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Quasi-orthogonality

Definition

A polynomial Rn, degRn = n, n ≥ r is quasi-orthogonal of order r where
n, r ∈ N with respect to w(x) > 0 on I if∫

I

xkRn(x)w(x) dx

{
= 0 for k = 0, 1, . . . , n − r − 1

̸= 0 for k = n − r .

A characterisation of quasi-orthogonality of order r :

Theorem (Shohat)

Let {Pn}∞n=0 be a family of orthogonal polynomials with respect to w(x) > 0 on
[a, b]. Then the n-th degree polynomial Rn is quasi-orthogonal of order r on
[a, b] with respect to w(x) if and only if there exist constants ci , i = 0, . . . , r
and c0cr ̸= 0 such that

Rn(x) = c0Pn(x) + c1Pn−1(x) + . . .+ crPn−r (x).
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Historical overview

Riesz [1923]: Quasi-orthogonal polynomials of order 1

Figure: Marcel and Frigyes Riesz
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Historical overview

Figure: Lipót Fejér

Fejér [1933]: Quasi-orthogonality of order 2

Shohat [1937]: Quasi-orthogonality of any order r
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More recently

Chihara [1957]: Generalised definition of quasi-orthogonal polynomials
and studied them in the context of three-term recurrence relations

Dickinson [1961]: System of recurrence relations necessary and sufficient
for quasi-orthogonality of order 1

Draux [1990]: Proved the converse of one of Chihara’s results

Brezinski, Driver, Redivo-Zaglia [2004]: Results on the real zeros of
quasi-orthogonal polynomials

Joulak [2005]: Extended these results by giving necessary and sufficient
conditions
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A result by Dickinson

Dickinson applied systems of recurrence relations that are necessary and
sufficient for quasi-orthogonality to some special cases of Fasenmyer
polynomials

fn(a, x) = 3F2

(
−n, n + 1, a

1
2
, 1

; x

)
=

n∑
m=0

(−n)m(n + 1)m(a)m(
1
2

)
m
(1)m

xm

m!
.

Theorem (Dickenson, 1961)

The polynomials fn
(
3
2
, x

)
and fn(2, x) are quasi-orthogonal of order 1 on the

interval (0, 1) with weights (1− x) and x−1/2(1− x)3/2 respectively.

These turn out to be very special cases of more general classes of
quasi-orthogonal pFq polynomials arising from orthogonal p−1Fq−1 polynomials
(cf. Johnston and J [2015]).
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Sister Celine

Figure: Celine Fasenmyer
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Zeros of quasi-orthogonal polynomials of order r

Theorem (Shohat)

If Rn is quasi-orthogonal of order r on [a, b] with respect to a positive weight
function, then at least (n − r) distinct zeros of Rn lie in the interval (a, b)

a b

? ?

Figure: Quasi-orthogonality of order 1: at least n − 1 zeros in interval I
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Theorem (Shohat)

If Rn is quasi-orthogonal of order r on [a, b] with respect to a positive weight
function, then at least (n − r) distinct zeros of Rn lie in the interval (a, b)
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? ?

Figure: Quasi-orthogonality of order 1: at least n − 1 zeros in interval I
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Zeros of quasi-orthogonal polynomials of order r

Theorem (Shohat)

If Rn is quasi-orthogonal of order r on [a, b] with respect to a positive weight
function, then at least (n − r) distinct zeros of Rn lie in the interval (a, b)

a b

?

?

Figure: Quasi-orthogonality of order 1: at least n − 1 zeros in interval I
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Quasi-orthogonal polynomials of order 2

Figure: Quasi-orthogonality of order 2: at least n − 2 zeros in interval I
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Quasi-orthogonal polynomials of order 2

Figure: Quasi-orthogonality of order 2: at least n − 2 zeros in interval I
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Quasi-orthogonal polynomials of order 2

Figure: Quasi-orthogonality of order 2: at least n − 2 zeros in interval I
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Quasi-orthogonal polynomials of order 2

Figure: Quasi-orthogonality of order 2: at least n − 2 zeros in interval I
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Semiclassical orthogonal polynomials

Al-Salam and Chihara [1972] showed that orthogonal polynomial sets satisfying

π(x)P ′
n(x) = (an x + bn)Pn(x) + cnPn−1

must be either Hermite, Laguerre or Jacobi polynomials.

Askey raised the more general question of what orthogonal polynomial sets
have the property that their derivatives satisfy a relation of the form

π(x)P ′
n(x) =

n+s∑
k=n−t

αnkPk(x).

This problem was considered by Shohat [1939] and later, independently, by
Freud [1976], as well as Bonan and Nevai [1984].

Maroni [1985] stated the problem in a different way, trying to find all
orthogonal polynomial sets whose derivatives are quasi-orthogonal, and called
such orthogonal polynomial sets semi-classical.
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Semiclassical orthogonal polynomials

Consider the Pearson equation satisfied by the weight w(x)

d

dx
[σ(x)w(x)] = τ(x)w(x)

Classical orthogonal polynomials: σ(x) and τ(x) are polynomials with
deg(σ) ≤ 2 and deg(τ) = 1

w(x) σ(x) τ(x)

Hermite exp(−x2) 1 −2x
Laguerre xαexp(−x) x 1 + α− x
Jacobi (1− x)α(1 + x)β (1− x)2 β − α− (2 + α+ β)x

Semi-classical orthogonal polynomials: σ(x) and τ(x) are polynomials with
either deg(σ) > 2 or deg(τ) > 1

w(x) σ(x) τ(x)

semi-classical Laguerre xλexp(−x2 + tx) x 1 + λ+ tx − 2x2

generalized Freud |x |2λ+1exp(−x4 + 2tx2) x 2λ+ 2− 2tx2 − x4
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Extract from Digital Library of Mathematical Functions

It had been generally accepted that explicit expressions for the orthogonal
polynomials and coefficients in the three-term recurrence relation were
nonexistent for weights such as the Freud weight.

To quote from the Digital Library of Mathematical Functions:

18.32 OP’s with Respect to Freud Weights

A Freud weight is a weight function of the form

w(x) = exp(−Q(x)), −∞ < x < ∞
where Q(x) is real, even, nonnegative, and continuously differentiable. Of
special interest are the cases Q(x) = x2m, m = 1, 2, . . . . No explicit
expressions for the corresponding OP’s are available. However, for asymptotic
approximations in terms of elementary functions for the OP’s, and also for their
largest zeros , see Levin and Lubinsky [2001] and Nevai [1986]. For a uniform
asymptotic expansion in terms of Airy functions for the OP’s in the case x4 see
Bo and Wong [1999].
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The generalized Freud weight

Expressions for the recurrence coefficients associated with the semi-classical
Laguerre weight

w(x) = xλ exp(−x2 + tx), x ∈ (0,∞) for λ > −1 and t ∈ R

and the generalized Freud weight

w(x) = |x |2λ+1 exp(−x4 + tx2) x ∈ R for λ > −1 and t ∈ R

can be given in terms of Wronskians of parabolic cylinder functions that appear
in the description of special function solutions of the fourth Painlevé equation
and discrete Painlevé1.

The link between the theory of Painlevé equations and orthogonal polynomials
is given by the moments of the weight

µn =

∫ b

a

xnw(x) dx , n = 0, 1, 2, . . .

which allow the Hankel determinant to be written as a Wronskian.
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Moments of the generalized Freud weight

The first moment, µ0(t;λ), can be obtained using the integral representation of
a parabolic cylinder function.

µ0(t;λ) =

∫ ∞

−∞
|x |2λ+1 exp

(
−x4 + tx2

)
dx

=
Γ(λ+ 1)

2(λ+1)/2
exp

(
1
8
t2
)
D−λ−1

(
− 1

2

√
2 t

)
.

The even moments are

µ2n(t;λ) =

∫ ∞

−∞
x2n |x |2λ+1 exp

(
−x4 + tx2

)
dx

= µ0(t;λ+ n) =
dn

dtn
µ0(t, λ), n = 1, 2, . . .

whilst the odd ones are

µ2n+1(t;λ) =

∫ ∞

−∞
x2n+1 |x |2λ+1 exp

(
−x4 + tx2

)
dx = 0, n = 1, 2, . . .

since the integrand is odd.
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The recurrence coefficients

Monic orthogonal polynomials with respect to the generalized Freud weight

|x |2λ+1 exp(−x4 + tx2)

satisfy the three-term recurrence relation

xSn(x ; t) = Sn+1(x ; t) + βn(t;λ)Sn−1(x ; t)

where βn(t;λ) > 0, S−1(x ; t) = 0, S0(x ; t) = 1, β0(t;λ) = 0
and

β1(t;λ) =
µ2(t;λ)

µ0(t;λ)
=

∫∞
−∞ x2|x |2λ+1 exp

(
−x4 + tx2

)
dx∫∞

−∞ |x |2λ+1 exp (−x4 + tx2) dx

= 1
2
t + 1

2

√
2

D−λ

(
− 1

2

√
2 t

)
D−λ−1

(
− 1

2

√
2 t

) ,
. . .
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The differential-difference equation

The coefficients An(x ; t) and Bn(x ; t) in the relation

dPn

dx
(x ; t) = −Bn(x ; t)Pn(x ; t) + An(x ; t)Pn−1(x ; t), (1)

satisfied by semi-classical orthogonal polynomials are of interest since
differentiation of this differential-difference equation yields the second order
differential equation satisfied by the orthogonal polynomials.

Shohat [1939] gave a procedure using quasi-orthogonality to derive (1)
for weights w(x ; t) such that w ′(x ; t)/w(x ; t) is a rational function;

This technique was rediscovered by several authors including Bonan,
Freud, Mhaskar and Nevai approximately 40 years later;

Method of ladder operators was introduced by Chen and Ismail [1997];

Chen and Feigin [2006] adapt the method of ladder operators to the
situation where the weight function vanishes at one point.

Clarkson, J and Kelil [2016] generalize the work by Chen and Feigin,
giving a more explicit expression for the coefficients in (1) when the
weight function is positive on the real line except for one point.
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The derivatives of monic orthogonal polynomials Sn(x ; t) with respect to the
generalized Freud weight are quasi-orthogonal of order m = 5.

x
dSn

dx
(x ; t) =

n∑
k=n−4

cn,kSk(x ; t),

where the coefficient cn,k , for n − 4 ≤ k ≤ n and hk > 0, is given by

cn,k =
1

hk

∫ ∞

−∞

dSn(x ; t)

dx
xSk(x ; t)w(x ; t) dx .

Integrating by parts, we obtain for n − 4 ≤ k ≤ n − 1,

hkcn,k =
[
xSk(x ; t)Sn(x ; t)w(x ; t)

]∞
−∞

−
∫ ∞

−∞

d

dx
[xSk(x ; t)w(x ; t)]Sn(x ; t) dx

= −
∫ ∞

−∞

[
Sn(x ; t)Sk(x ; t) + xSn(x ; t)

dSk(x ; t)

dx

]
w(x ; t) dx

−
∫ ∞

−∞
xSn(x ; t)Sk(x ; t)

dw(x ; t)

dx
dx

= −
∫ ∞

−∞
xSn(x ; t)Sk(x ; t)

dw(x ; t)

dx
dx

= −
∫ ∞

−∞
Sn(x ; t)Sk(x ; t)

(
−4x4 + 2tx2 + 2λ+ 1

)
w(x ; t) dx

=

∫ ∞

−∞

(
4x4 − 2tx2)Sn(x ; t)Sk(x ; t)w(x ; t) dx .
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Iterating the three-term recurrence relation, the following relations are obtained:

x2Sn = Sn+2 + (βn + βn+1)Sn + βnβn−1Sn−2,

x4Sn = Sn+4 + (βn + βn+1 + βn+2 + βn+3)Sn+2

+
[
βn(βn−1 + βn + βn+1) + βn+1(βn + βn+1 + βn+2)

]
Sn

+ βnβn−1(βn−2 + βn−1 + βn + βn+1)Sn−2

+ (βnβn−1βn−2βn−3)Sn−4.

Substituting these into

hkcn,k =

∫ ∞

−∞

(
4x4 − 2tx2)Sn(x ; t)Sk(x ; t)w(x ; t) dx

yields the coefficients {cn,k}n−1
k=n−4 in

x
dSn

dx
(x ; t) =

n∑
k=n−4

cn,kSk(x ; t),

as follows:

cn,n−4 = 4βnβn−1βn−2βn−3,

cn,n−3 = 0,

cn,n−2 = 4βnβn−1(βn−2 + βn−1 + βn + βn+1 − 1
2
t),

cn,n−1 = 0.
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Lastly, we consider the case when k = n.

A similar (but longer) argument and the fact that the recurrence coefficient βn

satisfies discrete PI

βn+1 + βn + βn−1 =
1
2
t +

2n + (2λ+ 1)[1− (−1)n]

8βn

yields
cn,n = n.

Now we can write

x
dSn

dx
(x ; t) = cn,n−4Sn−4(x ; t) + cn,n−2Sn−2(x ; t) + cn,nSn(x ; t). (2)

In order to express Sn−4 and Sn−2 in terms of Sn and Sn−1, we iterate the
recurrence relation.
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The differential-difference equation

Theorem (Clarkson, J & Kelil, 2016)

For the generalized Freud weight

w(x ; t) = |x |2λ+1 exp
(
−x4 + tx2

)
, x ∈ R, λ > 0

the monic orthogonal polynomials Sn(x ; t) satisfy

dSn

dx
(x ; t) = −Bn(x ; t)Sn(x ; t) + An(x ; t)Sn−1(x ; t)

with

An(x ; t) = 4βn(x
2 − 1

2
t + βn + βn+1),

Bn(x ; t) = 4xβn +
(2λ+ 1)[1− (−1)n]

2x
.
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The differential equation

Theorem (Clarkson, J & Kelil, 2016)

For the generalized Freud weight, the monic orthogonal polynomials Sn(x ; t)
satisfy the differential equation

d2Sn

dx2 (x ; t) + Rn(x ; t)
dSn

dx
(x ; t) + Tn(x ; t)Sn(x ; t) = 0,

Rn(x ; t) = −4x3 + 2tx +
2λ+ 1

x
− 2x

x2 − 1
2
t + βn + βn+1

,

Tn(x ; t) = 4nx2 + 4βn + 16βn(βn + βn+1 − 1
2
t)(βn + βn−1 − 1

2
t)

+ 4(2λ+ 1)(−1)nβn −
8βnx

2 + (2λ+ 1)[1− (−1)n]

x2 − 1
2
t + βn + βn+1

+ (2λ+ 1)[1− (−1)n]

(
t − 1

2x2

)
.

Note that the coefficients in the differential equation of the semiclassical
orthogonal polynomials are not the same as those of the Pearson equation.
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