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The pioneer of orthogonality

Chebyshev Chebychev Chebyshov Tchebychev Tchebycheff Tschebyscheff

Murphy [1835] first defined orthogonal functions, Tchebychev realised their
importance. His work since 1855 was motivated by the analogy with Fourier
Series and by the theory of continued fractions and approximation theory.
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The Tchebychev polynomials

Tn(x) = cos nθ where x = cos θ for n ∈ N.

Consider ∫ π

0

cosmθ cos nθ dθ, n,m ∈ N.

For m 6= n, ∫ π

0

cosmθ cos nθ dθ

=
1

2

∫ π

0

[cos(m + n)θ + cos(m − n)θ] dθ

=
1

2

[
sin(m + n)θ

m + n
+

sin(m − n)θ

m − n

]π
0

= 0.
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The Tchebychev polynomials

Tn(x) = cos nθ where x = cos θ for n ∈ N.

Consider ∫ π

0

cosmθ cos nθ dθ, n,m ∈ N.

For m = n, ∫ π

0

cosmθ cosmθ dθ =

∫ π

0

cos2 mθ dθ

=
1

2

∫ π

0

(1 + cos 2mθ) dθ

=
1

2

[
θ +

sin 2mθ

2m

]π
0

=
π

2
.
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The Tchebychev polynomials

Tn(x) = cos nθ where x = cos θ for n ∈ N.

∫ π

0

cosmθ cos nθ dθ =

{
0, n 6= m
π
2
, m = n.

Making the substitution x = cos θ in this integral, then dx = − sin θ dθ or

dθ =
−dx
sin θ

=
−dx√
1− x2

.

Also when θ = 0, x = 1 and θ = π, x = −1 so∫ π

0

cosmθ cos nθ dθ =

∫ 1

−1

Tn(x)Tm(x)(1− x2)−1/2dx

=

{
0, n 6= m
π
2
, m = n.
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Orthogonality

Definition

A sequence of polynomials {pn(x)}∞n=0 where pn(x) is of exact degree n, is
called orthogonal on the interval (a, b) with respect to the positive weight
function w(x) if, for m, n = 0, 1, 2, . . .∫ b

a

pn(x) pm(x) w(x) dx =

{
0 if n 6= m

hn 6= 0 if n = m.

For Tchebychev polynomials∫ 1

−1

Tn(x)Tm(x)(1− x2)−1/2dx =

{
0, n 6= m
π
2
, m = n.

Tchebychev polynomials {Tn(x)}∞n=0 are orthogonal on the interval [−1, 1] with
respect to the positive weight function (1− x2)−1/2.
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The interval (a, b) is called the interval of orthogonality and need not be
finite. With due attention to convergence, either or both endpoints of the
interval of orthogonality may be taken to be infinite.

The limits of integration are important but the form in which the interval
of orthogonality is stated is not vital.

The weight function w(x) should be continuous and positive on (a, b) so
that the moments

µn :=

∫ b

a

w(x)xn dx , n = 0, 1, 2 . . .

exist.

The weight function w(x)

does not change sign on the interval of orthogonality by
assumption
may vanish at the finite endpoints (if any) of the interval of
orthogonality

w(x) ≥ 0 for all x ∈ [a, b] and w(x) > 0 for all x ∈ (a, b) is the usual
definition of a weight function
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More remarks

Because we have taken w(x) > 0 on (a, b) and pn(x) real, it follows that

hn =

∫ b

a

w(x)p2
n(x)dx 6= 0.

The sequence of polynomial is uniquely defined up to normalization.

If hn = 1 for each n = 0, 1, 2, . . . the sequence of polynomials is called
orthonormal.

If
pn = knx

n + lower order terms with kn = 1

for each n = 0, 1, 2, . . . , the sequence is called monic.

The integral

〈Pn,Pm〉 :=

∫ b

a

Pn(x)Pm(x)w(x)dx

denotes an inner product of the polynomials Pn and Pm.
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More generally

Let µ be a positive Borel measure with support S defined on R for which
moments of all orders exist, i.e.

µk =

∫
S

xk dµ(x), k = 0, 1, 2 . . . . (1)

Definition

A sequence of real polynomials {Pn(x)}Nn=0, N ∈ N ∪ {∞}, where Pn(x) is of
exact degree n, is orthogonal with repect to µ on S , if

〈Pn,Pm〉 =

∫
S

Pn(x)Pm(x) dµ(x) = hnδmn, m, n = 0, 1, 2, . . .N (2)

where S is the support of µ and hn is the square of the weighted L2-norm of Pn

given by

hn := 〈Pn,Pn〉 = ‖Pn‖2 =

∫
S

(Pn(x))2 dµ(x) > 0.
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If the measure is absolutely continuous and the distribution dµ(x) = w(x) dx ,
then (2) reduces to∫ b

a

pn(x) pm(x) w(x) dx = hnδmn, m, n = 0, 1, 2, . . .N (3)

or equivalently (see Assignment 1, Exercise 2),∫ b

a

xm Pn(x)w(x) dx = 0, for n = 1, 2, · · · ; m < n.

If the weight function w(x) is discrete and ρi > 0 are the values of the weight
at the distinct points xi , i = 0, 1, 2, . . . ,M, M ∈ N ∪ {∞}, then (3) takes the
form

M∑
i=0

Pn(xi )Pm(xi )ρi = hnδmn, m, n = 0, 1, 2, . . . ,N
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Gram-Schmidt orthogonalisation

Since the Hilbert space L2(S , µ) contains the set of polynomials, Gram-Schmidt
orthogonalisation applied to the canonical basis {1, x , x2, . . . ...}, yields a set of
orthogonal polynomials on the real line.

Example

Take w(x) = 1 and (a, b) = (0, 1).

Start with the sequence
{

1, x , x2, . . .
}
.

Choose p0(x) = 1.

Then we have

p1(x) = x − 〈x , p0(x)〉
〈p0(x), p0(x)〉p0(x) = x − 〈x , 1〉

〈1, 1〉 = x − 1

2
,

since

〈1, 1〉 =

∫ 1

0

1 dx = 1 and 〈x , 1〉 =

∫ 1

0

x dx =
1

2
.
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Gram-Schmidt orthogonalisation

Example

Further we have

p2(x) = x2 − 〈x2, p0(x)〉
〈p0(x), p0(x)〉 −

〈x2, p1(x)〉
〈p1(x), p1(x)〉p1(x)

= x2 − 〈x
2, 1〉
〈1, 1〉 −

〈x2, x − 1
2
〉

〈x − 1
2
, x − 1

2
〉

(
x − 1

2

)
= x2 − 1

3
−
(
x − 1

2

)
= x2 − x +

1

6
,

The polynomials p0(x) = 1, p1(x) = x − 1
2

and p2(x) = x2 − x + 1
6

are the first
three monic orthogonal polynomials on the interval (0, 1) with respect to the
weight function w(x) = 1.
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Example

Repeating this process we obtain

p3(x) = x3 − 3

2
x2x − 1

20

p4(x) = x4 − 2x3 +
9

7
x2 − 2

7
x +

1

70

p5(x) = x5 − 5

2
x4 +

20

9
x3 − 5

6
x2 +

5

42
x − 1

252
,

and so on.

The orthonormal polynomials would be q0(x) = p0(x)/
√
h0 = 1,

q1(x) =
p1(x)√

h1
= 2
√

3(x − 1/2)

q2(x) =
p2(x)√

h2
= 6
√

5

(
x2 − x +

1

6

)
p3(x) =

p3(x)√
h3

= 20
√

7

(
x2 − 3

2
x2 +

3

5
x − 1

20

)
,

etcetera.
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The three-term recurrence relation

The fact that 〈xp, q〉 = 〈p, xq〉 gives rise to the following fundamental property
of orthogonal polynomials.

Theorem

A sequence of orthogonal polynomials {Pn(x)} satisfies a 3-term recurrence
relation of the form.

Pn+1(x) = (Anx + Bn)Pn(x)− CnPn−1(x) for n = 0, 1, . . . . (4)

where we set P−1(x) ≡ 0 and P0(x) ≡ 1.

Here, An,Bn and Cn are real constants, n = 0, 1, 2, . . ..

If the leading coefficient of Pn(x) is kn > 0, then

An =
kn+1

kn
, Cn+1 =

An+1

An

hn+1

hn
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Proof

Since Pn+1(x) has degree exactly (n + 1) and so does xPn(x), we can determine
An such that Pn+1(x)− AnxPn(x) is a polynomial of degree at most n. Thus

Pn+1(x)− AnxPn(x) =
n∑

k=0

bkPk(x) (5)

for some constants bk . Now, if Q(x) is any polynomial of degree m < n, we
know from (3) that ∫ b

a

Pn(x)Q(x)w(x)dx = 0.

If we multiply both sides of (5) by w(x)Pm(x) where m ∈ {0, 1 . . . , n − 2}, we
obtain (upon integration)∫ b

a

Pn+1(x)Pm(x)w(x)dx − An

∫ b

a

xPn(x)Pm(x)w(x)dx

=
n∑

k=0

∫ b

a

bkPk(x)Pm(x)w(x)dx .
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Proof

∫ b

a

Pn+1(x)Pm(x)w(x)dx − An

∫ b

a

xPn(x)Pm(x)w(x)dx (6)

=
n∑

k=0

∫ b

a

bkPk(x)Pm(x)w(x)dx .

Now the left hand side of (6) is zero for each m ∈ {0, 1, . . . , n − 2} since then
xPm(x) is a polynomial of degree (m + 1) which is less than or equal to (n− 1).

On the right hand side of (6), as k runs from 0 to n, the only integral in the
sum that is not equal to zero is the one involving k = m.

Therefore bmhm = 0 for each m ∈ {0, 1, ., n − 2} and, since hm 6= 0, we have
bm = 0, m = 0, 1, ., n − 2.

Therefore, from

Pn+1(x)− AnxPn(x) =
n∑

k=0

bkPk(x),

Pn+1(x)− AnxPn(x) = bn−1Pn−1(x) + bnPn(x),

as required.

It is clear from the choice of An that An =
kn+1

kn
.
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Proof

To prove the final part, multiply

Pn+1(x) = (Anx + Bn)Pn(x)− CnPn−1(x)

by Pn−1(x)w(x) and integrate, to obtain

0 = An

∫ b

a

xPn(x)Pn−1(x)w(x)dx − Cn

∫ b

a

P2
n−1(x)w(x)dx .

Now
Pn−1(x) = kn−1x

n−1 + (poly of degree ≤ n − 2) (7)

and
Pn(x) = kn(x)n + (poly of degree ≤ n − 1)

Then
xPn−1(x) = kn−1(x)n + (poly of degree ≤ n − 1)

=
kn−1

kn
knx

n + (poly of degree ≤ n − 1)
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Proof

More formally,

xPn−1(x) =
kn−1

kn
Pn(x) +

n−1∑
k=0

dkPk(x).

From (7), we see that

0 = An
kn−1

kn
hn − Cnhn−1, or

Cn = An
kn−1

kn

hn
hn−1

, so

Cn+1 = An+1
kn

kn+1

hn+1

hn

and since
kn+1

kn
= An, we have

Cn+1 =
An+1

An

hn+1

hn
.
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Three-term recurrence for monic polynomials

Theorem

Let {pn(x)}∞n=0 be a sequence of monic orthogonal polynomials with respect to
a positive measure µ. Then,

pn+1(x) = (x − αn)pn(x)− βn pn−1(x), n = 0, 1, 2, . . . ,

with initial conditions p−1 ≡ 0 and p0 ≡ 1.

Notice that the choice of p−1 makes the initial value of β0 irrelevant.

The recurrence coefficient αn is given as:

αn =
〈xpn, pn〉
〈pn, pn〉

=
1

hn

∫
R
x p2

n(x) dµ(x), n = 0, 1, . . . ,

If pn(x) = xn + `nx
n−1 + . . . , then, for each n ∈ N,

αn = `n − `n+1
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Three-term recurrence for monic polynomials

Theorem

Let {pn(x)}∞n=0 be a sequence of monic orthogonal polynomials with respect to
a positive measure µ. Then,

pn+1(x) = (x − αn)pn(x)− βn pn−1(x), n = 0, 1, 2, . . . ,

with initial conditions p−1 ≡ 0 and p0 ≡ 1.

The recurrence coefficient βn is given as:

βn =
〈xpn, pn−1〉
〈pn−1, pn−1〉

=
1

hn−1

∫
R
x pn(x) pn−1(x) dµ(x)

=
〈pn, pn〉
〈pn−1, pn−1〉

=
hn
hn−1

> 0, n = 1, 2, . . . .

It follows that hn = βnβn−1 . . . β1.
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The converse: spectral theorem for orthogonal polynomials

Theorem

If a family of monic polynomials satisfies a three term recurrence relation of the
form

xpn(x) = pn+1(x) + αnpn(x) + βnpn−1(x)

with initial conditions p0(x) = 1 and p−1(x) = 0 where αn−1 ∈ R and βn > 0
for all n ∈ N, then there exists a positive Borel measure µ on the real line such
that these polynomials are monic orthogonal polynomials satisfying∫

R
pn(x)pm(x) dµ(x) = hnδmn, m, n = 0, 1, 2, . . . .

Proof does not give explicit information about measure or support.

Measure need not be unique and depends on Hamburger moment problem

Can be traced back to earlier work on continued fractions with a
rudimentary form given by Stieltjes in 1894;

Also appears in books by Wintner [1929] and Stone [1932].

Often referred to as Favard’s theorem but was in fact independently
discovered by Favard, Shohat and Natanson around 1935.
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Jacobi matrix

Let {pn(x)}∞n=0 be a sequence of monic orthogonal polynomials satisfying

pn+1(x) = (x − αn)pn(x)− βn pn−1(x), n = 0, 1, 2, . . . ,

with p−1 = 0 and p0 = 1.

The recurrence coefficients can be collected in a tridiagonal matrix of the form

J =



α0

√
β1√

β1 α1

√
β2√

β2 α2

√
β3

√
β3 α3

. . .

. . .
. . .


known as the Jacobi matrix or Jacobi operator which acts as an operator (on a
subset of) `2(N).
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Zeros as eigenvalues

One can write
pn(x) = det (xIn − Jn)

where In is the identity matrix and Jn is the tridiagonal matrix

Jn =



α0

√
β1√

β1 α1

√
β2√

β2 α2

√
β3

√
β3 α3

. . .

. . .
. . . √

βn−1√
βn−1 αn−1


It follows that the zeros of pn(x) are the same as the eigenvalues of Jn.
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Hankel determinants

The coefficients in the three-term recurrence relation can also be expressed in
terms of determinants whose entries are moments associated with measure µ.

αn =
∆̃n+1

∆n+1
− ∆̃n

∆n
, βn =

∆n+1∆n−1

∆2
n

,

where ∆n is the Hankel determinant

∆n = det
[
µj+k

]n−1

j,k=0
=

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−1

µ1 µ2 . . . µn

...
...

. . .
...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣ , n ≥ 1,

with ∆0 = 1, ∆−1 = 0, and ∆̃n is the determinant

∆̃n =

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−2 µn

µ1 µ2 . . . µn−1 µn+1

...
...

. . .
...

...
µn−1 µn . . . µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣ , n ≥ 1,

with ∆̃0 = 0 and µk is the kth moment.
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The monic polynomial pn(x) can be uniquely expressed as the determinant

pn(x) =
1

∆n

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
...

. . .
...

µn−1 µn . . . µ2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
,

The normalisation constants are given by

hn =
∆n+1

∆n
, h0 = ∆1 = µ0.

Remark

∆n > 0 (hn > 0), n ≥ 1 corresponds to a positive definite moment functional
and orthogonal polynomials in the usual sense.

A more general notion of orthogonality can be defined for quasi-definite
moment functionals when ∆n 6= 0.

Note that when the moments are non-real, the definition bears no relation to
the standard concept of orthogonality of polynomials in a complex variable.
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Hermite polynomials

The polynomials orthogonal with respect to the normal distribution e−x2 are
the Hermite polynomials, named for the French mathematician Charles Hermite
(1822 – 1901).

Definition

The Hermite polynomials are denoted Hn(x) and are defined by the generating
function

e2xt−t2 =
∞∑
n=0

Hn(x)tn

n!

valid for all finite x and t.

Theorem

The Hermite polynomials can be represented explicitly by

Hn(x) =

bn/2c∑
k=0

(−1)kn!

k!(n − 2k)!
(2x)n−2k .
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Hermite polynomials

Theorem

The orthogonality property of Hn(x) is∫ ∞
−∞

Hn(x)Hm(x)e−x2dx = 2nn!
√
πδnm,

i.e. the Hermite polynomials are orthogonal on the real line with respect to the
normal distribution.

Theorem

The three-term recurrence relation for the Hermite polynomials is given by

Hn+1(x) = 2xHn(x)− 2nHn−1(x) n ≥ 1.
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Laguerre Polynomials

Laguerre polynomials, named for the French mathematician Edmond Nicolas
Laguerre (1834 – 1886).

Definition

Laguerre polynomials are denoted Lαn (x) and are defined by the generating
function

(1− t)−α−1exp

(
−xt

1− t

)
=
∞∑
n=0

Lαn (x)tn.

Theorem

The Laguerre polynomials can be represented explicitly by

Lαn (x) =
(α + 1)n

n!

n∑
k=0

(−n)kx
k

(α + 1)kk!

where (a)t is Pochhammer’s symbol (a)t = a(a + 1) . . . (a + t − 1).
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Laguerre polynomials

Theorem

The Laguerre polynomials are orthogonal on the positive real line with respect
to the gamma distribution, i.e. the orthogonality relation for the Laguerre
polynomials is contained in∫ ∞

0

Lαn (x)Lαm(x)xαe−xdx =
Γ(α + n + 1)

n!
δmn

for α > −1.

Theorem

The Laguerre polynomials satisfy the three term recurrence relation given by

(n + 1)Lαn+1(x) = (1 + 2n + α− x)Lαn (x)− (n + α)Lαn−1(x).

Remark

A Laguerre polynomial involves a parameter α. The Hermite polynomials did
not rely on any parameters.
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