Adverse Selection, Loss Coverage and Equilibrium Premium in Insurance Markets

> MingJie Hao Dr. Pradip Tapadar, Mr. Guy Thomas University of Kent

> > PARTY 2015 Liverpool

12 January 2015

The Sec. 74

4 A N

2

- Background
 - How does insurance work?
 - Risk classification Scheme

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection

э

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage

(4) (5) (4) (5)

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function

3 > 4 3

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results

3 > 4 3

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium

3 > 4 3

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium
- Summary and Further research

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium
- Summary and Further research
- References

H N

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium
- Summary and Further research
- References

3 > 4 3

A .

Background

How insurance works and risk classification scheme

э

Background

- How does insurance work?
- Risk classification Scheme

Adverse Selection

- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium
- Summary and Further research
- References

< 回 > < 三 > < 三 >

• 0, π₁, π₂, π₃, π_e, ..., π₇, π₈, ..., π_n, 1.

3

•
$$0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$$

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

•
$$0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$$

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

Empirical results are mixed and vary by market.

< 回 > < 三 > < 三 >

• 0,
$$\pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1$$
.

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

٩	Empirical results are mixed and vary by market.			
	Life Insurance Cawley and Philipson (1999)			
	Auto Insurance Chiappori and Salanie (2000)		Х	
	Cohen (2005)			
	Annuity Finkelstein and Poterba (2004)		0	
	Health Insurance	Cardon and Hendel (2001)	Х	

 Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

Adverse Selection (AS) = $\frac{\text{expected claim per policy}}{\text{expected loss per risk}} = \frac{E[QL]}{E[Q]E[L]}$, (1)

where Q: quantity of insurance; L: risk experience.

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

Adverse Selection (AS) =
$$\frac{\text{expected claim per policy}}{\text{expected loss per risk}} = \frac{E[QL]}{E[Q]E[L]}$$
, (1)
where Q: quantity of insurance; L: risk experience.
Adverse Selection Ratio: $S = \frac{\text{AS at pooled premium } \pi_e}{\text{AS at risk-differentiated premiums}}$. (2)

э

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

w

Adverse Selection (AS) =
$$\frac{\text{expected claim per policy}}{\text{expected loss per risk}} = \frac{E[QL]}{E[Q]E[L]}$$
, (1)
here Q: quantity of insurance; L: risk experience.

Adverse Selection Ratio: $S = \frac{\text{AS at pooled premium } \pi_e}{\text{AS at risk-differentiated premiums}}$.

$S > 1 \Rightarrow$ Adverse Selection.

3

(2)

Example

- A population of 1000
- Two risk groups
 - 200 high risks with risk 0.04
 - 800 low risks with risk 0.01
- No moral hazard

Example Full risk classification

2

Example Full risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.01	0.04	0.016
(differentiated)	0.01	0.04	0.010
Numbers insured	400	100	500
Adverse Selection Ratio (S)			1

2

Example Full risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.01	0.04	0.016
(differentiated)	0.01	0.04	0.010
Numbers insured	400	100	500
Adverse Selection Ratio (S)			1
No adverse selection.			

2

Restriction on risk classification-Case 1

2

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02	0.02	0.02
(pooled)	0.02	0.02	0.02
Numbers insured	300(400)	150(100)	450(500)
Adverse Selection Ratio (S)			1.25>1

2

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02	0.02	0.02
(pooled)	0.02	0.02	0.02
Numbers insured	300(400)	150(100)	450(500)
Adverse Selection Ratio (S)			1.25>1
Moderate adverse selection			

2

Restriction on risk classification-Case 2

2

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums (pooled)	0.02154	0.02154	0.02154
Numbers insured	200(400)	125(100)	325(500)
Adverse Selection Ratio (S)			1.3462>1

2

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(pooled)	0.02134	0.02134	0.02134
Numbers insured	200(400)	125(100)	325(500)
Adverse Selection Ratio (S)			1.3462>1
Heavier adverse selection			

2

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums (pooled)	0.02154	0.02154	0.02154
Numbers insured	200(400)	125(100)	325(500)
Adverse Selection Ratio (S)			1.3462>1
Heavier adverse selection			
Adverse selection suggests pooling is always bad. But is it?			

2

Background

- How does insurance work?
- Risk classification Scheme
- Adverse Selection

Loss Coverage

- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium
- Summary and Further research
- References

4 3 > 4 3

< 6 k

Loss Coverage

2

Loss Coverage

• Aim of insurance: provide protection for those who suffer losses.
• Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.

• Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

< 6 b

• Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

```
Definition
```

Loss Coverage (LC)

insured expected losses population expected losses

• Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Definition

Loss Coverage (LC) =	=	insured expected losses
		population expected losses
oss Coverage Patio: C	_	LC at a pooled premium π_e
Loss Coverage Ratio: $C =$	_	LC at at risk-differentiated premium π_i
	>	1, Favorable!

< 回 > < 三 > < 三 >

No restriction on risk classification

2

No restriction on risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.01	0.04	0.016
(differentiated)	0.01	0.04	0.010
Numbers insured	400	100	500
Insured losses	4	4	8
Loss coverage ratio (C)			1

2

No restriction on risk classification

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.01	0.04	0.016
(differentiated)	0.01	0.04	0.010
Numbers insured	400	100	500
Insured losses	4	4	8
Loss coverage ratio (C)			1
No adverse selection.			

2

Restriction on risk classification-Case 1

2

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02	0.02	0.02
(pooled)	0.02	0.02	0.02
Numbers insured	300(400)	150(100)	450(500)
Insured losses	3	6	9
Loss coverage ratio (C)			1.125>1

2

Restriction on risk classification-Case 1

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums (pooled)	0.02	0.02	0.02
Numbers insured	300(400)	150(100)	450(500)
Insured losses	3	6	9
Loss coverage ratio (C)			1.125>1
Moderate adverse selection	(S = 1.25) l	out favorabl	e loss
coverage.			

2

Restriction on risk classification-Case 2

2

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(pooled)	0.02154	0.02154	0.02154
Numbers insured	200(400)	125(100)	325(500)
Insured losses	2	5	7
Loss coverage ratio (C)			0.875<1

2

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(pooled)	0.02154	0.02154	0.02154
Numbers insured	200(400)	125(100)	325(500)
Insured losses	2	5	7
Loss coverage ratio (C)			0.875<1
Heavier adverse selection ($S = 1.3462$) and worse loss coverage.			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Restriction on risk classification-Case 2

	Low risks	High risks	Aggregate
Risk	0.01	0.04	0.016
Total population	800	200	1000
Expected population losses	8	8	16
Break-even premiums	0.02154	0.02154	0.02154
(pooled)	0.02134	0.02154	0.02134
Numbers insured	200(400)	125(100)	325(500)
Insured losses	2	5	7
Loss coverage ratio (C)			0.875<1
Heavier adverse selection ($S = 1.3462$) and worse loss coverage.			
Loss Coverage might be a better measure!			

2

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium
- Summary and Further research
- References

< 6 k

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

< ロ > < 同 > < 回 > < 回 >

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

• $\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 \Rightarrow$ demand is a decreasing function of premium.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 \Rightarrow$ demand is a decreasing function of premium.
- $\frac{\partial^2}{\partial \pi^2} d(\mu, \pi) > 0 \Rightarrow$ a decreasing rate of fall in demand as premium increases.

(B)

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 \Rightarrow$ demand is a decreasing function of premium.
- $\frac{\partial^2}{\partial \pi^2} d(\mu, \pi) > 0 \Rightarrow$ a decreasing rate of fall in demand as premium increases.

Definition

The demand elasticity $\epsilon(\mu, \pi) = -\frac{\partial d(\mu, \pi)}{d(\mu, \pi)} / \frac{\partial \pi}{\pi}$ i.e. sensitivity of demand to premium changes.

Iso-elastic demand function

$$d(\mu, \pi) = \tau \left[\frac{\pi}{\mu}\right]^{-\lambda}$$

$$\epsilon(\mu, \pi) = \lambda, \text{ i.e. constant}$$

M Hao (SMSAS-University of Kent)

æ

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function

Results

- Equilibrium Premium
- Summary and Further research

References

4 3 > 4 3

A

Results

Assumptions

- There are 2 risk-groups
- They have equal demand elasticities
 - Iso-elastic demand function: $\lambda_1 = \lambda_2 = \epsilon(\pi_e)$

Image: A mathematical states in the second states in the second

Results: Adverse Selection Ratio (S) $p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$

Adverse selection ratio plot

M Hao (SMSAS-University of Kent)

Results: Loss Coverage Ratio (C) $p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$

Loss coverage ratio plot

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Results
- Equilibrium Premium
- Summary and Further research
- References

э

4 3 > 4 3

< 6 b

æ

Results

Equal demand elasticity: a unique equilibrium premium.

э

Results Equal demand elasticity: a unique equilibrium premium. Different demand elasticities: multiple equilibria only arise under extreme conditions

3

< ロ > < 同 > < 回 > < 回 >

Results Equal demand elasticity: a unique equilibrium premium. Different demand elasticities: multiple equilibria only arise under extreme conditions

- demand elasticity for low risks is substantially higher than for the high risks, and
- high risks must be very small relative to the total population.

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results Equal demand elasticity: a unique equilibrium premium. Different demand elasticities: multiple equilibria only arise under extreme conditions

- demand elasticity for low risks is substantially higher than for the high risks, and
- high risks must be very small relative to the total population.

Multiple Equilibrium is rare in practical application.

э.

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand function
 - Iso-elastic demand function
- Adverse Selection
- Loss Coverage
- Results
- Equilibrium Premium
- Summary and Further research
- References

э

4 3 > 4 3

< 6 b

M Hao (SMSAS-University of Kent)

2

• When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measure.

4 3 5 4 3

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measure.
- Loss Coverage is an alternative metric.

The Sec. 74

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measure.
- Loss Coverage is an alternative metric. Using iso-elastic demand function,

The Sec. 74
Summary

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measure.
- Loss Coverage is an alternative metric. Using iso-elastic demand function,
- Adverse Selection is not always a bad thing!
 A moderate level of adverse selection can increase loss coverage.

4 3 5 4 3

Further Research

- Other/more general demand e.g. $d(\mu, \pi) = \tau e^{1-(\frac{\pi}{\mu})^{\lambda}}$.
- Loose restriction on demand elasticities.
- Partial restriction on risk classification.

3

4 3 5 4 3 5 5

References

- Cardon and Hendel (2001) Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. Rand J. Econ. 32 (Autumn): 408-27
- Cawley and Philipson (1999) An Empirical Examination of Information Barriers to Trade in Insurance. A.E.R. 89 (September): 827-46
- Chiappori and Salanie (2000) Testing for Asymmetric Information in Insurance Markets, The Journal of Political Economy, 108, 1; 56-78.
- Cohen (2005) Asymmetric Information and Learning: Evidence from the Automobile Insurance market. Rev. Eco. Statis. 87 (June):197-207.
- Finkelstein and Poterba (2004) Adverse Selection in Insurance markets: Policyholder Evidence from the U.K. Annuity Market. J.P.E. 112 (February): 183-208.
- Thomas, R.G. (2008) Loss Coverage as a Public Policy Objective for Risk Classification Schemes. The Journal of Risk and Insurance, 75(4), pp. 997-1018.
- Thomas, R.G. (2009) Demand Elasticity, Adverse Selection and Loss Coverage: When Can Community Rating Work? ASTIN Bulletin, 39(2), pp. 403-428.

Questions?

2

イロト イヨト イヨト イヨト

Questions?

Thank you!

æ

イロト イヨト イヨト イヨト