Z
Re(z3) d(µ1 + µ2)

Additional conditions on ~µ:

matrix of interactions



VECTOR CRITICAL MEASURES
vector-valued measures

~µ = (µ1, µ2, µ3)
vector of external fields

~' =
�
Re(z3),Re(z3), 0

�

the total energy

E(~µ, ~') = h~µ,A~µi+ 2

Z
Re(z3) d(µ1 + µ2)

Additional conditions on ~µ:

Accumulated knowledge:

The (normalized) zero-counting measure of Pn,m’s con-

verges, as n,m ! 1, n/(n+m) ! ↵, to µ1 + µ2, where ~µ
is a saddle point of E(~µ, ~') on the plane.

Vector critical measures



The hunting of the 
Snark

vector critical 
measures

Welcome to the ride,
please hold tight

Stress level:



VECTOR CRITICAL MEASURES
Critical measures have a feature: the Cauchy transform of their

components are related to the same algebraic equation!

Recall that for a measure µ we have denoted



) a 3-sheeted Riemann surface R
of genus 0, with 4 branch points and 1 node.

Components of ~µ live on trajec-

tories of the quadratic di↵eren-

tial Q(z)dz2 on R, i.e. on curves

where

Re

Z z p
Q(t)dt ⌘ const

Q(z) :=

8
><
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(⇠2 � ⇠3)
2

on R1,

(⇠1 � ⇠3)
2

on R2,

(⇠2 � ⇠1)
2

on R3

is globally defined and meromor-

phic on R

Facts:

R(1)

R(2)

R(3)

⇠1 ⇠ 2z2

⇠2 ⇠ �z2

⇠3 ⇠ �z2 +
1� ↵

z
+ . . .

For small values of ↵ we can relatively easily identify the trajec-

tories whose projections on C carry ~µ
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) a 3-sheeted Riemann surface R
of genus 0, with 4 branch points and 1 node.

R(1)

R(2)

R(3)

⇠1 ⇠ 2z2

⇠2 ⇠ �z2

⇠3 ⇠ �z2 +
1� ↵

z
+ . . .

For small values of ↵ we can relatively easily identify the trajec-

tories whose projections on C carry ~µ

For the rest of the values of ↵
we have to trace all the deforma-

tions of these trajectories on R
and their phase transitions

This task could be matter of an

independent talk, with trajecto-

ries of quadratic di↵erentials as

main characters!

VECTOR CRITICAL MEASURES



Intermezzo: 
trajectories of 

quadratic 
differentials

Stress level:



TRAJECTORIES OF QUADRATIC DIFFERENTIALS

Simple pole

Simple zero
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Back to our 
Riemann surface

Stress level:
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WEAK ASYMPTOTICS

1

n+m

X

Pm,n(z)=0

�z ! µ1 + µ2

as n,m ! 1,
n

n+m
! ↵

µj ’s have explicit expressions in

terms of ⇠j ’s



WEAK ASYMPTOTICS

In fact, the vector critical mea-
sures are also a key ingredient
for the Riemann-Hilbert asymp-
totic analysis of these Hermite-
Padé polynomials.



Thank you


