LOSS COVERAGE IN INSURANCE MARKETS: WHY ADVERSE SELECTION IS NOT ALWAYS A BAD THING

MingJie Hao, Dr. Pradip Tapadar, Mr. Guy Thomas University of Kent, UK

Email: mh586@kent.ac.uk, P.Tapadar@kent.ac.uk, R.G.Thomas@kent.ac.uk

IME 2015

- Background
 - How does insurance work?
 - Risk classification Scheme

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage

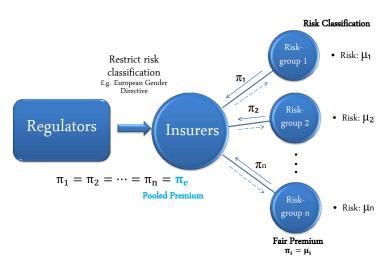
- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

Background

How insurance works and risk classification scheme



- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

• $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1$.

• $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1$.

Typical definition

Purchasing decision is positively correlated with losses

-Chiappori and Salanie (2000) "Positive Correlation Test"

• $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1$.

Typical definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

Empirical results are mixed and vary by market.

• $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$

Typical definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

Empirical results are mixed and vary by market.

Life Insurance	Cawley and Philipson (1999)	X
Auto Insurance	Chiappori and Salanie (2000)	X
	Cohen (2005)	0
Annuity	Finkelstein and Poterba (2004)	0
Health Insurance	Cardon and Hendel (2001)	X

 Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

Adverse Selection (AS) =
$$\frac{\text{expected claim per policy}}{\text{expected loss per risk}}$$
 (1)

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

Adverse Selection (AS) =
$$\frac{\text{expected claim per policy}}{\text{expected loss per risk}}$$
 (1)

Adverse Selection Ratio:
$$S = \frac{AS \text{ at pooled premium } \pi_e}{AS \text{ at risk-differentiated premiums}}$$
 (2)

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

```
Adverse Selection (AS) = \frac{\text{expected claim per policy}}{\text{expected loss per risk}}  (1)
Adverse Selection Ratio: S = \frac{\text{AS at pooled premium } \pi_e}{\text{AS at risk-differentiated premiums}}  (2)
 > 1 \Rightarrow \text{Adverse Selection}.
```

Example

- A population of 1000
- Two risk groups
 - 200 high risks with risk 0.04
 - 800 low risks with risk 0.01
- No moral hazard

Full risk classification

Full risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums (differentiated)	0.01	0.04	0.016
Numbers insured	400	100	500
Adverse Selection Ratio (S)			1

Full risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums (differentiated)	0.01	0.04	0.016
Numbers insured	400	100	500
Adverse Selection Ratio (S)			1

No adverse selection.

Restriction on risk classification-Case 1

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02	0.02	0.02
(π_{e})	0.02	0.02	0.02
Numbers insured	300(400)	150(100)	450(500)
Adverse Selection Ratio (S)			1.25>1

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02	0.02	0.02
(π_{e})	0.02	0.02	0.02
Numbers insured	300(400)	150(100)	450(500)
Adverse Selection Ratio (S)			1.25>1

Moderate adverse selection

Restriction on risk classification-Case 2

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums (π_e)	0.02154	0.02154	0.02154
Numbers insured	200(400)	125(100)	325(500)
Adverse Selection Ratio (S)			1.3462>1

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(π_{e})	0.02134	0.02134	0.02134
Numbers insured	200(400)	125(100)	325(500)
Adverse Selection Ratio (S)			1.3462>1

Heavier adverse selection

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(π_e)	0.02134	0.02134	0.02134
Numbers insured	200(400)	125(100)	325(500)
Adverse Selection Ratio (S)			1.3462>1

Heavier adverse selection

Adverse selection suggests pooling is always bad. But is it?

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

Loss Coverage

Loss Coverage

• Aim of insurance: provide protection for those who suffer losses.

- Aim of insurance: provide protection for those who suffer losses.
 - ▶ High risks most need insurance.
 - Restriction on risk classification seems reasonable.

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Definition

Loss Coverage (LC) =
$$\frac{\text{insured expected losses}}{\text{population expected losses}}$$
 (3)

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Definition

Loss Coverage (LC) =
$$\frac{\text{insured expected losses}}{\text{population expected losses}}$$
Loss Coverage Ratio: $C = \frac{\text{LC at a pooled premium } \pi_{\theta}}{\text{LC at at risk-differentiated premium } \pi_{i}}$ (4) > 1, Favorable!

No restriction on risk classification

No restriction on risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.01	0.04	0.016
(differentiated)	0.01	0.04	0.010
Numbers insured	400	100	500
Insured losses	4	4	8
$LC(\pi_i) = LC(\pi_e)$			8/16
Loss coverage ratio (C)			1

No restriction on risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums (differentiated)	0.01	0.04	0.016
Numbers insured	400	100	500
Insured losses	4	4	8
$LC(\pi_i) = LC(\pi_e)$			8/16
Loss coverage ratio (C)			1
No odvovos coloctica			

No adverse selection.

Restriction on risk classification-Case 1

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02	0.02	0.02
$(\pi_{\it e})$	0.02		
Numbers insured	300(400)	150(100)	450(500)
Insured losses	3	6	9
LC (π _e)			9/16
$LC(\pi_i)$			8/16
Loss coverage ratio (C)			1.125>1

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02	0.02	0.02
(π_{e})	0.02		
Numbers insured	300(400)	150(100)	450(500)
Insured losses	3	6	9
LC (π _e)			9/16
$LC(\pi_i)$			8/16
Loss coverage ratio (C)			1.125>1

Moderate adverse selection (S = 1.25) but favorable loss coverage.

Restriction on risk classification-Case 2

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(π_{e})	0.02134		
Numbers insured	200(400)	125(100)	325(500)
Insured losses	2	5	7
LC (π _e)			7/16
$LC(\pi_i)$			8/16
Loss coverage ratio (C)			0.875<1

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(π_e)	0.02134	0.02134	0.02134
Numbers insured	200(400)	125(100)	325(500)
Insured losses	2	5	7
LC (π _e)			7/16
$LC(\pi_i)$			8/16
Loss coverage ratio (C)			0.875<1

Heavier adverse selection (S = 1.3462) and worse loss coverage.

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(π_{e})	0.02134	0.02134	0.02134
Numbers insured	200(400)	125(100)	325(500)
Insured losses	2	5	7
LC (π _e)			7/16
$LC(\pi_i)$			8/16
Loss coverage ratio (C)			0.875<1

Heavier adverse selection (S = 1.3462) and worse loss coverage. Loss coverage might be a better measure!

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

Definition

 $d(\mu,\pi)$: the proportional demand for insurance for risk μ at premium π .

Definition

 $d(\mu,\pi)$: the proportional demand for insurance for risk μ at premium π .

It is assumed to have the following properties:

• $\frac{\partial}{\partial \pi}d(\mu,\pi) < 0$: a decreasing function of premium.

Definition

 $d(\mu,\pi)$: the proportional demand for insurance for risk μ at premium π .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi}d(\mu,\pi) < 0$: a decreasing function of premium.
- $d(\mu_1, \pi) < d(\mu_2, \pi)$: the proportional demand is greater for the higher risk-group.

Definition

 $d(\mu,\pi)$: the proportional demand for insurance for risk μ at premium π .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi}d(\mu,\pi) < 0$: a decreasing function of premium.
- $d(\mu_1, \pi) < d(\mu_2, \pi)$: the proportional demand is greater for the higher risk-group.

Definition

Demand elasticity: $\epsilon(\mu,\pi) = -\frac{\partial d(\mu,\pi)}{d(\mu,\pi)}/\frac{\partial \pi}{\pi}$ i.e. sensitivity of demand to premium changes.

Iso-elastic demand function

$$\epsilon(\mu, \pi) = \lambda$$
, i.e. constant (5)

Iso-elastic demand function

$$\epsilon(\mu, \pi) = \lambda$$
, i.e. constant (5)

$$d(\mu, \pi) = \tau \left\lceil \frac{\pi}{\mu} \right\rceil^{-\lambda}.$$
 (6)

Iso-elastic demand function

 $au = 1, \mu = 0.01, \lambda = 0.4, 0.8$ and 1.2

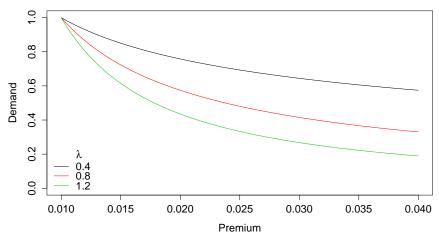


Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

Equilibrium premium, π_{θ} , ensures a zero expected total profit,

Equilibrium premium, π_e , ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0.$$
 (7)

Equilibrium premium, π_e , ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0.$$
"Profit" from low risk-group = "Loss" from high risk-group

Equilibrium premium, π_{θ} , ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0.$$
 (7)

"Profit" from low risk-group = "Loss" from high risk-group

$$d(\mu_i, \pi_e) = \tau_i \left[\frac{\pi_e}{\mu_i}\right]^{-\lambda_i}, i = 1, 2$$

Equilibrium premium, π_{θ} , ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0.$$
 (7)

"Profit" from low risk-group = "Loss" from high risk-group

$$d(\mu_i, \pi_e) = \tau_i \left[\frac{\pi_e}{\mu_i}\right]^{-\lambda_i}, i = 1, 2$$

If
$$\lambda_1 = \lambda_2 = \lambda$$
,

Equilibrium premium, π_{θ} , ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0.$$
 (7)

"Profit" from low risk-group = "Loss" from high risk-group

$$d(\mu_i, \pi_e) = \tau_i \left[\frac{\pi_e}{\mu_i}\right]^{-\lambda_i}, i = 1, 2$$

If
$$\lambda_1 = \lambda_2 = \lambda$$
,

$$\pi_{e} = \frac{\alpha_{1}\mu_{1}^{\lambda+1} + \alpha_{2}\mu_{2}^{\lambda+1}}{\alpha_{1}\mu_{1}^{\lambda} + \alpha_{2}\mu_{2}^{\lambda}},\tag{8}$$

where

$$\alpha_i = \frac{\tau_i \mathbf{p}_i}{\tau_1 \mathbf{p}_1 + \tau_2 \mathbf{p}_2}, i = 1, 2 \tag{9}$$

(Fair-premium demand-share)

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

Results on adverse selection

Results on adverse selection

Adverse Selection Ratio

$$S = \frac{\pi_{e}}{\alpha_{1}\mu_{1} + \alpha_{2}\mu_{2}}.\tag{10}$$

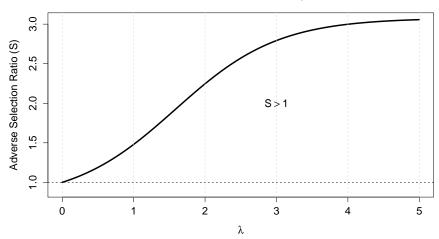
$$\alpha_i = \frac{\tau_i p_i}{\tau_1 p_1 + \tau_2 p_2}, i = 1, 2$$

(Fair-premium demand-share)

Results: Adverse Selection Ratio (S)

$$p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$$

Adverse selection ratio plot



Results on loss coverage

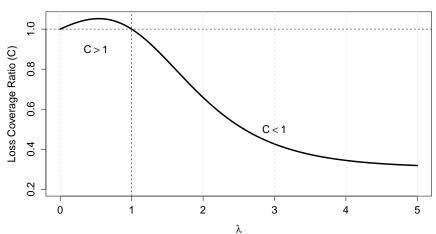
Loss Coverage Ratio

$$C = \frac{1}{\pi_e^{\lambda}} \frac{\alpha_1 \mu_1^{\lambda+1} + \alpha_2 \mu_2^{\lambda+1}}{\alpha_1 \mu_1 + \alpha_2 \mu_2}.$$
 (11)

Results: Loss Coverage Ratio (C)

$$p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$$

Loss coverage ratio plot



Results: Loss Coverage Ratio (C)

 $p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.03, 0.04, 0.05, 0.08$

Loss coverage ratio plot

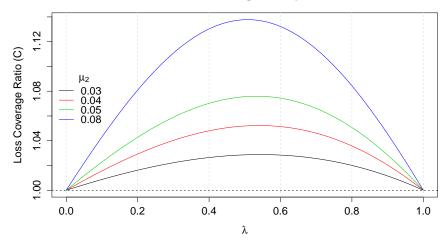


Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References

• When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse selection may not be a good measure.

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse selection may not be a good measure.
- Loss coverage is an alternative metric.

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse selection may not be a good measure.
- Loss coverage is an alternative metric.
- Adverse selection is not always a bad thing!
 A moderate level of adverse selection can increase loss coverage.

Further Research

- Other/more general demand e.g. $d(\mu, \pi) = \tau e^{1-(\frac{\pi}{\mu})^{\lambda}}$.
- Loose restriction on demand elasticities.
- Partial restriction on risk classification.

References

- Hao, M. et al (2015) Insurance Loss Coverage Under Restricted Risk Classification: The Case Of Iso-elastic Demand. Submitted for publication.
- Cardon, J. H. and Hendel, I. (2001) Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. Rand J. Econ. 32 (Autumn): 408-27.
- Cawley, J. and Philipson, T. (1999) An Empirical Examination of Information Barriers to Trade in Insurance. A.E.R. 89 (September): 827-46.
- Chiappori, P. A. and Salanie, B. (2000) Testing for Asymmetric Information in Insurance Markets, *The Journal of Political Economy*, 108, 1: 56-78.
- Cohen, A. (2005) Asymmetric Information and Learning: Evidence from the Automobile Insurance market. *Rev. Eco. Statis.* 87 (June):197-207.

References

- Finkelstein, A. and Poterba (2004) Adverse Selection in Insurance markets: Policyholder Evidence from the U.K. Annuity Market. J.P.E. 112 (February): 183-208.
- Thomas, R. G. (2008) Loss Coverage as a Public Policy Objective for Risk Classification Schemes. The Journal of Risk and Insurance, 75(4), pp. 997-1018.
- Thomas, R. G. (2009) Demand Elasticity, Adverse Selection and Loss Coverage: When Can Community Rating Work? ASTIN Bulletin, 39(2), pp. 403-428.

Questions?

Questions?

Thank you!

