Vector equilibrium and asymptotics of zeros of multiple orthogonal polynomials

Andrei Martínez Finkelshtein University of Almería

opsf s7
University of Kent, 2017

Multiple Orthogonal Polynomials (MOP)

Interacting Particle Models

Integrable systems

Course 3:
'Multiple Orthogonal Polynomials'
by Walter Van Assche (KU LSuven, Bolgiur)

Abstrad. Nultpe or thugurial puly orrias are pulyno ias of one varable that eatisy o thogonaliy consitione wth respect to r > 1 measures. Thsy appeared as denominators o'I lemite-Pac'e

HERMITE-PADÉ OR MULTIPLE O.P.

Hermite-Padé polynomials of type II: split the orthogonality conditions among several measures or weights.

Classical: $w_{1}, w_{2} \geq 0$ on \mathbb{R}, and $P_{n, m}$ of degree $\leq N=n+m$:

$$
\begin{aligned}
& \int x^{j} P_{n, m}(x) w_{1}(x) d x=0, \quad j=0,1, \ldots, n-1 \\
& \int x^{j} P_{n, m}(x) w_{2}(x) d x=0, \quad j=0,1, \ldots, m-1
\end{aligned}
$$

Case 1:

Angelesco or Angelescu

Case 2:

$\frac{w_{1}-w_{2}}{w_{1}}+$| extra condition |
| :--- |
| on w_{2} / w_{1} |

Electrostatic toolbox for \mathbf{R}

Stress level:

A FAMOUS FAMILY (OF POLYNOMIALS)

Who are these?

$$
P_{n}^{(\alpha, \beta)}(z)=2^{-n} \sum_{k=0}^{n}\binom{n+\alpha}{n-k}\binom{n+\beta}{k}(z-1)^{k}(z+1)^{n-k}
$$

Answer here:

Course 1:
"Properties of Orthogonal Polynomials"
by Kerstin Jordaan (University of South Atrica, South Africa)

Abstract. In these lectures, an introduction will be gven to the thsory of orthogenal polynomials. We discuss basic concepts and known properties of ortrogonal polynomials within the context of applications. The lectures aim to show, by means of accessble examples, :hat interesting

A FAMOUS FAMILY (OF POLYNOMIALS)

Jacobi:
$P_{n}^{(\alpha, \beta)}(z)=2^{-n} \sum_{k=0}^{n}\binom{n+\alpha}{n-k}\binom{n+\beta}{k}(z-1)^{k}(z+1)^{n-k}$
For $\alpha, \beta>-1$ they form a well-known family of orthogonal polynomials on $[-1,1]$:

$$
\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) x^{k}(1-x)^{\alpha}(1+x)^{\beta} d x=0, \quad k=0,1, \ldots, n-1
$$

In consequence, all zeros of $P_{n}^{(\alpha, \beta)}$ are simple and lie on $(-1,1)$.
Stieltjes (1885) gave an electrostatic interpretation to these zeros:

A FAMOUS FAMILY (OF POLYNOMIALS)

Wild guess: in the $n \rightarrow \infty$ limit, the zeros should still follow a certain equilibrium distribution, minimizing a certain interaction energy.

Trivial observation: for $P(z)=\left(z-a_{1}\right) \ldots\left(z-a_{n}\right)$,
$-\log |P(z)|^{1 / n}=\frac{1}{n} \sum_{j=1}^{n} \log \frac{1}{\left|z-a_{j}\right|}=$ logarithmic potential of $\nu(P)$
Hence, in the $n \rightarrow \infty$ limit, $-\log \left|P_{n}\right|^{1 / n}$ should look like the logarithmic potential of such an equilibrium distribution.

We need to develop a set of tools to make this guess precise and rigorous.

ELECTROSTATIC MODEL

a positive, signed or complex-valued measure on \mathbb{C}
logarithmic potential

$$
V^{\mu}(z):=\int \log \frac{1}{|t-z|} d \mu(t)
$$

Cauchy transform or m-function

$$
C^{\mu}(z):=\int \frac{1}{t-z} d \mu(t)
$$

$$
\begin{gathered}
\text { mutual logarithmic energy } \\
\langle\mu, \sigma\rangle:=\iint \log \frac{1}{|t-z|} d \mu(t) d \sigma(z)=\int V^{\mu}(z) d \sigma(z)
\end{gathered}
$$

logarithmic energy

$$
I(\mu):=\langle\mu, \mu\rangle=\iint \log \frac{1}{|t-z|} d \mu(t) d \mu(z)
$$

ELECTROSTATIC MODEL

logarithmic energy

$$
I(\mu):=\langle\mu, \mu\rangle=\iint \log \frac{1}{|t-z|} d \mu(t) d \mu(z)
$$

For $K \subset \mathbb{C}$ compact, the Robin constant is

$$
\kappa=\min \{I(\mu): \mu \text { unit measure on } K\}
$$

The unique minimizer μ_{K}, such that $I\left(\mu_{K}\right)=\kappa$, is the equilibrium measure of K.

Value $\operatorname{cap}(K)=e^{-\kappa}$ is the logarithmic capacity of K.
Also, $V^{\mu_{K}}(z)=\kappa-g_{D}(z, \infty)$, where $g(\cdot, K)$ is the Green function of $D=\mathbb{C} \backslash K$ with pole at ∞.
μ_{K} can be characterized by other extremal properties, such as

$$
\max _{\mu \text { on } K} \min _{z \in K} V^{\mu}(z)
$$

ELECTROSTATIC MODEL

In the case of the "standard" (Hermitian) orthogonality,

$$
\int_{K} \overline{Q_{n}(z)} z^{k} d \nu(z)=0, \quad k=0,1, \ldots, n-1
$$

we have that this is equivalent to

$$
\left\|Q_{n}\right\|_{L_{2}(\nu)}^{2}:=\int_{K}\left|Q_{n}\right|^{2} d \nu(z)=\min _{q(z)=z^{n}+\ldots}\|q\|_{L_{2}(\nu)}^{2}
$$

We expect that extremality of $Q_{n} \Rightarrow$ extremality of their zero distribution: if ν is "sufficiently good", such that $\|\cdot\|_{L_{2}(\nu)} \sim$ $\|\cdot\|_{L_{\infty}(\nu)}$, then

$$
\left\|Q_{n}\right\|_{L_{2}(\nu)}^{1 / n} \sim \exp \left(-\max _{\mu \text { on } K} \min _{z \in K} V^{\mu}(z)\right)
$$

which under some assumptions means that

$$
\nu_{n}=\nu\left(Q_{n}\right) \xrightarrow{*} \mu_{K}
$$

ELECTROSTATIC MODEL

Let us look at the possible electrostatic model for MOP in the simplest Angelesco case:

$$
\begin{aligned}
& \int x^{j} P_{n, m}(x) w_{1}(x) d x=0, \quad j=0,1, \ldots, n-1 \\
& \int x^{j} P_{n, m}(x) w_{2}(x) d x=0, \quad j=0,1, \ldots, m-1
\end{aligned}
$$

It is easy to prove that $P_{n, m}(z)=r_{n}(z) s_{m}(z)$, with all zeros of r_{n} and s_{m} in the right places.

$$
\begin{aligned}
&\left\|P_{n, m}\right\|_{L_{2}\left(w_{1}\right)}^{2}=\int\left|r_{n}\right|^{2} s_{m}(z) w_{1}(z) d z=\min _{r(z)=z^{n}+\ldots}\|r\|_{L_{2}\left(s_{m} w_{1}\right)}^{2} \\
&\left\|P_{n, m}\right\|_{L_{2}\left(w_{2}\right)}^{2}=\int\left|s_{m}\right|^{2} r_{n}(z) w_{2}(z) d z=\min _{s(z)=z^{m}+\ldots}\|s\|_{L_{2}\left(r_{n} w_{2}\right)}^{2}
\end{aligned}
$$

Conclusion: all zeros of $P_{n, m}$ play a similar electrostatic role, but zeros on one of the interval count twice.

ELECTROSTATIC MODEL

for
vector-valued measures
$\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)$
vector of external fields
$\vec{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{k}\right)$
$k \times k$ hermitian matrix of interactions

$$
A \geq 0
$$

$$
\begin{gathered}
\text { mutual logarithmic energy } \\
\langle\mu, \sigma\rangle:=\iint \log \frac{1}{|t-z|} d \mu(t) d \sigma(z)=\int V^{\mu}(z) d \sigma(z)
\end{gathered}
$$

the total energy

$$
E(\vec{\mu}, \vec{\varphi})=\langle\vec{\mu}, A \vec{\mu}\rangle+2 \sum_{j=1}^{k} \int \varphi_{j} d \mu_{j}
$$

ELECTROSTATIC MODEL

for

$$
\begin{array}{ll}
\text { vector-valued measures } & \text { vector of external fields } \\
\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right) & \vec{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{k}\right)
\end{array}
$$

$k \times k$ hermitian matrix of interactions

$$
A \geq 0
$$

Angelesco case:

$$
w_{1}
$$

$$
k=2
$$

$$
A=\left(\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right)
$$

the total energy

$$
E(\vec{\mu}, \vec{\varphi})=\langle\vec{\mu}, A \vec{\mu}\rangle+2 \sum_{j=1}^{k} \int \varphi_{j} d \mu_{j}
$$

ELECTROSTATIC MODEL

for
vector-valued measures
$\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)$
vector of external fields
$\vec{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{k}\right)$
$k \times k$ hermitian matrix of interactions

$$
A \geq 0
$$

Nikishin case:

$$
\begin{aligned}
& k=2 \\
& A=\left(\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right)
\end{aligned}
$$

the total energy
$E(\vec{\mu}, \vec{\varphi})=\langle\vec{\mu}, A \vec{\mu}\rangle+2 \sum_{j=1}^{k} \int \varphi_{j} d \mu_{j}$

CONCLUSION

$E(\vec{\mu}, \vec{\varphi})=\langle\vec{\mu}, A \vec{\mu}\rangle+2 \sum_{j=1}^{k} \int \varphi_{j} d \mu_{j}$

\min

The limit zero distribution of the MOP is given by a combination of the components of the vector measure solving the extremal problem (vector equilibrium measure) under additional constraints.
For instance, if

$$
\begin{aligned}
& \int x^{j} P_{n, m}(x) w_{1}(x) d x=\sigma^{0}, \quad j=0,1, \ldots, n-1, \\
& \int x^{j} P_{n, m}\left(x, 2 x x^{2}=\quad j=0,1, \ldots, m-1\right. \text {. }
\end{aligned}
$$

and $n /(m+n) \rightarrow \alpha$ as $m, n \rightarrow \infty$, then we minimize E among all $\vec{\mu}=\left(\mu_{1}, \mu_{2}\right)$, with

$$
\left|\mu_{1}\right|=\int d \mu_{1}=\alpha, \quad\left|\mu_{2}\right|=\int d \mu_{2}=1-\alpha
$$

CONCLUSION

$E(\vec{\mu}, \vec{\varphi})=\langle\vec{\mu}, A \vec{\mu}\rangle+2 \sum_{j=1}^{k} \int \varphi_{j} d \mu_{j}$ min

Well, actually solving this problem is usually highly non-trivial, since you don't know a priori each component's support.

For instance, if

$$
\begin{aligned}
& \int x^{j} P_{n, m}(x) w_{1}(x) d x=0, \quad j=0,1, \ldots, n-1, \\
& \int x^{j} P_{n, m}(x)^{n} \supseteq d x, \quad j=0,1, \ldots, m-1 .
\end{aligned}
$$

and $n /(m+n) \rightarrow \alpha$ as $m, n \rightarrow \infty$, then we minimize E among all $\vec{\mu}=\left(\mu_{1}, \mu_{2}\right)$, with

$$
\left|\mu_{1}\right|=\int d \mu_{1}=\alpha, \quad\left|\mu_{2}\right|=\int d \mu_{2}=1-\alpha
$$

Stress level:

HERMITE-PADÉ FOR CUBIC WEIGHT

For $m, n, N \in \mathbb{N}, m+n=N$, we have a polynomial $P_{n, m}$ of degree $\leq N$ such that

$$
\begin{aligned}
& \int_{\Gamma_{1}} z^{j} P_{n, m}(z) e^{-N z^{3}} d z=0, \quad j=0,1, \ldots, n-1 \\
& \int_{\Gamma_{2}} z^{j} P_{n, m}(z) e^{-N z^{3}} d z=0, \quad j=0,1, \ldots, m-1
\end{aligned}
$$

where

HERMITE-PADÉ FOR CUBIC WEIGHT

For $m, n, N \in \mathbb{N}, m+n=N$, we have a polynomial $P_{n, m}$ of degree $\leq N$ such that

$$
\begin{aligned}
& \int_{\Gamma_{1}} z^{j} P_{n, m}(z) e^{-N z^{3}} d z=0, \quad j=0,1, \ldots, n-1 \\
& \int_{\Gamma_{2}} z^{j} P_{n, m}(z) e^{-N z^{3}} d z=0, \quad j=0,1, \ldots, m-1
\end{aligned}
$$

where

$N=150, n$ from 0 to 75

HERMITE-PADÉ FOR CUBIC WEIGHT

For $m, n, N \in \mathbb{N}, m+n=N$, we have a polynomial $P_{n, m}$ of degree $\leq N$ such that

$$
\begin{aligned}
& \int_{\Gamma_{1}} z^{j} P_{n, m}(z) e^{-N z^{3}} d z=0, \quad j=0,1, \ldots, n-1 \\
& \int_{\Gamma_{2}} z^{j} P_{n, m}(z) e^{-N z^{3}} d z=0, \quad j=0,1, \ldots, m-1
\end{aligned}
$$

where

$N=150, n$ from 0 to 75

NON-HERMTIAN ORTHOGONALITY

$$
\int_{\text {curve }}(\text { analytic function })(z) d z=0
$$

Electrostatics:

For the non-hermitian orthogonality, the whole complex plane is a conductor.

The logarithmic energy has no global minima sobre \mathbb{C}.
The role of the equilibrium measures for \mathbb{R} is played by solutions of the max-min type problems

$$
\max _{\Gamma} \min _{\mu \text { on } \Gamma} I(\mu)
$$

The solutions, called critical measures are saddle points of the energy.

VECTOR CRITICAL MEASURES

vector-valued measures
$\vec{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$
vector of external fields
$\vec{\varphi}=\left(\operatorname{Re}\left(z^{3}\right), \operatorname{Re}\left(z^{3}\right), 0\right)$
matrix of interactions

$$
A=\left(a_{j, k}\right)=\left(\begin{array}{ccc}
\hline 1 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 & -1 / 2 \\
\hline 1 / 2 & -1 / 2 & 1
\end{array}\right)
$$

the total energy

$$
E(\vec{\mu}, \vec{\varphi})=\langle\vec{\mu}, A \vec{\mu}\rangle+2 \int \operatorname{Re}\left(z^{3}\right) d\left(\mu_{1}+\mu_{2}\right)
$$

Additional conditions on $\vec{\mu}$:

$$
\left|\mu_{1}\right|+\left|\mu_{2}\right|=1, \quad\left|\mu_{1}\right|+\left|\mu_{3}\right|=\alpha, \quad\left|\mu_{2}\right|-\left|\mu_{3}\right|=1-\alpha
$$

VECTOR CRITICAL MEASURES

vector-valued measures
$\vec{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$
vector of external fields
$\vec{\varphi}=\left(\operatorname{Re}\left(z^{3}\right), \operatorname{Re}\left(z^{3}\right), 0\right)$

Accumulated knowledge:

The (normalized) zero-counting measure of $P_{n, m}$'s converges, as $n, m \rightarrow \infty, n /(n+m) \rightarrow \alpha$, to $\mu_{1}+\mu_{2}$, where $\vec{\mu}$ is a saddle point of $E(\vec{\mu}, \vec{\varphi})$ on the plane.
the total energy
Vector critical measures

$$
E(\vec{\mu}, \vec{\varphi})=\langle\vec{\mu}, A \vec{\mu}\rangle+2 \int \operatorname{Re}\left(z^{3}\right) d\left(\mu_{1}+\mu_{2}\right)
$$

Additional conditions on $\vec{\mu}$:

$$
\left|\mu_{1}\right|+\left|\mu_{2}\right|=1, \quad\left|\mu_{1}\right|+\left|\mu_{3}\right|=\alpha, \quad\left|\mu_{2}\right|-\left|\mu_{3}\right|=1-\alpha
$$

The hunting of the

Snark

 vector critical measuresStress level:

VECTOR CRITICAL MEASURES

Critical measures have a feature: the Cauchy transform of their components are related to the same algebraic equation!
Recall that for a measure μ we have denoted

$$
C^{\mu}(z)=\int \frac{d \mu(t)}{t-z}
$$

AMF-Silva, 2015: if $\vec{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is a vector critical measure, then

$$
\begin{aligned}
& \xi_{1}(z)=2 z^{2}+C^{\mu_{1}}(z)+C^{\mu_{2}}(z) \\
& \xi_{2}(z)=-z^{2}-C^{\mu_{1}}(z)-C^{\mu_{3}}(z) \\
& \xi_{3}(z)=-z^{2}-C^{\mu_{2}}(z)+C^{\mu_{3}}(z)
\end{aligned}
$$

are the three solutions of

$$
\xi^{3}-R(z) \xi+D(z)=0
$$

with

$$
R(z)=3 z^{4}-3 z-c, \quad D(z)=-2 z^{6}+3 z^{3}+c z^{2}-3 \alpha(1-\alpha)
$$ where $c=c(\alpha)$ is explicit.

VECTOR CRITICAL MEASURES

$\xi^{3}-R(z) \xi+D(z)=0 \Rightarrow$ a 3 -sheeted Riemann surface \mathcal{R} of genus 0 , with 4 branch points and 1 node.

Facts:

$$
Q(z):= \begin{cases}\left(\xi_{2}-\xi_{3}\right)^{2} & \text { on } \mathcal{R}_{1}, \\ \left(\xi_{1}-\xi_{3}\right)^{2} & \text { on } \mathcal{R}_{2}, \\ \left(\xi_{2}-\xi_{1}\right)^{2} & \text { on } \mathcal{R}_{3}\end{cases}
$$

is globally defined and meromorphic on \mathcal{R}
Components of $\vec{\mu}$ live on trajectories of the quadratic differential $Q(z) d z^{2}$ on \mathcal{R}, i.e. on curves where

$$
\operatorname{Re} \int^{z} \sqrt{Q(t)} d t \equiv \text { const }
$$

For small values of α we can relatively easily identify the trajectories whose projections on \mathbb{C} carry $\vec{\mu}$

VECTOR CRITICAL MEASURES

$\xi^{3}-R(z) \xi+D(z)=0 \Rightarrow$ a 3 -sheeted Riemann surface \mathcal{R} of genus 0 , with 4 branch points and 1 node.

$$
\mu_{3}=0
$$

For small values of α we can relatively easily identify the trajectories whose projections on \mathbb{C} carry $\vec{\mu}$

VECTOR CRITICAL MEASURES

$\xi^{3}-R(z) \xi+D(z)=0 \Rightarrow$ a 3 -sheeted Riemann surface \mathcal{R} of genus 0 , with 4 branch points and 1 node.

For the rest of the values of α we have to trace all the deformations of these trajectories on \mathcal{R} and their phase transitions

This task could be matter of an independent talk, with trajectories of quadratic differentials as main characters!

For small values of α we can relatively easily identify the trajectories whose projections on \mathbb{C} carry $\vec{\mu}$

Stress level:

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

It is an integral curve of

$$
Q(z)\left(\frac{d z}{d t}\right)^{2}=-1
$$

Simple pole

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

At each regular point of the q.d. we can define the map

$$
\Psi(z):=\int^{z} \sqrt{Q(z)} d z
$$

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

At each regular point of the q.d. we can define the map

$$
\Psi(z):=\int^{z} \sqrt{Q(z)} d z
$$

The global structure of the trajectories of a q.d. can be very complicated: trajectories might be closed, critical (i.e. joining a pair of zeros or poles of the q.d.) or even recurrent or dense in a domain.

$$
\mathcal{G}:=\bigcup \text { critical trajectories }=\text { the critical graph of } \varpi
$$

Theorem: $\mathcal{R} \backslash \mathcal{G}$ is a finite union of canonical domains on \mathcal{R}.

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

At each regular point of the q.d. we can define the map

$$
\Psi(z):=\int^{z} \sqrt{Q(z)} d z
$$

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

At each regular point of the q.d. we can define the map

$$
\Psi(z):=\int^{z} \sqrt{Q(z)} d z
$$

Strip domain

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

At each regular point of the q.d. we can define the map

$$
\Psi(z):=\int^{z} \sqrt{Q(z)} d z
$$

Half-plane domain

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

At each regular point of the q.d. we can define the map

$$
\Psi(z):=\int^{z} \sqrt{Q(z)} d z
$$

Circle domain

TRAJECTORIES OF QUADRATIC DIFFERENTIALS

A (vertical) trajectory arc of a quadratic differential (q.d.) $\varpi=$ $Q(z) d z^{2}$ in a local parameter z on a Riemann surface \mathcal{R} is a curve $\gamma:(a, b) \rightarrow \mathcal{R}$ s.t.

$$
\operatorname{Re} \int_{\gamma} \sqrt{Q(z)} d z \equiv \mathrm{const}
$$

At each regular point of the q.d. we can define the map

$$
\Psi(z):=\int^{z} \sqrt{Q(z)} d z
$$

If p and q lie on the boundary of a canonical domain, we can use

$$
\sigma:=\int_{p}^{q} \sqrt{Q(z)} d z
$$

as parameters that control the deformation of the critical graph. These parameters (or "widths") are related to moduli of families of curves on \mathcal{R}.

Back to our Riemann surface

VECTOR CRITICAL MEASURES

$\xi^{3}-R(z) \xi+D(z)=0 \Rightarrow$ a 3 -sheeted Riemann surface \mathcal{R} of genus 0 , with 4 branch points and 1 node.

As α varies, we can keep track of the structure of the critical graph using our parameters or "widths", σ.

VECTOR CRITICAL MEASURES

This leaves us with the following "pre-critical" (left) and "postcritical" sheet structure of \mathcal{R} :

VECTOR CRITICAL MEASURES

This leaves us with the following "pre-critical" (left) and "postcritical" sheet structure of \mathcal{R} :

Which in turn gives us the following structure of the support of the vector critical measure:

WEAK ASYMPTOTICS

$$
\begin{aligned}
& \frac{1}{n+m} \sum_{P_{m, n}(z)=0} \delta_{z} \rightarrow \mu_{1}+\mu_{2} \\
& \text { as } n, m \rightarrow \infty, \frac{n}{n+m} \rightarrow \alpha
\end{aligned}
$$

μ_{j} 's have explicit expressions in terms of ξ_{j} 's

WEAK ASYMPTOTICS

In fact, the vector critical measures are also a key ingredient for the Riemann-Hilbert asymptotic analysis of these HermitePadé polynomials.

Thank you

