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The inverse problem

Operator theory has played an important role in answering questions
concerning the

existence

uniqueness

nature

support

of the orthogonality measure.

For some classical references on this topic see

Stone [1932] for a discussion on Jacobi matrices

Sarason [1987] for background on the moment problem

Shohat and Tamarkin [1950] for more technical information on the
moment problem

Kato, [1957] for perturbation theorems

Berezanskii [1968] for a discussion of self-adjointedness
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The direct problem

Given an orthogonality measure µ, several characteristic properties of the
sequence {Pn} are determined by the nature of the measure.

Extracting this information from the measure is one of the interesting problems
in the study of systems of orthogonal polynomials.

Properties typically studied include

the Hankel determinants

the coefficients of the three term recurrence relation

the coefficients of the differential-difference equation

the coefficients of the differential equation

satisfied by the polynomials, if at all.

For classical orthogonal polynomials, namely Hermite, Laguerre and Jacobi
polynomials, the properties that they satisfy are well known.
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Consider the very classical Hermite, Laguerre and Jacobi polynomials.

(a) Their derivatives also form orthogonal polynomial sets.

(b) They all satisfy a second order linear differential equation of the
Sturm-Liouville type

σ(x)P ′′
n (x) + τ(x)P ′

n(x) + λnPn(x) = 0 (1)

where σ(x) is a polynomial of degree ≤ 2, τ(x) is a linear polynomial,
both independant of n, and λn is independant of x . Equivalently, the
weights satisfy a first-order differential equation, the Pearson equation

d

dx
[σ(x)w(x)] = τ(x)w(x),

with σ(x) and τ(x) the same polynomials as in (1).
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Classical orthogonal polynomials all satisfy

(c) a non-linear equation of the form

σ(x)
d

dx
Pn(x)Pn−1(x) = (αn x + βn)Pn(x)Pn−1(x) + γnP

2
n (x) + δnP

2
n−1(x)

where αn, βn, γn and δn are independent of x .

(d) a differential-difference relation

π(x)P ′
n(x) = (an x + bn)Pn(x) + cnPn−1.

(e) a Rodrigues’ type formula

Pn(x) =
1

an w(x)
Dn[w(x)σn(x)], n = 0, 1, 2, . . .

where σ(x) is a polynomial in x independent of n and an does not depend
on x .

Any polynomial set which satisfies any one of the above properties must
necessarily be one of the classical orthogonal polynomial sets.
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Rodrigues formula

The Rodrigues formula provides transparent and immediate information

about

the interval of orthogonality
the weight function, and
the range of parameters for which orthogonality holds.

Example: We will use Jacobi’s formula and illustrate how one derives an
orthogonality relation.

The Rodrigues formula for the Legendre polynomials

published by O. Rodrigues in an Ecole Polytechnique journal
[1816].
Rodrigues’ paper did not receive much attention.
Rediscovered independently by J. Ivory [1822] and Jacobi
[1827]. Jacobi later suggested to Ivory that they write a joint
paper on the result and publish it in France since it was not
known there!! Their paper appeared in Liouville’s journal in
1837.

Laplace, who was Rodrigues’ supervisor found a similar result for the
Hermite polynomials in his work on probability in 1810.
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What defines a classical orthogonal polynomial?

A sequence of orthogonal polynomials is classical if the sequence {Pn} as well
as DmPn+m, m ∈ N, where D is the usual derivative d

dx
or one of its extensions

difference operator

q-difference operator

divided-difference operator

satisfies a three term recurrence of the form ensuring orthogonality by the
spectral theorem.

The following definition of classical orthogonal polynomials, suggested by
Andrews and Askey in 1985 is generally accepted and has been justified by
various characterizations.

”A set of orthogonal polynomials is classical, if it is a special case or limiting
case of the Askey-Wilson polynomials”
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Generalised hypergeometric polynomials

pFq (−n, α2, α3, . . . , αp;β1, . . . , βq; x) =
n∑

m=0

(−n)m(α2)m(α3)m . . . (αp)m
(β1)m . . . (βq)m

xm

m!

where β1, . . . , βq ̸∈ {0,−1,−2, . . . , } and

(β)k = β(β + 1) . . . (β + k − 1)

is Pochhammer’s symbol, also known as the shifted factorial.

Not all pFq polynomials are orthogonal.
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Zeros of classical orthogonal polynomials

Theorem

If {pn(x)}∞n=0 is a sequence of orthogonal polynomials on the interval (a, b)
with respect to the weight function w(x), then the polynomial pn(x) has
exactly n real simple zeros in the interval (a, b).

a b

Figure: Zeros in interval I
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Proof

Since deg(pn) = n the polynomial has at most n real zeros.

Suppose that pn(x) has m ≤ n distinct real zeros x1, x2, . . . , xm in (a, b) of
odd order (or multiplicity).

Then the polynomial

pn(x)(x − x1)(x − x2) . . . (x − xm)

does not change sign on the interval (a, b).

This implies that∫ b

a

w(x)pn(x)(x − x1)(x − x2) . . . (x − xm)dx ̸= 0.

By orthogonality this integral equals zero if m < n.

Hence: m = n, which implies that pn(x) has n distinct real zeros of odd order
in (a, b).

This proves that all n zeros are distinct and simple (have order or multiplicity
equal to one).
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An important consequence of the recurrence relation, is the Christoffel-Darboux
formula (See Assignment 1, Ex. 3).

Theorem

A sequence of orthogonal polynomials {pn(x)}∞n=0 satisfies

n∑
k=0

pk(x)pk(y)

hk
=

kn
hn kn+1

pn+1(x)pn(y)− pn+1(y)pn(x)

x − y
, n = 0, 1, 2, . . . (2)

and

n∑
k=0

{pk(x)}2

hk
=

kn
hn kn+1

(p′
n+1(x)pn(x)− pn+1(x)p

′
n(x)), n = 0, 1, 2, . . . (3)

(2) is called the Christoffel-Darboux formula and (3) its confluent form.

(3) yields another important property of zeros of orthogonal polynomials.
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Interlacing of zeros

Theorem

If {pn(x)}∞n=0 is a sequence of orthogonal polynomial on the interval (a, b) with
respect to the weight function w(x), then the zeros of pn(x) and pn+1(x)
separate each other.

f {xn, k}nk=1 and {xn+1, k}n+1
k=1 denote the consecutive zeros of pn(x) and pn+1(x)

respectively, then we have

a < xn+1, 1 < xn, 1 < xn+1, 2 < xn, 2 < . . . < xn+1, n < xn, n < xn+1, n+1 < b.

2.5 5 7.5 10 12.5 15 17.5

-1
-0.5

0.5
1
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Proof

Note that

hn =

∫ b

a

w(x) {pn(x)}2 dx > 0, n = 0, 1, 2, . . .

This implies that

kn
hn kn+1

(p′
n+1(x)pn(x)− pn+1(x)p

′
n(x)) =

n∑
k=0

{pk(x)}2

hk
> 0

Hence
kn
kn+1

(p′
n+1(x)pn(x)− pn+1(x)p

′
n(x)) > 0.

Kerstin Jordaan Properties of orthogonal polynomials



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Now suppose that xn+1,k and xn+1,k+1, k = 1, 2, . . . , n are any two consecutive
zeros of pn+1(x) with xn+1,k < xn+1,k+1.

Since all n + 1 zeros of pn+1(x) are real and simple, it follows from Rolle’s
theorem that p′

n+1(xn+1,k) and p′
n+1(xn+1,k+1) have opposite signs.

b b
xn+1,k xn+1,k+1

pn+1(x)

Hence we have

pn+1(xn+1, k) = 0 = pn+1(xn+1,k+1) and p′
n+1(xn+1,k)p

′
n+1(xn+1,k+1) < 0.

This implies that pn(xn+1, k)pn(xn+1, k+1) < 0. Why?
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It follows from the continuity of pn(x) that there should be at least one zero of
pn(x) between xn+1, k and xn+1, k+1.

b b
xn+1,k xn+1,k+1

pn(x)

This holds for each pair of consecutive zeros of pn+1(x) so there is exactly one
zero of pn(x) between xn+1, k and xn+1, k+1.
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Monotonicity of the zeros

The manner in which the zeros of a polynomial change as the parameter
changes can be used to study interlacing properties of zeros.

Markov’s monotonicity theorem [1886] proves that the zeros of classical
orthogonal polynomials like Laguerre and Jacobi polynomials are monotone
functions of the parameter(s) by using the derivative of the weight function
with respect to the parameter(s).

A slightly generalised version of Markov’s theorem, stated as an exercise in
Freud’s book [1971] and proved in Ismail’s book [2005] can also be applied to
discrete orthogonal polynomials such as Meixner and Hahn polynomials.

Kerstin Jordaan Properties of orthogonal polynomials



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A monotonicity theorem due to Markov

Theorem

Let {pn(x , τ)}∞n=0 be orthogonal with respect to dα(x , τ) = w(x , τ)dα(x) on
the interval [a, b] depending on a parameter τ such that w(x , τ) is positive and
continuous for a < x < b, τ1 < τ < τ2.

Also, suppose that the partial derivative wτ (x , τ) for a < x < b, τ1 < τ < τ2
exists and is continuous, and the integrals∫ b

a

xνwτ (x , τ)dα(x), ν = 0, 1, 2, . . . , 2n − 1,

converge uniformly in every closed interval [τ
′
, τ

′′
] ⊂ (τ1, τ2).

Denote the zeros of pn(x , τ) by

x1(τ) > x2(τ) > · · · > xn(τ) > 0.

Then the νth zero xν(τ) (for a fixed value of ν) is an increasing (decreasing)
function of τ provided that

wτ/w

is an increasing (decreasing) function of x, a < x < b.
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For α, β > −1, the sequence of Jacobi polynomials {Pα,β
n }∞n=0 is orthogonal

with respect to the weight function w(x) = (1− x)α(1 + x)β on (−1, 1) and
satisfies the three term recurrence relation

2(n + 1)(n + α+ β + 1)

(2n + α+ β + 1)(2n + α+ β + 2)
Pα,β
n+1 (x)

=

(
x − β2 − α2

(2n + α+ β)(2n + α+ β + 2)

)
Pα,β
n (x)

− 2(n + α)(n + β)

(2n + α+ β)(2n + α+ β + 1)
Pα,β
n−1(x).

Example

For Jacobi polynomials Pn(α, β), the weight function is
w(x , α, β) = (1− x)α(1 + x)β and α(x) = x , hence

∂ lnw(x , α, β)

∂β
=

∂ ln(1 + x)β

∂β
= ln(1 + x)

which is an increasing function of x .
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The variation of the zeros of a Jacobi polynomial with the parameter can be
summarised as follows.

Lemma (cf. (Szego, Theorem 6.21.1, p.121))

Let α > −1 and β > −1 and let xk , k = 1, 2, . . . , n denote the zeros of P
(α,β)
n

in increasing order. Then
dxk
dα

< 0 and
dxk
dβ

> 0 for each k = 1, . . . , n.

Richard Askey [1990] in ”graphs as an aid to understanding special functions”
conjectured the following.

Conjecture

The zeros of the Jacobi polynomials P
(α,β)
n and P

(α,β+2)
n are interlacing for

each n ∈ N, α, β > −1.
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Interlacing of zeros of different Jacobi polynomials

Interlacing of zeros of Jacobi polynomials P
(α,β)
n (x) and P

(α±t,β±k)
n±ϵ (x).

Must t and k be integers?

NO.

ϵ = 0 or 1 and 0 < t, k ≤ 2 (Driver, J and Mbuyi [2008])

Must ϵ be an integer? NO.

0 < ϵ < 1 and t, k = 0, 1, 2 (Segura, [2008])
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Interlacing of zeros of different Jacobi polynomials

Interlacing of zeros of Jacobi polynomials P
(α,β)
n (x) and P

(α±t,β±k)
n±ϵ (x).

Must t and k be integers? NO.

ϵ = 0 or 1 and 0 < t, k ≤ 2 (Driver, J and Mbuyi [2008])
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Interlacing of zeros of different Jacobi polynomials
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Theorem

Let α > 1, β > −1 and t ∈ (0, 2), k ∈ (0, 2).

Let− 1 < x1 < x2 < · · · < xn < 1, be the zeros of P(α,β)
n ,

−1 < t1 < t2 < · · · < tn < 1, be the zeros of P(α−k,β+t)
n ,

and − 1 < y1 < y2 < · · · < yn < 1, be those of P(α−2,β+2)
n .

Then

−1 < x1 < t1 < y1 < x2 < t2 < y2 < · · · < xn < tn < yn < 1.

It follows by symmetry that the zeros of P
(α,β)
n and P

(α−t,β−k)
n , t, k > 0 also

do not interlace in general.
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Interlacing of zeros of P
(α,β)
n (x) and P

(α
′
,β

′
)

n (x), α, α′, β, β′ > −1

αα + 2

β − 2

β + 2

α

β

β

α − 2-1

-1
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Theorem

Let α, β > −1 and let 0 ≤ t ≤ 2 and 0 ≤ k ≤ 2. Let

−1 < x1 < x2 < · · · < xn < 1 be the zeros of P(α,β)
n and

−1 < t1 < t2 < · · · < tn−1 < 1 be the zeros of P
(α+t,β+k)
n−1 .

Then
−1 < x1 < t1 < x2 < · · · < xn−1 < tn−1 < xn < 1.

Remark

Some restrictions on the ranges of t and k are required in the theorems since
the interlacing property is not retained, in general, when one or both of the
parameters α, β are increased by more than 2.
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Interlacing of zeros of P
(α,β)
n and P

(α
′
,β

′
)

n−1 α, β > −1

αα + 2

β + 2

α

β

β

-1

-1
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Some final comments

The proofs make extensive use of

the Markov monotonicity theorem as applied to Jacobi polynomials

the contiguous relations for 2F1 hypergeometric polynomials. Various
algorithms have been developed for computing such contiguous relations.

Dimitrov, Ismail and Rafaeli [2013] used a general approach to the Askey
Conjecture by considering interlacing properties of zeros of orthogonal Jacobi
polynomials P

(α,β)
n of the same degree and different parameter values α and β

in the context of perturbation of the weight function of orthogonality.
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Proof of the monotonicity theorem

The mechanical quadrature formula (see, for example, Ismail’s book, (2.4.1))∫ b

a

ρ(x)dα(x , τ) =
n∑

ν=1

λν(τ)ρ(xν(τ)), (4)

holds for polynomials ρ(x) of degree at most 2n − 1. Differentiating (4) with
respect to τ , we obtain∫ b

a

ρ(x)wτ (x , τ)dα(x) =
n∑

ν=1

λν(τ)ρ
′
(xν)x

′
ν(τ) +

n∑
ν=1

λ
′
ν(τ)ρ(xν).

Now we choose

ρ(x) =
{pn(x , τ)}2

x − xν
,

then, since xν is a removable singularity, ρ
′
(xν) = {p

′
n(xν , τ)}2 while

ρ
′
(xµ) = 0 if µ ̸= ν and hence∫ b

a

wτ (x , τ)
{pn(x , τ)}2

x − xν
dα(x) = λν(τ){p

′
n(xν , τ)}2x

′
ν(τ). (5)
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In view of the orthogonality the integral∫ b

a

{pn(x , τ)}2

x − xν
w(x , τ)dα(x) = 0,

so (5) can be rewritten as∫ b

a

{
wτ (x , τ)−

wτ (xν , τ)

w(xν , τ)
w(x , τ)

}{pn(x , τ)}2

x − xν
dα(x) = λν(τ){p

′
n(xν , τ)}2x

′
ν(τ).

and we obtain∫ b

a

{wτ (x , τ)

w(x , τ)
− wτ (xν , τ)

w(xν , τ)

}{pn(x , τ)}2

x − xν
dα(x , τ) = λν(τ){p

′
n(xν , τ)}2x

′
ν(τ).

(6)
The integrand in (6) has a constant sign, so the positivity of the so-called
Christoffel numbers λν(τ) (cf. [Szegö, p. 48] establishes the result.
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