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HERMITE-PADE OR MULTIPLE O.P.

Hermite—Padé polynomials of type II: split the orthogonality con-
ditions among several measures or weights.

Classical: w;, w2 > 0 on R, and P, ,, of degree < N =n + m:

/:Ean,m(x)wl(:E)dw =0, 7=0,1,...,n—1,
/ijn,m(a:)wg(a?)da: =0, 5=0,1,...,m—1.

Angelesco
or
Angelescu

extra condition " ’!
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A FAMOUS FAMILY (OF POLYNOMIALS)

Who are these?

n

o . n—+ « n + k n—k
PP (2) =2 ;;) - R TERSILICR)

Course 1;
“Properties of Orthogonal Polynomials”
by Kerstin Jordaan (University of South Africe, South Africa)

Answer here:

Abstract In these lectures, an introduction will be gven to the

thzory of orthogcnal oolynomials. We discuss basic concepts and
known properties of ortrogonal polvnomials within the context of

applications. The lectures aim to show, by means of accessble examples, hat interesting



A FAMOUS FAMILY (OF POLYNOMIALS)

Jacobi: &j
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k=0

For o, B > —1 they form a well-known family of orthogonal poly-
nomials on [—1, 1]:

1
/ PP ()P (1 — 2)*(1+z)Pdx =0, k=0,1,...,n—1.
)

B)

In consequence, all zeros of P\**") are simple and lie on (—1,1).

Stieltjes (1885) gave an electrostatic interpretation to these zeros:
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A FAMOUS FAMILY (OF POLYNOMIALS)

6+1 f - a+1
2 | I} | | | | 2
—1 1

Wild guess: in the n — oo limit, the zeros should still follow a

certain equilibrium distribution, minimizing a certain interaction
energy.

Trivial observation: for P(z) = (z —a1)... (2 — an),

n

1 1
~log |P(2)|*/™ = = Z log = logarithmic potential of v(P)
n = 1z — a;]

Hence, in the n — oo limit, —log|P,|'/" should look like the
logarithmic potential of such an equilibrium distribution.

We need to develop a set of tools to make this guess precise and
rigorous.



ELECTROSTATIC MODEL

a positive, signed or complex-valued measure on C

logarithmic potential Cauchy transform or m-function

A () ::/log . dp(t) CH(z) :z/id,u(t)

t = 2|

mutual logarithmic energy

.0) 1= [ [ 1o T=—duttyio() = [ V¥(2)do(:)

logarithmic energy

I(p) = {p, ) = //log |tiz‘du(t)du(2)




ELECTROSTATIC MODEL

logarithmic energy

I(p) := {p, ) = //log |tiz‘du(t)du(2)

For K C C compact, the Robin constant is
£ =min{I(u) : p unit measure on K}

The unique minixizer (5, such that I(ug) = &, is the equilibrium
measure of K.

Value cap(K) = e " is the logarithmic capacity of K.

Also, VFK(2) = k—gp(z,0), where g(-, K) is the Green function
of D = C\ K with pole at co.

L can be characterized by other extremal properties, such as

max min V#(2)
won K zeK



ELECTROSTATIC MODEL

In the case of the “standard” (Hermitian) orthogonality,

/ Qn(2)2"dv(z) =0, k=0,1,...,n—1,
K

we have that this is equivalent to

2 "
1Qul2, ) = /K Qul? dv(z)= min  |qll2,0

q(z)=z"+...

We expect that extremality of (),, = extremality of their zero
distribution: if v is “sufficiently good”, such that || - ||z,) ~
|- ll2c vy, then

HQnHEZZW ~ exp (— max min VM(Z)>

uwon K ze K

which under some assumptions means that

Vp = V(Qn) ;MK



ELECTROSTATIC MODEL

Let us look at the possible electrostatic model for MOP in the
simplest Angelesco case:

w1 w2

/ijn,m(x)wl(:v)dx =0, 5=0,1,...,n—1,

/aijn,m(az)wg(a?)da: =0, 7=0,1,...,m—1.

It is easy to prove that P, ,,(z) = r,(2)s(2), with all zeros of r,
and s,, in the right places.

2 .
| Pl Taqwy) = [ Iral” sm(2)wi(2)dz = min (|77, 5, 0)
r(z)=z"+...
2 .
||P’n7m|‘%2(w2) . / ‘Sm‘ Tn(Z)wQ(Z)dZ B 8(2)21;24— ||SH%2(’PTL’UJ2)

Conclusion: all zeros of P, ,, play a similar electrostatic role,
but zeros on one of the interval count twice.



ELECTROSTATIC MODEL

for
vector-valued measures vector of external fields
7= (1, k) o= (1,5 0k)

k X k hermitian matrix of interactions

A>0
mutual logarithmic energy

.0) 1= [ [ 1o T=—duttyio() = [ V¥(2)do(:)

the total energy

k
B, ) = i A + 2 [ odu
j=1



ELECTROSTATIC MODEL

for
vector-valued measures vector of external fields

— —

M:(M17'°'7uk) S0:(901779016)

k X k hermitian matrix of interactions

A >0

Angelesco case: swwmmmmem




ELECTROSTATIC MODEL

for
vector-valued measures vector of external fields

— —

:u:(:ulwﬂmuk) S0:(901779016)

k X k hermitian matrix of interactions

A >0

Nikishin case:

Q
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CONCLUSION
E(i.7) = (i, A + 2 [ ¢;du; — min
=1

The limit zero distribution of the MOP is given by a combina-
tion of the components of the vector measure solving the ex-
tremal problem (vector equilibrium measure) under additional
constraints.

For instance, if

/aijnml@@%& 1,...,m—1.
and n/(m+n) — a as m,n — oo, then we minimize £ among all

fi = (p1, p2), with
\m\z/dm:oz, Iua\z/dﬂzzl—&



CONCLUSION

E(i.7) = (i, A + 2 [ ¢;du; — min
=1

Well, actually solving this problem is usually highly non-trivial,
since you don’t know a priori each component’s support.

For instance, if

/aijnm@@%& 1,...,m—1.
and n/(m+n) — a as m,n — oo, then we minimize £ among all

fi = (p1, p2), with
\uﬂz/dm:&, Iua\z/dﬂzzl—&



S Electrostatics on
T the plane

Stress level:

Y W
"‘,. : 47 : ;

HEEDLESS
I HABENERO

COOL
CUCUMBER




HERMITE-PADE FOR CUBIC WEIGHT

For m,n, N € N, m+n = N, we have a polynomial P, ,, of degree
< N such that

/szn,m(z)e_Nzgdz:O, j=0,1,...,n—1,
I'q

/szn,m(z)eNzgdz:O, j=0,1,....m—1
I's

where

A

FQ - - !
N > 1
l

N = 150, n from 0 to 75
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HERMITE-PADE FOR CUBIC WEIGHT

For m,n, N € N, m+n = N, we have a polynomial P, ,, of degree
< N such that

/szn,m(z)e_Nzgdz:O, j=0,1,...,n—1,
I'q

/szn,m(z)eNzgdz:O, j=0,1,....m—1
I's

where

A ‘)
I's *

v

N = 150, n from 0 to 75



NON-HERMTIAN ORTHOGONALITY

/ (analytic function)(z)dz = 0

Electrostatics:

For the non-hermitian orthogonality, the whole complex plane is
a conductor.

The logarithmic energy has no global minima sobre C.

The role of the equilibrium measures for R is played by solutions
of the max-min type problems

in [/
el

The solutions, called critical measures are saddle points of the
energy.



VECTOR CRITICAL MEASURES

vector-valued measures vector of external fields
:J 5 (:ulv 12, /"LS) 93 = (Re(z?’), Re(Z3)7 O)

matrix of interactions

A= (ajk) =

the total energy
B ) = (it A + 2 [ Re(z®) (s + o

Additional conditions on f:

pa| + el =1, fpa| +|ps| =a,  Jpo| —fus| =1-a



VECTOR CRITICAL MEASURES

vector of external fields

O = (Re(zg), Re(z?), O)

vector-valued measures

—

= (:ulnLLQMMS)

Accumulated knowledge:

The (normalized) zero-counting measure of P, ,,’s con-
verges, as n,m — oo, n/(n +m) — «a, to puy + pe, where i

is a saddle point of E(i,J) on the plane. /

the total energy Vector critical measures

B ) = (it A + 2 [ Re(z®) (s + o

Additional conditions on f:

pa| + el =1, fpa| +|ps| =a,  Jpo| —fus| =1-a
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VECTOR CRITICAL MEASURES

Critical measures have a feature: the Cauchy transtorm of their
components are related to the same algebraic equation!

Recall that for a measure y we have denoted

Ch () = / dp(t)

t— 2

AMPF-Silva, 2015: if i = (1, po, p3) is a vector critical measure,
e £1(2) = 222 + CM (2) + OF2(2)
§2(2) = —2° = C"(2) — CM(2)
Calla)l = = = (@02(2) &= OFE( 2)

are the three solutions of

£ — R(2)é§+ D(z) =0

with
BE—3. 32— ¢, D(z)=—22° 132"+t cz- 3a(iEas

where ¢ = c(«a) is explicit.



VECTOR CRITICAL MEASURES

£ — R(2)§+ D(2) =0 => a 3-sheeted Riemann surface R
of genus 0, with 4 branch points and 1 node.

£~ 22 Facts: .

. @ (62— &) on Ry,
. Q(z) = (&4 —&)° on Ry,
(€2 —&1)° on Ry

is globally defined and meromor-
phic on R

Components of i live on trajec-
tories of the quadratic differen-
tial Q(2)dz* on R, i.e. on curves
where

Re /Z v Q(t)dt = const

For small values of a@ we can relatively easily identify the trajec-
tories whose projections on C carry [




VECTOR CRITICAL MEASURES

£ — R(2)§+ D(2) =0 => a 3-sheeted Riemann surface R
of genus 0, with 4 branch points and 1 node.

For small values of a@ we can relatively easily identify the trajec-
tories whose projections on C carry [



VECTOR CRITICAL MEASURES

£ — R(2)§+ D(2) =0 => a 3-sheeted Riemann surface R
of genus 0, with 4 branch points and 1 node.

For the rest of the values of «
we have to trace all the deforma-
tions of these trajectories on R
and their phase transitions

This task could be matter of an
independent talk, with trajecto-
ries of quadratic differentials as
main characters!

1l — «

ng—ZZ—I— SR

<
For small values of a@ we can relatively easily identify the trajec-
tories whose projections on C carry [
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TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) w =
Q(2)dz* in a local parameter z on a Riemann surface R is a curve
o

. (a,b) = R s.t.
Re/ v Q(z)dz = const
0!

It is an integral curve of
dz )\’
Q(z) =1l

dt

Simple zero %

Simple pole —

—




TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) w =
Q(2)dz* in a local parameter z on a Riemann surface R is a curve
o

. (a,b) = R s.t.
Re/ v Q(z)dz = const
0!

At each regular point of the q.d. we can define the map

v = [ VG



TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (Vertlcal) trajectory arc of a quadratic differential (q.d.) @ =
()(z)dz*~ in a local parameter z on a Riemann surface R is a curve
y

. (a,b) = R s.t.
Re/ v Q(z)dz = const
0!

At each regular point of the q.d. we can define the map

- [ Vi

The global structure of the trajectories of a q.d. can be very com-
plicated: trajectories might be closed, critical (i.e. joining a pair of
zeros or poles of the q.d.) or even recurrent or dense in a domain.

G = U critical trajectories = the critical graph of @

Theorem: R \ G s a finite union of canonical domains on R.



TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (Vertlcal) trajectory arc of a quadratic differential (q.d.) @ =
()(z)dz*~ in a local parameter z on a Riemann surface R is a curve
y

. (a,b) = R s.t.
Re/ v Q(z)dz = const
0!

At each regular point of the q.d. we can define the map

- [ Vi



TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (Vertlcal) trajectory arc of a quadratic differential (q.d.) @ =
()(z)dz*~ in a local parameter z on a Riemann surface R is a curve
y

. (a,b) = R s.t.
Re/ v Q(z)dz = const
0!

At each regular point of the q.d. we can define the map

- [ Vi

Strip domain



TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (Vertlcal) trajectory arc of a quadratic differential (q.d.) @ =
()(z)dz*~ in a local parameter z on a Riemann surface R is a curve
y

. (a,b) = R s.t.
Re/ v Q(z)dz = const
0!

At each regular point of the q.d. we can define the map

- [ Vi

Half-plane domain



TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (Vertlcal) trajectory arc of a quadratic differential (q.d.) @ =
()(z)dz*~ in a local parameter z on a Riemann surface R is a curve
y

. (a,b) = R s.t.
Re/ v Q(z)dz = const
0!

At each regular point of the q.d. we can define the map

- [ Vi

exp(c¥)

T

Circle domain



TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (Vertlcal) trajectory arc of a quadratic differential (q.d.) @ =
()(z)dz*~ in a local parameter z on a Riemann surface R is a curve
y

(a,b) = R s.t.
Re/ v Q(z)dz = const
0!

At each regular point of the q.d. we can define the map
- [ Va@:

If p and q lie on the boundary of a canonical domain, we can use

g;:/pqmdz

as parameters that control the deformation of the critical graph.

These parameters (or “widths”) are related to moduli of families of
curves on R.
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VECTOR CRITICAL MEASURES

£ — R(2)§+ D(2) =0 => a 3-sheeted Riemann surface R
of genus 0, with 4 branch points and 1 node.

As « varies, we can keep track of the structure of the critical graph
using our parameters or “widths”, o.



VECTOR CRITICAL MEASURES

This leaves us with the following “pre-critical” (left) and “post-
critical” sheet structure of R:




VECTOR CRITICAL MEASURES

This leaves us with the following “pre-critical” (left) and “post-
critical” sheet structure of R:

Which in turn gives us the following structure of the support of
the vector critical measure:

f2 2




WEAK ASYMPTOTICS

2
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p;’s have explicit expressions in
terms of &:’s
j



WEAK ASYMPTOTICS

f2 2

In fact, the vector critical mea-
sures are also a key ingredient
for the Riemann-Hilbert asymp-

e totic analysis of these Hermite-
' Padé polynomials.




Thank you



