Adverse Selection, Loss Coverage and Equilibrium Premium in Insurance Markets

MingJie Hao Dr. Pradip Tapadar, Mr. Guy Thomas University of Kent

Reading SIAM Conference

5 September 2014

2

- Background
 - How does insurance work?
 - Risk classification Scheme

э

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection

э

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage

э

Image: A matrix and a matrix

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand

4 3 5 4 3

- **A**

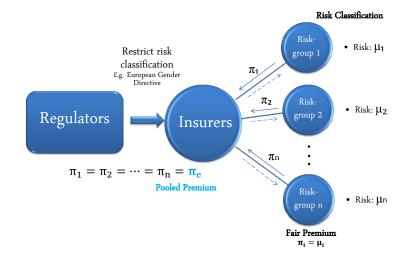
- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium

- **A**

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium
- Results

A >

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research


- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References

< 6 k

Background

How insurance works and risk classification scheme

э

Background

- How does insurance work?
- Risk classification Scheme

Adverse Selection

- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References

< 17 ▶

• 0, π₁, π₂, π₃, π_e, ..., π₇, π₈, ..., π_n, 1.

イロト 不得 トイヨト イヨト 二日

•
$$0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$$

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

< ロ > < 同 > < 回 > < 回 >

•
$$0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$$

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

Empirical results are mixed and vary by market.

★ ∃ > < ∃ >

Image: A matrix and a matrix

•
$$0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$$

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

 Empirical results are mixed and vary by market. 				
	Life Insurance Cawley and Philipson (1999)			
	Auto Insurance	Chiappori and Salanie (2000)	Х	
		Cohen (2005)	0	
	Annuity	Finkelstein and Poterba (2004)	0	
	Health Insurance	Cardon and Hendel (2001)	Х	

э

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measurement?

< ロ > < 同 > < 回 > < 回 >

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measurement?
- Model:

 $S = \frac{E[QL]}{E[Q]E[L]} = \frac{\text{pooled premium } \pi_e}{\text{population-weighted fair premium}}$

where

- Q: quantity of insurance
- L : risk experience .

< ロ > < 同 > < 回 > < 回 >

(1)

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measurement?
- Model:

 $S = \frac{E[QL]}{E[Q]E[L]} = \frac{\text{pooled premium } \pi_{e}}{\text{population-weighted fair premium}}$

where

- Q: quantity of insurance
- L : risk experience.

• S > 1 \Rightarrow Adverse Selection.

M Hao (SMSAS-University of Kent	M Hao	SMSAS-Universit	y of Kent
---------------------------------	-------	-----------------	-----------

4 3 5 4 3

(1)

Example

- A population of 1000
- Two risk groups
 - 200 high risks with risk 0.04
 - 800 low risks with risk 0.01
- No moral hazard

э

< ロ > < 同 > < 回 > < 回 >

No restriction on risk classification

2

No restriction on risk classification

Table 1	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.01	0.04
(fair premium)	0.01	0.04
Number insured	400	100
Adverse Selection		1

2

No restriction on risk classification

Table 1	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.01	0.04
(fair premium)	0.01	0.04
Number insured	400	100
Adverse Selection		1

No adverse selection.

э

Restriction on risk classification-Case 1

2

Restriction on risk classification-Case 1

Table 2	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02	
(pooled premium π_e)	0.	02
Number insured	300(400)	150(100)
Adverse Selection	1.25>1	

2

Restriction on risk classification-Case 1

Table 2	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02	
(pooled premium π_e)	0.	02
Number insured	300(400)	150(100)
Adverse Selection	1.25>1	

Moderate adverse selection

э

Restriction on risk classification-Case 2

2

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium (pooled premium π_e)	0.02154	
Number insured	200(400)	125(100)
Adverse Selection	1.3462>1	

2

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02154	
(pooled premium π_e)	0.02	2104
Number insured	200(400)	125(100)
Adverse Selection	1.34	62>1

Heavier adverse selection

2

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02154	
(pooled premium π_e)	0.02	2104
Number insured	200(400)	125 <mark>(100)</mark>
Adverse Selection	1.3462>1	

Heavier adverse selection

Adverse selection suggests pooling is always bad. But is it?

< ロ > < 同 > < 回 > < 回 >

Background

- How does insurance work?
- Risk classification Scheme
- Adverse Selection

Loss Coverage

Demand functions

- Iso-elastic demand
- Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References

э

< 6 b

Loss Coverage

2

Loss Coverage

• Aim of insurance: provide protection for those who suffer losses.

Loss Coverage

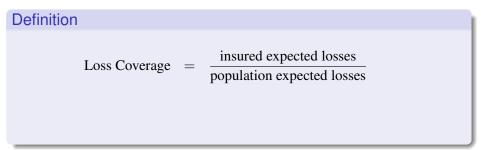
• Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.

(4) (5) (4) (5)

Loss Coverage

• Aim of insurance: provide protection for those who suffer losses.


- High risks most need insurance.
- Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

A B b 4 B b

Loss Coverage

• Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

A B F A B F

Loss Coverage

• Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Definition

Loss Coverage	=	insured expected losses
		population expected losses
Loss Coverage Ratio	=	loss coverage at a pooled premium π_e
		loss coverage at at fair premium π_i
	>	1, Favorable!

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

No restriction on risk classification

2

No restriction on risk classification

Table 1	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.01	0.04
(fair premium)	0.01	
Number insured	400	100
Insured expected losses	4	4
Loss Coverage	0.5	
Loss Coverage Ratio	1	

2

No restriction on risk classification

Table 1	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.01	0.04
(fair premium)	0.01	0.04
Number insured	400	100
Insured expected losses	4	4
Loss Coverage	0.5	
Loss Coverage Ratio	1	
No adverse selection		

No adverse selection.

2

Restriction on risk classification-Case 1

2

Restriction on risk classification-Case 1

Table 2	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02	
(pooled premium π_e)		
Number insured	300(400)	150 <mark>(100)</mark>
Insured expected losses	3	6
Loss Coverage	0.5625	
Loss Coverage Ratio	1.125>1	

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Restriction on risk classification-Case 1

Table 2	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02	
(pooled premium π_e)		
Number insured	300(400)	150(100)
Insured expected losses	3	6
Loss Coverage	0.5625	
Loss Coverage Ratio	1.125>1	
Manda water a deservery and a stress baset for some blacks and a second second		

Moderate adverse selection but favorable loss coverage.

э

Restriction on risk classification-Case 2

2

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02154	
(pooled premium π_e)		
Number insured	200(400)	125(100)
Insured expected losses	2	5
Loss Coverage	0.4375	
Loss Coverage Ratio	0.875<1	

2

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02154	
(pooled premium π_e)		
Number insured	200(400)	125(100)
Insured expected losses	2	5
Loss Coverage	0.4375	
Loss Coverage Ratio	0.875<1	
Heavier advance calculation and waves loss sovered		

Heavier adverse selection and worse loss coverage.

э

(a)

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium (pooled premium π_e)	0.02154	
Number insured	200(400)	125(100)
Insured expected losses	2	5
Loss Coverage	0.4375	
Loss Coverage Ratio	0.875<1	
Heavier adverse selection and worse loss coverage.		

Loss Coverage might be a better measurement!

э

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References

э

< 17 ▶

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

• $\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 \Rightarrow$ demand is a decreasing function of premium.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 \Rightarrow$ demand is a decreasing function of premium.
- $\frac{\partial^2}{\partial \pi^2} d(\mu, \pi) > 0 \Rightarrow$ a decreasing rate of fall in demand as premium increases.

A B K A B K

Definition

The demand function $d(\mu, \pi)$ is the demand of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 \Rightarrow$ demand is a decreasing function of premium.
- $\frac{\partial^2}{\partial \pi^2} d(\mu, \pi) > 0 \Rightarrow$ a decreasing rate of fall in demand as premium increases.

Definition

The demand elasticity $\epsilon(\mu, \pi) = -\frac{\partial d(\mu, \pi)}{d(\mu, \pi)} / \frac{\partial \pi}{\pi}$ i.e. sensitivity of demand to premium changes.

Iso-elastic demand

$$egin{array}{rcl} egin{array}{rcl} eta(\mu,\pi) &=& au \left[rac{\pi}{\mu}
ight]^{-\lambda} \ \epsilon(\mu,\pi) &=& \lambda \end{array}$$

Negative-exponential demand

$$d(\mu, \pi) = \tau e^{(1-\frac{\pi}{\mu})\lambda}$$

$$\epsilon(\mu, \pi) = \frac{\lambda}{\mu}\pi$$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand

Equilibrium Premium

- Results
- Summary and Further research
- References

э

(4) (5) (4) (5)

< 17 ▶

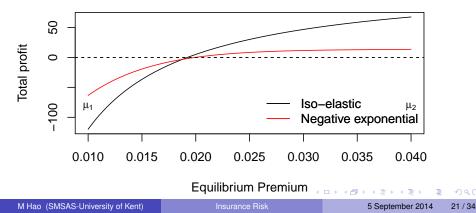
æ

$$f(\pi_e) = E[\text{Total Profit}] = 0$$

æ

 $f(\pi_e) = E[\text{Total Profit}] = 0$

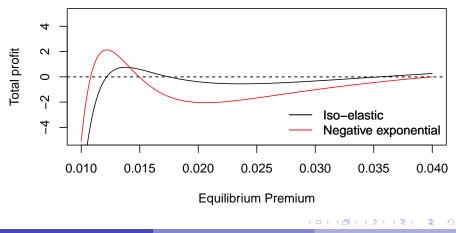
For two risk-groups,


$$f(\pi_{e}) = d(\mu_{1}, \pi_{e})p_{1}(\pi_{e} - \mu_{1}) + d(\mu_{2}, \pi_{e})p_{2}(\pi_{e} - \mu_{2}) = 0.$$
(2)

æ

 $f(\pi_e) = E[\text{Total Profit}] = 0$

For two risk-groups,


$$f(\pi_e) = d(\mu_1, \pi_e) p_1(\pi_e - \mu_1) + d(\mu_2, \pi_e) p_2(\pi_e - \mu_2) = 0.$$
 (2)

Multiple Equilibria

Only for extreme parameter values. E.g.

 $p_1 = 9000, au_1 = 1, \mu_1 = 0.01, \lambda_1 = 5; p_2 = 80, au_2 = 1, \mu_2 = 0.04, \lambda_2 = 1$

M Hao (SMSAS-University of Kent)

Multiple Equilibria

Theorem

Given $(\mu_1, \mu_2), (\tau_1, \tau_2)$ and (λ_1, λ_2) , there are multiple equilibria if and only if $c < c_1$ and $\alpha(\pi_{01}) \le \alpha \le \alpha(\pi_{02})$. Where

•
$$\alpha = \frac{p_1}{p_2}$$
.

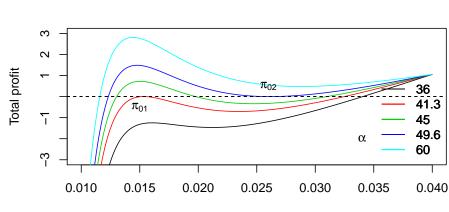
• π_{01}, π_{02} are solutions to $f(\pi_e) = 0, f'(\pi_e) \le 0$.

-

Multiple Equilibria

Theorem

Given $(\mu_1, \mu_2), (\tau_1, \tau_2)$ and (λ_1, λ_2) , there are multiple equilibria if and only if $c < c_1$ and $\alpha(\pi_{01}) \le \alpha \le \alpha(\pi_{02})$. Where

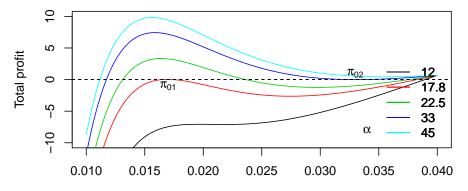

•
$$\alpha = \frac{p_1}{p_2}$$
.

• π_{01}, π_{02} are solutions to $f(\pi_e) = 0, f'(\pi_e) \le 0$.

For iso-elastic demand, $c = \lambda_2 - \lambda_1$, $c_1 = -\frac{\sqrt{\mu_1} + \sqrt{\mu_2}}{\sqrt{\mu_2} - \sqrt{\mu_1}} < 0$. For negative-exponential demand, $c = \frac{\lambda_2}{\mu_2} - \frac{\lambda_1}{\mu_1}$, $c_1 = -\frac{4}{\mu_2 - \mu_1} < 0$.

ヘロト 不通 とうき とうとう ほう

Example: Iso-elastic demand $\mu_1 = 0.01, \mu_2 = 0.04 \Rightarrow c_1 = -3;$ $\lambda_1 = 4, \lambda_2 = 0.5 \Rightarrow c = -3.5 < c_1$



Equilibrium Premium

э

Example: Negative-exponential demand

 $\mu_1 = 0.01, \mu_2 = 0.04 \Rightarrow c_1 = -133.33$: $\lambda_1 = 2, \lambda_2 = 0.5 \Rightarrow c = -187.5 < c_1$

Equilibrium Premium

Results

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References

э

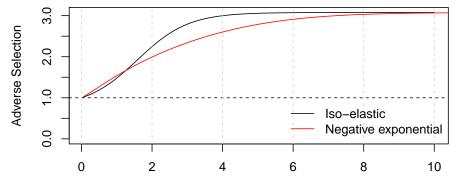
3 > 4 3

< 6 b

Results

Assumptions

- There are 2 risk-groups
- They have equal demand elasticities \Rightarrow Unique Equilibrium
 - Iso-elastic demand: $\lambda_1 = \lambda_2 = \epsilon(\pi_e)$
 - Negative-exponential demand: $\frac{\lambda_1}{\mu_2}\pi_e = \frac{\lambda_2}{\mu_2}\pi_e = \epsilon(\pi_e)$

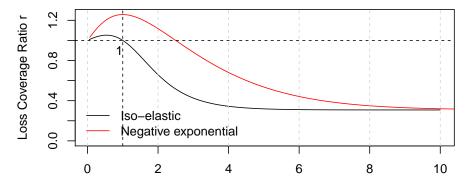

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results

Results: Adverse Selection

 $p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$



demand elasticity

3 → 4 3

Results: Loss Coverage

 $p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$

demand elasticity

A B F A B F

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results

• Summary and Further research

References

3

M Hao (SMSAS-University of Kent)

2

• When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.

(4) (5) (4) (5)

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.

The Sec. 74

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.
- Loss Coverage is an alternative metric.

The Sec. 74

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.
- Loss Coverage is an alternative metric.
 Using iso-elastic and negative-exponential demand,

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.
- Loss Coverage is an alternative metric.
 Using iso-elastic and negative-exponential demand,
- Adverse Selection is not always a bad thing!
 A moderate level of adverse selection can increase loss coverage.

EN 4 EN

Further Research

- Other/more general demand e.g. $d(\mu, \pi) = \tau e^{1-(\frac{\pi}{\mu})^{\lambda}}$.
- Loose restriction on demand elasticities.
- Partial restriction on risk classification.

э

4 E N 4 E N

References

- Cardon and Hendel (2001) Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. Rand J. Econ. 32 (Autumn): 408-27
- Cawley and Philipson (1999) An Empirical Examination of Information Barriers to Trade in Insurance. A.E.R. 89 (September): 827-46
- Chiappori and Salanie (2000) Testing for Asymmetric Information in Insurance Markets, The Journal of Political Economy, 108, 1; 56-78.
- Cohen (2005) Asymmetric Information and Learning: Evidence from the Automobile Insurance market. Rev. Eco. Statis. 87 (June):197-207.
- Finkelstein and Poterba (2004) Adverse Selection in Insurance markets: Policyholder Evidence from the U.K. Annuity Market. J.P.E. 112 (February): 183-208.
- Thomas, R.G. (2008) Loss Coverage as a Public Policy Objective for Risk Classification Schemes. The Journal of Risk and Insurance, 75(4), pp. 997-1018.
- Thomas, R.G. (2009) Demand Elasticity, Adverse Selection and Loss Coverage: When Can Community Rating Work? ASTIN Bulletin, 39(2), pp. 403-428.

Questions?

Thank you!

2