TUTORIALS ON DISCRETE PAINLEVÉ EQUATIONS

NALINI JOSHI

Tutorial 1

1. Consider the operators s_i , $i=0,1,2,\,\pi$ given in the lectures, which are defined by [3]

$$s_i(\alpha_i) = -\alpha_i, \qquad s_i(\alpha_j) = \alpha_j + \alpha_i, \ j = i \pm 1$$

$$s_i(f_i) = f_i, \qquad s_i(f_j) = f_j \pm \frac{\alpha_i}{f_i}, \ j = i \pm 1$$

$$\pi(\alpha_i) = \alpha_{i+1}, \qquad \pi(f_i) = f_{i+1},$$

for $i \in \mathbb{N} \mod 3$.

- (a) Show that $s_i^2 = 1$, i = 0, 1, 2.
- (b) Define $g_0 = f_0$, $f_1 = g_1 \alpha_0/g_0$, $f_2 = g_2 + \alpha_0/g_0$. If f_i satisfy the symmetric form of P_{IV} , deduce the differential equations satisfied by g_i .
- 2. Consider the following form of dP1

$$c_3 w_n(w_{n+1} + w_n + w_{n-1}) + c_2 w_n = c_1 + c_0(-1)^n - n.$$

(a) Find the compatibility conditions for the linear system [1]

$$w_n \phi_{n+1} = \lambda \phi_n - \phi_{n-1}$$
$$\frac{\partial \phi_n}{\partial \lambda} = a_n \phi_{n+1} + b_n \phi_n$$

where a_n , b_n are functions of λ and n. (This system is called a Lax pair.)

- (b) Show that b_n can be eliminated from the compatibility conditions, and obtain a third-order difference equation for $p_n = a_n/w_n$ alone.
- (c) Assuming $p_n = \sum_{k=0}^m P_{2k,n} \lambda^{2k}$, find the coefficients $P_{2k,n}$ and show that the case m = 1 leads to dP1.
- 3. Consider the discrete equation

$$w_n(w_{n+1} + w_n + w_{n+1}) = z_n + cw_n$$

where z_n is a given function of n and c is constant [2].

(a) Consider the autonomous case $z_n=a$, where a is constant. If w_n is arbitrarily small, the equation gives an arbitrary large value for w_{n+1} . To study this more carefully, let $w_{-1}=b$, where $b\neq 0$ is a constant, and $w_0=\epsilon$, where $\epsilon\ll 1$. Find the values for w_1,\ldots,w_3 and show that

$$w_4 = b + \mathcal{O}(\epsilon).$$

Date: June 30, 2017.

2

(b) Given $w_{n-1}=b, w_n=\epsilon$, where $\epsilon\ll 1$, find w_{n+4} for the non-autonomous case. Can you find the condition that must be satisfied by z_n for this iterate to be bounded and analytic in b?

References

- C. Cresswell and N. Joshi, The discrete first, second and thirty-fourth Painlevé hierarchies, J. Phys. A: Math. Gen 32 (1999), 655–669.
- [2] J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability, Cambridge University Press, 2016.
- [3] M. Noumi, Painlevé Equations through Symmetry, American Mathematical Society, 2004.

Tutorial 2

1. Consider \mathbb{R}^3 , with basis given by unit vectors $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. Show that the vectors

$$\alpha_1 = e_1 - e_2,$$

$$\alpha_2 = e_2 - e_3,$$

are simple roots forming the A_2 root system. Write down the corresponding expressions for the co-roots α_1^{\vee} and α_2^{\vee} . Can you find the corresponding weights h_1 and h_2 ?

2. For constants $g_2, g_3 \in \mathbb{C}$, consider the Weierstrass cubics

$$f(x,y) = y^2 - 4x^3 + g_2 x + g_3.$$

- (a) For the case $g_2=12$, find the value(s) of g_3 for which the curve f(x,y)=0 is singular.
- (b) For generic g_2 , find the relationship between g_2 and g_3 that must hold for the curve f(x, y) = 0 to be singular.
- (c) Resolve the curve in part (a) at its singular point.
- (d) Suppose $g_3 = 0$ and g_2 is free. Find the base points of the one-parameter family of curves f(x, y) = 0.
- (e) Assume $g_2 = 12$ but g_3 is not equal to any singular value found in part (a). Find the base points of the pencil f(x, y) = 0.
- (f) Find a good resolution of the pencil of curves for the case in part (e).
- 3. Find a good resolution of the pencil of curves

$$f(x,y) = xy^2 + x^2y - \beta(x+y) - \gamma xy = 0.$$