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Background

Background
How insurance works and risk classification scheme

Risk-
group 1 • Risk: μ₁ 

Risk-
group 2 • Risk: μ₂ 

Risk-
group n • Risk: μn 

•   
•   
•   

π₁ 

π₂ 

πn 

Regulators Insurers 

Restrict risk 
classification 

E.g. European Gender 
Directive 

π1 = π2 = ⋯ = πn = 𝛑𝐞 

                        Pooled Premium 

Risk Classification 

Fair Premium 
𝛑𝐢 = 𝛍𝐢 

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 4 / 34



Adverse Selection

Table of contents

Background
I How does insurance work?
I Risk classification Scheme

Adverse Selection
Loss Coverage
Demand function

I Iso-elastic demand function

Equilibrium Premium
Results on adverse selection and loss coverage
Summary and Further research
References

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 5 / 34



Adverse Selection

Adverse Selection

0, π1, π2, π3, πe, ..., π7, π8, ..., πn,1.

Typical definition
Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”

Empirical results are mixed and vary by market.
Life Insurance Cawley and Philipson (1999) X
Auto Insurance Chiappori and Salanie (2000) X

Cohen (2005) O
Annuity Finkelstein and Poterba (2004) O

Health Insurance Cardon and Hendel (2001) X
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Adverse Selection

Adverse Selection

Restricting risk classification⇒ Policy is over-subscribed by high
risks BAD?

Good measure?

Definition

Adverse Selection (AS) =
expected claim per policy

expected loss per risk
=

E [QL]
E [Q]E [L]

, (1)

where Q: quantity of insurance; L: risk experience.

Adverse Selection Ratio: S =
AS at pooled premium πe

AS at risk-differentiated premiums
(2)

> 1⇒ Adverse Selection.
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Adverse Selection

Example

Example
A population of 1000
Two risk groups

I 200 high risks with risk 0.04
I 800 low risks with risk 0.01

No moral hazard
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Adverse Selection

Example
Full risk classification

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.01 0.04 0.016
(differentiated)
Numbers insured 400 100 500
Adverse Selection Ratio (S) 1

No adverse selection.
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Adverse Selection

Example
Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Adverse Selection Ratio (S) 1.25>1

Moderate adverse selection
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Adverse Selection

Example
Restriction on risk classification-Case 2

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.02154 0.02154 0.02154
(pooled)
Numbers insured 200(400) 125(100) 325(500)
Adverse Selection Ratio (S) 1.3462>1

Heavier adverse selection
Adverse selection suggests pooling is always bad. But is it?
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Loss Coverage

Loss Coverage

Aim of insurance: provide protection for those who suffer losses.
I High risks most need insurance.
I Restriction on risk classification seems reasonable.

Thomas (2008, 2009) “Loss Coverage”:

Definition

Loss Coverage (LC) =
insured expected losses

population expected losses
(3)

Loss Coverage Ratio: C =
LC at a pooled premium πe

LC at at risk-differentiated premium πi
(4)

> 1,Favorable!
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Loss Coverage

Example
No restriction on risk classification

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.01 0.04 0.016
(differentiated)
Numbers insured 400 100 500
Insured losses 4 4 8
Loss coverage ratio (C) 1

No adverse selection.
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Loss Coverage

Example
Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Insured losses 3 6 9
Loss coverage ratio (C) 1.125>1

Moderate adverse selection (S = 1.25) but favorable loss
coverage.

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 15 / 34



Loss Coverage

Example
Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Insured losses 3 6 9
Loss coverage ratio (C) 1.125>1

Moderate adverse selection (S = 1.25) but favorable loss
coverage.

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 15 / 34



Loss Coverage

Example
Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Insured losses 3 6 9
Loss coverage ratio (C) 1.125>1

Moderate adverse selection (S = 1.25) but favorable loss
coverage.

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 15 / 34



Loss Coverage

Example
Restriction on risk classification-Case 2

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

0.02154 0.02154 0.02154
(pooled)
Numbers insured 200(400) 125(100) 325(500)
Insured losses 2 5 7
Loss coverage ratio (C) 0.875<1

Heavier adverse selection (S = 1.3462) and worse loss coverage.
Loss coverage might be a better measure!
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Demand Function

Demand Function

Definition
d(µ, π) : the proportional demand for insurance for risk µ at premium π.

It is assumed to have the following properties:
∂
∂πd(µ, π) < 0 : a decreasing function of premium.
d(µ1, π) < d(µ2, π) : the proportional demand is greater for the
higher risk-group.

Definition

Demand elasticity: ε(µ, π) = −∂d(µ,π)
d(µ,π) /

∂π
π i.e. sensitivity of demand to

premium changes.

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 18 / 34



Demand Function

Demand Function

Definition
d(µ, π) : the proportional demand for insurance for risk µ at premium π.

It is assumed to have the following properties:
∂
∂πd(µ, π) < 0 : a decreasing function of premium.

d(µ1, π) < d(µ2, π) : the proportional demand is greater for the
higher risk-group.

Definition

Demand elasticity: ε(µ, π) = −∂d(µ,π)
d(µ,π) /

∂π
π i.e. sensitivity of demand to

premium changes.

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 18 / 34



Demand Function

Demand Function

Definition
d(µ, π) : the proportional demand for insurance for risk µ at premium π.

It is assumed to have the following properties:
∂
∂πd(µ, π) < 0 : a decreasing function of premium.
d(µ1, π) < d(µ2, π) : the proportional demand is greater for the
higher risk-group.

Definition

Demand elasticity: ε(µ, π) = −∂d(µ,π)
d(µ,π) /

∂π
π i.e. sensitivity of demand to

premium changes.

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 18 / 34



Demand Function

Demand Function

Definition
d(µ, π) : the proportional demand for insurance for risk µ at premium π.

It is assumed to have the following properties:
∂
∂πd(µ, π) < 0 : a decreasing function of premium.
d(µ1, π) < d(µ2, π) : the proportional demand is greater for the
higher risk-group.

Definition

Demand elasticity: ε(µ, π) = −∂d(µ,π)
d(µ,π) /

∂π
π i.e. sensitivity of demand to

premium changes.

M Hao (SMSAS-University of Kent) Insurance Risk 6 February 2015 18 / 34



Demand Function

Demand Function

Iso-elastic demand function

ε(µ, π) = λ, i.e. constant (5)

d(µ, π) = τ

[
π

µ

]−λ

. (6)
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Demand Function

Iso-elastic demand function
τ = 1, µ = 0.01, λ = 0.4, 0.8 and 1.2
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Equilibrium Premium

Equilibrium Premium
Equilibrium premium, πe, ensures a zero expected total profit,

i.e.

d(µ1, πe)(πe − µ1)p1 + d(µ2, πe)(πe − µ2)p2 = 0. (7)
“Profit" from low risk-group = “Loss" from high risk-group

d(µi , πe) = τi

[
πe

µi

]−λi

, i = 1,2

If λ1 = λ2 = λ,

πe =
α1µ

λ+1
1 + α2µ

λ+1
2

α1µ
λ
1 + α2µ

λ
2

, (8)

where
αi =

τipi

τ1p1 + τ2p2
, i = 1,2 (9)

(Fair-premium demand-share)
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Equilibrium Premium

Unique equilibrium premium
p1 = 9000, τ1 = 1, µ1 = 0.01; p2 = 1000, τ2 = 1, µ2 = 0.04, λ1 = λ2 = 1
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Results on adverse selection and loss coverage

Results: Adverse Selection Ratio (S)
p1 = 9000, τ1 = 1, µ1 = 0.01; p2 = 1000, τ2 = 1, µ2 = 0.04
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Results on adverse selection and loss coverage

Results on loss coverage

Loss Coverage Ratio

C =
1
πeλ

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2
. (11)
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Results on adverse selection and loss coverage

Results: Loss Coverage Ratio (C)
p1 = 9000, τ1 = 1, µ1 = 0.01; p2 = 1000, τ2 = 1, µ2 = 0.04
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Results on adverse selection and loss coverage

Results: Loss Coverage Ratio (C)
p1 = 9000, τ1 = 1, µ1 = 0.01; p2 = 1000, τ2 = 1, µ2 = 0.03, 0.04, 0.05, 0.08
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Summary
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A moderate level of adverse selection can increase loss
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Further Research

Further Research

Other/more general demand e.g. d(µ, π) = τe1−(π
µ
)λ .

Loose restriction on demand elasticities.
Partial restriction on risk classification.
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