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Risk-
group 1 • Risk: μ₁

Risk-
group 2 • Risk: μ₂

Risk-
group n • Risk: μn
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 How does insurance work?

•
•
•

π₁

π₂

πn

Regulators Insurers

Restrict risk 
classification

E.g. European Gender 
Directive

π1 = π2 = ⋯ = πn = 𝛑𝐞

Pooled Premium
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0 π₁ π₂ π₃ πe π4 … π₆ π₇ … πn 1
 Purchasing decision is positively correlated with loss
◦ Chiappori and Salanie (2000) “Positive correlation test”

 Empirical results are mixed and vary by market

 Over-subscribed by high risks BAD?

 Model:                       𝐒 =
𝐄[𝐐𝐋]

𝐄 𝐐 𝐄[𝐋]

 A moderate degree of adverse selection can be GOOD!

Life insurance Cawley and Philipson (1999) X

Auto insurance
Chiappori and Salanie (2000)

Cohen (2005) 

X 

O

Annuity Finkelstein and Poterba (2004) X

Health insurance Cardon and Hendel (2001) X

Q: quantity of insurance

L:  risk experience



 High risks most need insurance.
Ban on risk classification is reasonable.

 Thomas (2008, 2009) “loss coverage”:
proportion of the whole population’s expected losses compensated by 
insurance

Loss coverage =
insured expected losses

population expected losses

Loss coverage ratio =
loss coverage at a pooled premium 𝜋𝑒

loss coverage at fair premium 𝜋𝑖
> 1 GOOD!

 Example:
◦ A population of 1000 with 2 risk-groups
 200 high risks with risk 0.04
 800 low risks with risk 0.01
 No moral hazard
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Table 1: Full risk classification

No adverse selection
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Low risk-group High risk-group

Total population 800 200

Risk 0.01 0.04

Break-even premiums

(fair premium)
0.01 0.04

Numbers insured: 400 100

Insured losses 4 4

Loss coverage: 0.5

Loss coverage ratio 1



Table 2: Risk classification banned: moderate adverse selection

Higher loss coverage
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Low risk-group High risk-group

Total population 800 200

Risk 0.01 0.04

Break-even premiums

(pooled premium)
0.02

Numbers insured: 300 (400) 150 (100)

Insured losses 3 6

Loss coverage: 0.5625

Loss coverage ratio 1.125 > 1



Table 3: Risk classification banned: severe adverse selection

Lower loss coverage
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Low risk-group High risk-group

Total population 800 200

Risk 0.01 0.04

Break-even premiums

(pooled premium)
0.02154

Numbers insured: 200 (400) 125 (100)

Insured losses 2 5

Loss coverage: 0.4375

Loss coverage ratio: 0.875 < 1
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Demand functions
Name Iso-elastic Negative-exponential

Demand function di(π) = Piτi[
π

μi
]−λi di(π) = Piτiexp[ 1 −

π

μi
λi]

Demand elasticity function 

εi π = −
π

di π

𝜕di π

𝜕π

λi
λi
μi
π

For simplicity, we assume

 there are only two risk groups i=1,2;

 they have equal demand elsticity
◦ Iso-elastic demand function: λ1= λ2 = λ0

◦ Negative-exponential demand function: λ1
μ1
π𝑒 =

λ2

μ2
π𝑒 = λ0
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 We model the outcome in an insurance market where a pooled 
premium is charged for two risk-groups when there is an absence 
of risk classification. 

 Using iso-elastic & negative-exponential demand functions, 

loss coverage will be increased if a degree of adverse selection 
is tolerated. I.e. adverse selection is not always a bad thing.

 Further research should be carried out in more general cases

◦ Other demand functions e.g. di(π) = Piτiexp[1 −
π

μi

λi
]

◦ No restriction on demand elasticity

◦ Various risk-groups  
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Thank you!
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