Properties of orthogonal polynomials Assignment 1

Kerstin Jordaan
University of South Africa

LMS Research School
University of Kent, Canterbury

Question 1

A set of polynomials $\{\varphi(x)\} ; n=0,1 ; 2, \ldots$, is called a simple set if $\varphi_{n}(x)$ is of degree precisely n in x so that t e set contains one polynomial of each degree. One immediate result of the definition of a simple set of polynomials is that any polynomials can be expressed linearly in terms of the elements of that simple set.

Theorem

If $\left\{\varphi_{n}(x)\right\}$ is a simple set of polynomials and if $P(x)$ is a polynomial of degree m, there exist constants c_{k} such that

$$
P(x)=\sum_{k=0}^{m} c_{k} \varphi_{k}(x)
$$

The c_{k} are functions of k and of any parameters involved in $P(x)$.
Prove this theorem.

Question 2

Prove the following theorem which gives an equivalent condition for orthogonality.

Theorem

If $\left\{p_{n}(x)\right\}$ frm a simple set of real polynomials and $w(x)>0$ on
$a<x<b$, a necessary and sufficient condition that the set $\left\{p_{n}(x)\right\}$ be orthogonal with respect to $w(x)$ over the interval $a<x<b$ is that

$$
\begin{equation*}
\int_{a}^{b} w(x) x^{k} p_{n}(x) d x=0, \quad k=0,1,2, \ldots, n-1 \tag{1}
\end{equation*}
$$

Question 3

The Christoffel-Darboux formula states that if $\left\{p_{n}(x)\right\}_{n=0}^{\infty}$ is a sequence of orthogonal polynomials with respect to the weight function $w(x)$ on $[a, b]$ and the leading coefficient of $p_{n}(x)$ is k_{n}, then

$$
\sum_{m=0}^{n} \frac{p_{m}(x) p_{m}(y)}{h_{m}}=\frac{k_{n}}{k_{n+1}} \frac{p_{n+1}(x) p_{n}(y)-p_{n+1}(y) p_{n}(x)}{(x-y) h_{n}}
$$

Use the three term recurrence relation to prove the Christoffel Darboux formula and then derive the confluent form
$\sum_{m=0}^{n} \frac{\left\{p_{m}(x)\right\}^{2}}{h_{m}}=\frac{k_{n}}{h_{n} k_{n+1}}\left(p_{n+1}^{\prime}(x) p_{n}(x)-p_{n+1}(x) p_{n}^{\prime}(x)\right), n=0,1,2, \ldots$

Question 4

Suppose $f(x)$ and $g(x)$ are n-times differentiable functions. Prove Leibnitz' formula for the $n^{\text {th }}$ derivative of a product of two functions, given by

$$
\frac{d^{n}}{d x^{n}}\{f(x) g(x)\}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)
$$

where $f^{(k)}$ denotes $\frac{d^{k} f}{d x^{k}}$, i.e the $k^{\text {th }}$ derivative of $f(x)$ with respect to x

