Adverse Selection and Loss Coverage in Insurance Market

RSC 2014 Nottingham

Mingjie HaoPhD student in Actuarial Science, University of KentPradip Tapadar(1st): Senior lecture in Actuarial Science, University of KentGuy Thomas(2nd): Honorary Lecturer in Actuarial Science, University of KentAngus Macdonald(external): Professor in Actuarial Science, Heriot-Watt University

Agenda

- Background
- Adverse selection
- Loss coverage
- Iso-elastic & negative-expoendial demand functions
- Results on loss coverage and adverse selection
 - Special case: equal demand elasticity
- Summary
- References

Adverse Selection

0 π₁ π₂ π₃ π_e π₄ ... π₆ π₇ ... π_n
 Purchasing decision is positively correlated with loss
 ° Chiappori and Salanie (2000) "Positive correlation test"

Empirical results are mixed and vary by market

Life insurance	Cawley and Philipson (1999)	X
Auto insurance	Chiappori and Salanie (2000) Cohen (2005)	X O
Annuity	Finkelstein and Poterba (2004)	Х
Health insurance	Cardon and Hendel (2001)	X

- Over-subscribed by high risks BAD?
- Model: $S = \frac{E[QL]}{E[Q]E[L]}$

Q: quantity of insurance L: risk experience

A moderate degree of adverse selection can be *GOOD!*

High risks most need insurance.

Ban on risk classification is reasonable.

Thomas (2008, 2009) "loss coverage":

proportion of the whole population's expected losses compensated by insurance

 $Loss coverage = \frac{insured expected losses}{population expected losses}$

Loss coverage ratio = $\frac{\text{loss coverage at a pooled premium } \pi_e}{\text{loss coverage at fair premium } \pi_i} > 1$ **GOOD!**

Example:

- A population of 1000 with 2 risk-groups
 - 200 high risks with risk 0.04
 - 800 low risks with risk 0.01
 - 🚬 No moral hazard

Table 1: Full risk classification

	Low risk-group	High risk-group
Total population	800	200
Risk	0.01	0.04
Break-even premiums (fair premium)	0.01	0.04
Numbers insured:	400	100
Insured losses	4	4
Loss coverage:	0.5	
Loss coverage ratio	1	

No adverse selection

Table 2: Risk classification banned: moderate adverse selection

	Low risk-group	High risk-group	
Total population	800	200	
Risk	0.01	0.04	
Break-even premiums (pooled premium)	0.02		
Numbers insured:	300 (400)	150 (100)	
Insured losses	3	6	
Loss coverage:	0.5625		
Loss coverage ratio	1.125 > 1		
Higher loss coverage			

Table 3: Risk classification banned: severe adverse selection

	Low risk-group	High risk-group
Total population	800	200
Risk	0.01	0.04
Break-even premiums (pooled premium)	0.02154	
Numbers insured:	200 (400)	125 (100)
Insured losses	2	5
Loss coverage:	0.4375	
Loss coverage ratio:	0.87	5<1
	т 1	

Lower loss coverage

Demand functions

Name	Iso-elastic	Negative-exponential
Demand function	$d_i(\pi) = P_i \tau_i [\frac{\pi}{\mu_i}]^{-\lambda_i}$	$d_{i}(\pi) = P_{i}\tau_{i}exp\left[\left(1-\frac{\pi}{\mu_{i}}\right)\lambda_{i}\right]$
Demand elasticity function $\epsilon_{i}(\pi) = -\frac{\pi}{d_{i}(\pi)} \frac{\partial d_{i}(\pi)}{\partial \pi}$	λ_{i}	$rac{\lambda_i}{\mu_i}\pi$

For simplicity, we assume

- there are only two risk groups i=1,2;
- they have equal demand elsticity
 - Iso-elastic demand function: $\lambda_1 = \lambda_2 = \lambda_0$
 - Negative-exponential demand function: $\frac{\lambda_1}{\mu_1}\pi_e = \frac{\lambda_2}{\mu_2}\pi_e = \lambda_0$

Loss Coverage -equal demand elasticity

Figure 1: Plot of loss coverage for $P_1 = 9000, P_2 = 9000, \mu_1 = 0.01, \mu_2 = 0.04$

Adverse Selection

-equal demand elasticity

Figure 2: Plot of adverse selection for $P_1 = 9000, P_2 = 9000, \mu_1 = 0.01, \mu_2 = 0.04$

Summary

- We model the outcome in an insurance market where a pooled premium is charged for two risk-groups when there is an absence of risk classification.
- Using iso-elastic & negative-exponential demand functions,
 loss coverage will be increased if a degree of adverse selection is tolerated. I.e. adverse selection is not always a bad thing.
- Further research should be carried out in more general cases
 - Other demand functions e.g. $d_i(\pi) = P_i \tau_i \exp[1 \left(\frac{\pi}{\mu_i}\right)^{\lambda_i}]$
 - No restriction on demand elasticity
 - Various risk-groups

References

- Cardon and Hendel (2001) Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. Rand J. Econ. 32 (Autumn): 408-27
- Cawley and Philipson (1999) An Empirical Examination of Information Barriers to Trade in Insurance. A.E.R. 89 (September): 827-46
- Chiappori and Salanie (2000) Testing for Asymmetric Information in Insurance Markets, The Journal of Political Economy, 108, 1; 56-78.
- Cohen (2005) Asymmetric Information and Learning: Evidence from the Automobile Insurance market. Rev. Eco. Statis. 87 (June):197-207.
- Finkelstein and Poterba (2004) Adverse Selection in Insurance markets: Policyholder Evidence from the U.K. Annuity Market. J.P.E. 112 (February): 183-208.
- Thomas, R.G. (2008) Loss Coverage as a Public Policy Objective for Risk Classification Schemes. The Journal of Risk and Insurance, 75(4), pp. 997-1018.
- Thomas, R.G. (2009) Demand Elasticity, Adverse Selection and Loss Coverage: When Can Community Rating Work? ASTIN Bulletin, 39(2), pp. 403-428.

Thank you!