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Original definition

Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”

@ Empirical results are mixed and vary by market.
Life Insurance | Cawley and Philipson (1999)
Auto Insurance | Chiappori and Salanie (2000)

Cohen (2005)

Annuity Finkelstein and Poterba (2004)

Health Insurance | Cardon and Hendel (2001)
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@ Restricting risk classification = Policy is over-subscribed by high
risks BAD?

@ Good measure?
Definition

expected claim per policy  E[QL]

A Sellogitn (AS) = expected loss perrisk ~ E[Q]E[L]’ (1)

where Q: quantity of insurance; L: risk experience.
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where Q: quantity of insurance; L: risk experience.
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Adverse Selection

@ Restricting risk classification = Policy is over-subscribed by high
risks BAD?

@ Good measure?
Definition

expected claim per policy  E[QL] )
expected loss perrisk ~ E[Q]E[L]’

Adverse Selection (AS) =

where Q: quantity of insurance; L: risk experience.

AS at pooled premium ¢

Ad Selection Ratio: S = .
verse sefection Ratio AS at risk-differentiated premiums

()

S > 1 = Adverse Selection.
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Adverse Selection

Example

Example

@ A population of 1000
@ Two risk groups

200 high risks with risk 0.04
800 low risks with risk 0.01

@ No moral hazard
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Adverse Selection

Example

Full risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

(differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Adverse Selection Ratio (S) 1
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Example

Full risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums
(differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Adverse Selection Ratio (S) 1

No adverse selection.
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Adverse Selection

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate

Risk 0.01 0.016
Total population 800 1000
Expected population losses 8 16
Break-even premiums 0.02 0.02
(pooled)

Numbers insured 300(400) 450(500)
Adverse Selection Ratio (S) 1.25>1
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Adverse Selection

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Adverse Selection Ratio (S) 1.25>1

Moderate adverse selection
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Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.016
Total population 800 1000
Expected population losses 8 16
Break-even premiums 0.02154 0.02154
(pooled)

Numbers insured 200(400) 325(500)
Adverse Selection Ratio (S) 1.3462>1
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Risk 0.01 0.016
Total population 800 1000
Expected population losses 8 16
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Adverse Selection

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.016
Total population 800 1000
Expected population losses 8 16
Break-even premiums 0.02154 0.02154
(pooled)

Numbers insured 200(400) 325(500)
Adverse Selection Ratio (S) 1.3462>1

Heavier adverse selection

Adverse selection suggests pooling is always bad. But is it?
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» High risks most need insurance.
» Restriction on risk classification seems reasonabile.

@ Thomas (2008, 2009) “Loss Coverage’:
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insured expected losses
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Loss Coverage

Loss Coverage

@ Aim of insurance: provide protection for those who suffer losses.

» High risks most need insurance.
» Restriction on risk classification seems reasonabile.

@ Thomas (2008, 2009) “Loss Coverage’:
Definition

insured expected losses
population expected losses
LC at a pooled premium 7¢
LC at at risk-differentiated premium 7r;
> 1, Favorable!

Loss Coverage (LC) =

Loss Coverage Ratio: C =
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Loss Coverage

Example

No restriction on risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

(differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Insured losses 4 4 8
Loss coverage ratio (C) 1
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No restriction on risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

(differentiated) 0.01 0.04 0.016
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No adverse selection.

M Hao (SMSAS-University of Kent) Insurance Risk 12 January 2015 14 /30



Example
Restriction on risk classification-Case 1

M Hao (SMSAS-University of Kent)

Insurance Risk



Loss Coverage

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate

Risk 0.01 0.016
Total population 800 1000
Expected population losses 8 16
Break-even premiums 0.02 0.02
(pooled)

Numbers insured 300(400) 450(500)
Insured losses 3 9
Loss coverage ratio (C) 1.125>1
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Loss Coverage

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Insured losses 3 6 9
Loss coverage ratio (C) 1.125>1

Moderate adverse selection (S = 1.25) but favorable loss

coverage.
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Restriction on risk classification-Case 2
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Loss Coverage

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.016
Total population 800 1000
Expected population losses 8 16
Break-even premiums 0.02154 0.02154
(pooled)

Numbers insured 200(400) 325(500)
Insured losses 2 7
Loss coverage ratio (C) 0.875<1
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Loss Coverage

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02154 0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)
Insured losses 2 5 7
Loss coverage ratio (C) 0.875<1

Heavier adverse selection (S = 1.3462) and worse loss coverage.
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Loss Coverage

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02154  0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)
Insured losses 2 5 7
Loss coverage ratio (C) 0.875<1

Heavier adverse selection (S = 1.3462) and worse loss coverage.
Loss Coverage might be a better measure!
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Demand Function

Definition

The demand function d(u, 7) is the demand of a single individual with
risk i, will buy insurance at premium 7.
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Demand Function

Demand Function

Definition
The demand function d(u, 7) is the demand of a single individual with
risk i, will buy insurance at premium 7.

It is assumed to have the following properties:
° %d(ﬂ, ) < 0 = demand is a decreasing function of premium.

2 . . .
° %d(,u, 7) > 0 = a decreasing rate of fall in demand as premium
increases.

Definition

The demand elasticity e(u, 7) = —%/%’T i.e. sensitivity of demand
to premium changes.
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Demand Function

Iso-elastic demand function

A
d(p, ) = T[g]
e(p, )

A, i.e. constant
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Results

Assumptions

@ There are 2 risk-groups
@ They have equal demand elasticities
Iso-elastic demand function: Ay = Ay = e(7e)
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Results: Adverse Selection Ratio (S)
p1 = 9000, 71 = 1,1 = 0.01; p, = 1000, 72 = 1, o = 0.04

Adverse selection ratio plot

2.0 25 3.0

Adverse Selection Ratio (S)
1.5

1.0
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Results: Loss Coverage Ratio (C)
p1 =9000, 71 =1, 1 =0.01; po = 1000, 2 = 1, uo = 0.04

Loss coverage ratio plot

1.0

0.6

0.4

Loss Coverage Ratio (C)

0.2
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Results
Equal demand elasticity: a unique equilibrium premium.
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Results

Equal demand elasticity: a unique equilibrium premium.

Different demand elasticities: multiple equilibria only arise under
extreme conditions

@ demand elasticity for low risks is substantially higher than for the
high risks, and

@ high risks must be very small relative to the total population.
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Equilibrium Premium

Results

Equal demand elasticity: a unique equilibrium premium.

Different demand elasticities: multiple equilibria only arise under
extreme conditions

@ demand elasticity for low risks is substantially higher than for the
high risks, and
@ high risks must be very small relative to the total population.

Multiple Equilibrium is rare in practical application.
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Summary

@ When there is restriction on risk classification, a pooled premium
me is charged across all risk-groups.

@ There will always be adverse selection = Adverse Selection may
not be a good measure.

@ Loss Coverage is an alternative metric.
Using iso-elastic demand function,

@ Adverse Selection is not always a bad thing!
A moderate level of adverse selection can increase loss
coverage.
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Further Research

Further Research

@ Other/more general demand e.g. d(u, w) = re' G,
@ Loose restriction on demand elasticities.
@ Partial restriction on risk classification.
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Questions?

Thank you!
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