Multiple Equilibria, Adverse Selection and Loss Coverage in Insurance Markets

> MingJie Hao Dr. Pradip Tapadar, Mr. Guy Thomas University of kent

> > YRM 2014 Warwick

> > > 2 July

A (10) A (10) A (10)

- Background
 - How does insurance work?
 - Risk classification Scheme

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand

A > + = + + =

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria

A > + = + + =

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage

- 24

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results

- 24

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research

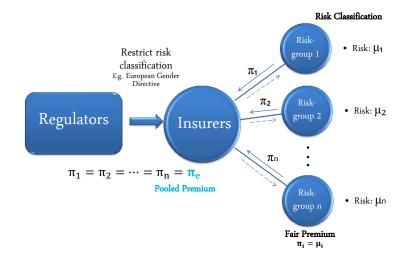
- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References

(4) The (b)

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References

Background

How insurance works and risk classification scheme



- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References

Definition

The demand function $d(\mu, \pi)$ is the probability of a single individual with risk μ , will buy insurance at premium π .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

The demand function $d(\mu, \pi)$ is the probability of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

• 0 < d(μ, π) < 1.

Definition

The demand function $d(\mu, \pi)$ is the probability of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

∂/∂π d(μ, π) < 0, which implies that demand falls as the premium rises.

A (B) > A (B) > A (B)

Definition

The demand function $d(\mu, \pi)$ is the probability of a single individual with risk μ , will buy insurance at premium π .

It is assumed to have the following properties:

•
$$0 < d(\mu, \pi) < 1$$
.

- $\frac{\partial}{\partial \pi} d(\mu, \pi) < 0$, which implies that demand falls as the premium rises.
- $\frac{\partial^2}{\partial \pi^2} d(\mu, \pi) > 0$, which implies a decreasing rate of fall in demand as premium increases. I.e. individuals are risk averse.

Iso-elastic demand

$$d(\mu, \pi) = \tau \left[\frac{\pi}{\mu}\right]^{-\lambda}$$

$$\epsilon(\mu, \pi) = -\frac{\pi}{d(\pi, \mu)} \frac{\partial}{\partial \pi} d(\mu, \pi)$$

$$= \lambda$$

Negative-exponential demand

$$d(\mu, \pi) = \tau e^{(1-\frac{\pi}{\mu})^{\lambda}}$$

$$\epsilon(\mu, \pi) = \frac{\lambda}{\mu} \pi$$

M Hao (SMSAS-University of Kent)

▶ Ξ つへの 2 July 7/31

(日)

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand

Multiple Equilibria

- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References

$$f(\pi_e) = E[\text{Total Profit}] = 0$$

 $f(\pi_e) = E[\text{Total Profit}] = 0$

For two risk-groups,

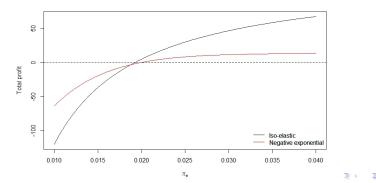
$$f(\pi_{e}) = d(\mu_{1}, \pi_{e}) p_{1}(\pi_{e} - \mu_{1}) + d(\mu_{2}, \pi_{e}) p_{2}(\pi_{e} - \mu_{2}).$$
(1)

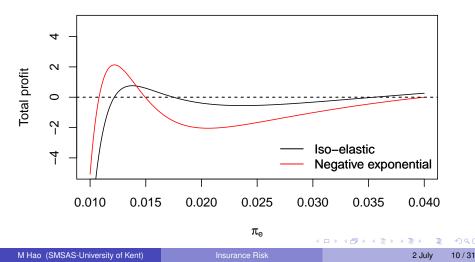
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $f(\pi_e) = E[\text{Total Profit}] = 0$

For two risk-groups,

$$f(\pi_e) = d(\mu_1, \pi_e) p_1(\pi_e - \mu_1) + d(\mu_2, \pi_e) p_2(\pi_e - \mu_2).$$
(1)





Definition

- $\alpha = \frac{p_1}{p_2}$.
- π_{01}, π_{02} are solutions to $f(\pi_e) = 0, f'(\pi_e) \le 0$.

イロト イヨト イヨト イヨト

Definition

- $\alpha = \frac{p_1}{p_2}$.
- π_{01}, π_{02} are solutions to $f(\pi_e) = 0, f'(\pi_e) \leq 0$.

Theorem

Given $(\mu_1, \mu_2), (\tau_1, \tau_2)$ and (λ_1, λ_2) , if $c < c_1$ and $\alpha(\pi_{01}) \le \alpha \le \alpha(\pi_{02})$, there are multiple equilibria. Otherwise, there is a unique equilibrium premium.

Definition

- $\alpha = \frac{p_1}{p_2}$.
- π_{01}, π_{02} are solutions to $f(\pi_e) = 0, f'(\pi_e) \leq 0$.

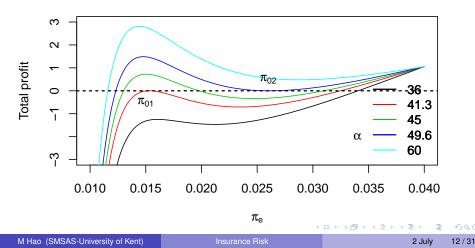
Theorem

Given $(\mu_1, \mu_2), (\tau_1, \tau_2)$ and (λ_1, λ_2) , if $c < c_1$ and $\alpha(\pi_{01}) \le \alpha \le \alpha(\pi_{02})$, there are multiple equilibria. Otherwise, there is a unique equilibrium premium.

For iso-elastic demand,
$$c = \lambda_2 - \lambda_1$$
, $c_1 = -\frac{\sqrt{\mu_1} + \sqrt{\mu_2}}{\sqrt{\mu_2} - \sqrt{\mu_1}} < 0$.
For negative-exponential demand, $c = \frac{\lambda_2}{\mu_2} - \frac{\lambda_1}{\mu_1}$, $c_1 = -\frac{4}{\mu_2 - \mu_1} < 0$.

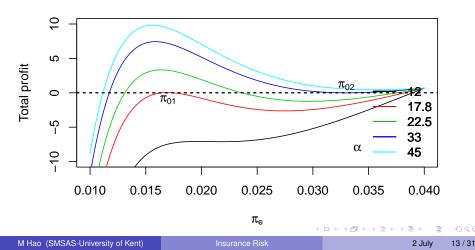
< ロ > < 同 > < 回 > < 回 >

Example Iso-elastic demand



Example

Negative-exponential demand



- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References

(4) (5) (4) (5)

• 0, $\pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1$.

イロト イヨト イヨト イヨト

•
$$0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$$

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

-

• • • • • • • • • • • • •

•
$$0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$$

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

Empiriacal results are mixed and vary by market.

• 0,
$$\pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1$$
.

Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

 Empiriacal results are mixed and vary by market. 			
	Life Insurance	Cawley and Philipson (1999)	Х
	Auto Insurance	Chiappori and Salanie (2000)	Х
		Cohen (2005)	0
	Annuity	Finkelstein and Poterba (2004)	Х
	Health Insurance	Cardon and hendel (2001)	Х

 Restricting risk classification -> Policy is over-subscribed by high risks BAD?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 Restricting risk classification -> Policy is over-subscribed by high risks BAD?

• Model:

$$S = \frac{E[QL]}{E[Q]E[L]},$$
(2)

where

- Q: quantity of insurance
- L : risk experience .

 Restricting risk classification -> Policy is over-subscribed by high risks BAD?

Model:

$$S = \frac{E[QL]}{E[Q]E[L]},$$

where

- Q: quantity of insurance
- L : risk experience .

A moderate degree of adverse selection can be PREFERABLE!

< 回 > < 三 > < 三 >

(2)

Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References

• Aim of insurance: provide protection for those who suffer losses.

• • • • • • • • • • • • •

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classifiation seems reasonable.

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classifiation seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Proporion of the whole population's expected losses compensated by insurance.

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classifiation seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Proporion of the whole population's expected losses compensated by insurance.

Definition

insured expected losses

population expected losses

Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classifiation seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Proporion of the whole population's expected losses compensated by insurance.

Definition

Loss Coverage	=	insured expected losses population expected losses
Loss Coverage Ratio	=	$\frac{\text{loss coverage at a pooled premium}\pi_e}{\text{loss coverage at at fair premium}\pi_i}$
	=	$\frac{\sum_{i=1}^{n} d(\mu_i, \pi_e) p_i \mu_i}{\sum_{i=1}^{n} d(\mu_i, \mu_i) p_i \mu_i}$

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classifiation seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

Proporion of the whole population's expected losses compensated by insurance.

Definition

Loss Coverage	=	insured expected losses population expected losses
Loss Coverage Ratio	loss coverage at a pooled premium π_{a}	
	=	$\frac{\sum_{i=1}^{n} d(\mu_i, \pi_e) p_i \mu_i}{\sum_{i=1}^{n} d(\mu_i, \mu_i) p_i \mu_i} > 1, PREFERABLE!$

Example

- A population of 1000
- Two risk groups
 - 200 high risks with risk 0.04
 - 800 low risks with risk 0.01
- No moral hazard

No restriction on risk classification

No restriction on risk classification

Table 1	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.01	0.04
(fair premium)		
Number insured	400	100
Insured expected losses	4	4
Loss Coverage	0.5	
Loss Coverage Ratio		1

No restriction on risk classification

Table 1	Low risk-group	High risk-group	
Population	800	200	
Risk	0.01	0.04	
Break-even premium	0.01	0.04	
(fair premium)			
Number insured	400	100	
Insured expected losses	4	4	
Loss Coverage	0	.5	
Loss Coverage Ratio		1	
No adverse selection			

No adverse selection.

Restriction on risk classification-Case 1

Restriction on risk classification-Case 1

Table 2	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02	
(pooled premium π_e)	0.02	
Number insured	300(400)	150 <mark>(100)</mark>
Insured expected losses	3	6
Loss Coverage	0.5625	
Loss Coverage Ratio	1.125>1	

Restriction on risk classification-Case 1

Table 2	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02	
(pooled premium π_e)		
Number insured	300(400)	150(100)
Insured expected losses	3	6
Loss Coverage	0.5625	
Loss Coverage Ratio	1.12	25>1
Manda water a developed and a strength water and have a second water		

Moderate adverse selection but preferable loss coverage.

Restriction on risk classification-Case 2

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group
Population	800	200
Risk	0.01	0.04
Break-even premium	0.02154	
(pooled premium π_e)	0.02154	
Number insured	200(400)	125 <mark>(100)</mark>
Insured expected losses	2	5
Loss Coverage	0.4375	
Loss Coverage Ratio	0.875<1	

Restriction on risk classification-Case 2

Table 3	Low risk-group	High risk-group	
Population	800	200	
Risk	0.01	0.04	
Break-even premium	0.01	0154	
(pooled premium π_e)	0.02154		
Number insured	200(400)	125(100)	
Insured expected losses	2	5	
Loss Coverage	0.4375		
Loss Coverage Ratio	0.87	75<1	
O			

Severe adverse selection and worse loss coverage.

Results

Table of contents

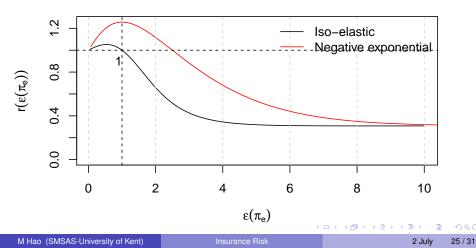
- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References

Results

Assumptions

- There are n risk-groups
- They have equal demand elasticities -> Unique Equilibrium For *i* ≠ *j*, *i*, *j* ∈ (1, *n*),
 - Iso-elastic demand: $\lambda_i = \lambda_j = \epsilon(\pi_e)$
 - ► Negative-exponential demand: $\frac{\lambda_i}{\mu_i} \pi_e = \frac{\lambda_i}{\mu_i} \pi_e = \epsilon(\pi_e)$

Results Loss Coverage



Results Adverse Selection

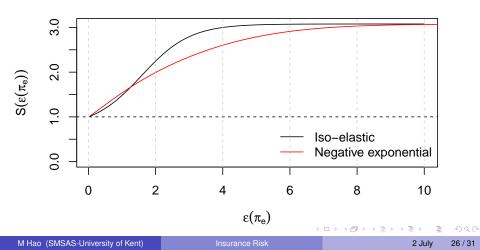


Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Demand functions
 - Iso-elastic demand
 - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results

• Summary and Further research

References

(4) (5) (4) (5)

M Hao (SMSAS-University of Kent)

• When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.

• When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.

Using iso-elastic and negative-exponential demand,

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- Using iso-elastic and negative-exponential demand,
 - In a two-risk-group case, there are multiple pooled premia π_e if
 - Demand elasticity from high risk-group is much lower than that from low risk-group, and
 - Population ratio between two risk-groups falls within a interval.

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- Using iso-elastic and negative-exponential demand,
 - In a two-risk-group case, there are multiple pooled premia π_e if
 - Demand elasticity from high risk-group is much lower than that from low risk-group, and
 - Population ratio between two risk-groups falls within a interval.
 - When the two risk-groups share the same demand elasticity at pooled premium π_e ,
 - Adverse selection is not always a bad thing, a moderate level can increase loss coverage.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- Using iso-elastic and negative-exponential demand,
 - In a two-risk-group case, there are multiple pooled premia π_e if
 - Demand elasticity from high risk-group is much lower than that from low risk-group, and
 - Population ratio between two risk-groups falls within a interval.
 - When the two risk-groups share the same demand elasticity at pooled premium π_e,
 - Adverse selection is not always a bad thing, a moderate level can increase loss coverage.
 - This result also holds when there are n risk-groups with risks

 $\mu_1 < \mu_2 < ... < \mu_n.$

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- Using iso-elastic and negative-exponential demand,
 - In a two-risk-group case, there are multiple pooled premia π_e if
 - Demand elasticity from high risk-group is much lower than that from low risk-group, and
 - Population ratio between two risk-groups falls within a interval.
 - When the two risk-groups share the same demand elasticity at pooled premium π_e,
 - Adverse selection is not always a bad thing, a moderate level can increase loss coverage.
 - This result also holds when there are n risk-groups with risks

 $\mu_1 < \mu_2 < \dots < \mu_n.$

• This result also holds when the risk $\mu \sim \text{Beta}(\alpha, \beta)$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Further Research

- Other/more general demand e.g. $d(\mu, \pi) = \tau e^{1-(\frac{\pi}{\mu})^{\lambda}}$.
- Loose restriction on demand elasticities.
- Partial restriction on risk classification.

References

- Cardon and Hendel (2001) Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. Rand J. Econ. 32 (Autumn): 408-27
- Cawley and Philipson (1999) An Empirical Examination of Information Barriers to Trade in Insurance. A.E.R. 89 (September): 827-46
- Chiappori and Salanie (2000) Testing for Asymmetric Information in Insurance Markets, The Journal of Political Economy, 108, 1; 56-78.
- Cohen (2005) Asymmetric Information and Learning: Evidence from the Automobile Insurance market. Rev. Eco. Statis. 87 (June):197-207.
- Finkelstein and Poterba (2004) Adverse Selection in Insurance markets: Policyholder Evidence from the U.K. Annuity Market. J.P.E. 112 (February): 183-208.
- Thomas, R.G. (2008) Loss Coverage as a Public Policy Objective for Risk Classification Schemes. The Journal of Risk and Insurance, 75(4), pp. 997-1018.
- Thomas, R.G. (2009) Demand Elasticity, Adverse Selection and Loss Coverage: When Can Community Rating Work? ASTIN Bulletin, 39(2), pp. 403-428.

Questions?

Thank you!