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Background

Background
How insurance works and risk classification scheme

Risk-
group 1 • Risk: μ₁ 

Risk-
group 2 • Risk: μ₂ 

Risk-
group n • Risk: μn 

•   
•   
•   

π₁ 

π₂ 

πn 

Regulators Insurers 

Restrict risk 
classification 

E.g. European Gender 
Directive 

π1 = π2 = ⋯ = πn = 𝛑𝐞 

                        Pooled Premium 

Risk Classification 

Fair Premium 
𝛑𝐢 = 𝛍𝐢 
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Demand Functions

Demand Functions

Definition
The demand function d(µ, π) is the probability of a single individual
with risk µ, will buy insurance at premium π.

It is assumed to have the following properties:
0 < d(µ, π) < 1.
∂
∂πd(µ, π) < 0, which implies that demand falls as the premium
rises.
∂2

∂π2 d(µ, π) > 0, which implies a decreasing rate of fall in demand
as premium increases. I.e. individuals are risk averse.
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Demand Functions

Demand Functions

Iso-elastic demand

d(µ, π) = τ

[
π

µ

]−λ
ε(µ, π) = − π

d(π, µ)
∂

∂π
d(µ, π)

= λ

Negative-exponential demand

d(µ, π) = τe(1−π
µ
)λ

ε(µ, π) =
λ

µ
π
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Multiple Equilibria

Multiple Equilibria

f (πe) = E [Total Profit] = 0

For two risk-groups,

f (πe) = d(µ1, πe)p1(πe − µ1) + d(µ2, πe)p2(πe − µ2). (1)
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Multiple Equilibria

Multiple Equilibria

Definition
α = p1

p2
.

π01, π02 are solutions to f (πe) = 0, f ′(πe) ≤ 0.

Theorem
Given (µ1, µ2), (τ1, τ2) and (λ1, λ2), if c < c1 and α(π01) ≤ α ≤ α(π02),
there are multiple equilibria. Otherwise, there is a unique equilibrium
premium.

For iso-elastic demand, c = λ2 − λ1, c1 = −
√
µ1+
√
µ2√

µ2−
√
µ1
< 0.

For negative-exponential demand, c = λ2
µ2
− λ1

µ1
, c1 = − 4

µ2−µ1
< 0.
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Multiple Equilibria

Example
Iso-elastic demand
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Multiple Equilibria

Example
Negative-exponential demand
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Adverse Selection

Adverse Selection

0, π1, π2, π3, πe, ..., π7, π8, ..., πn,1.

Original definition
Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”

Empiriacal results are mixed and vary by market.
Life Insurance Cawley and Philipson (1999) X
Auto Insurance Chiappori and Salanie (2000) X

Cohen (2005) O
Annuity Finkelstein and Poterba (2004) X

Health Insurance Cardon and hendel (2001) X
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Adverse Selection

Adverse Selection

Restricting risk classification -> Policy is over-subscribed by high
risks BAD?

Model:
S =

E [QL]
E [Q]E [L]

, (2)

where

Q : quantity of insurance

L : risk experience .

A moderate degree of adverse selection can be
PREFERABLE!
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Loss Coverage

Loss Coverage

Aim of insurance: provide protection for those who suffer losses.
I High risks most need insurance.
I Restriction on risk classifiation seems reasonable.

Thomas (2008, 2009) “Loss Coverage”:
Proporion of the whole population’s expected losses compensated
by insurance.

Definition

Loss Coverage =
insured expected losses

population expected losses

Loss Coverage Ratio =
loss coverage at a pooled premiumπe

loss coverage at at fair premiumπi

=

∑n
i=1 d(µi , πe)piµi∑n
i=1 d(µi , µi)piµi

> 1,PREFERABLE!
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Loss Coverage

Example

Example
A population of 1000
Two risk groups

I 200 high risks with risk 0.04
I 800 low risks with risk 0.01

No moral hazard
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Loss Coverage

Example
No restriction on risk classification

Table 1 Low risk-group High risk-group
Population 800 200
Risk 0.01 0.04
Break-even premium

0.01 0.04
(fair premium)
Number insured 400 100
Insured expected losses 4 4
Loss Coverage 0.5
Loss Coverage Ratio 1

No adverse selection.
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Loss Coverage

Example
Restriction on risk classification-Case 1

Table 2 Low risk-group High risk-group
Population 800 200
Risk 0.01 0.04
Break-even premium

0.02
(pooled premium πe)
Number insured 300(400) 150(100)
Insured expected losses 3 6
Loss Coverage 0.5625
Loss Coverage Ratio 1.125>1

Moderate adverse selection but preferable loss coverage.
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Loss Coverage

Example
Restriction on risk classification-Case 2

Table 3 Low risk-group High risk-group
Population 800 200
Risk 0.01 0.04
Break-even premium

0.02154
(pooled premium πe)
Number insured 200(400) 125(100)
Insured expected losses 2 5
Loss Coverage 0.4375
Loss Coverage Ratio 0.875<1

Severe adverse selection and worse loss coverage.
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Results

Results

Assumptions
There are n risk-groups
They have equal demand elasticities -> Unique Equilibrium
For i 6= j , i , j ∈ (1,n),

I Iso-elastic demand: λi = λj = ε(πe)

I Negative-exponential demand: λi
µi
πe =

λj
µj
πe = ε(πe)
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Results

Results
Loss Coverage
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Adverse Selection
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Summary

Summary

When there is restriction on risk classification, a pooled premium
πe is charged across all risk-groups.

Using iso-elastic and negative-exponential demand,
In a two-risk-group case, there are multiple pooled premia πe if

I Demand elasticity from high risk-group is much lower than that from
low risk-group, and

I Population ratio between two risk-groups falls within a interval.
When the two risk-groups share the same demand elasticity at
pooled premium πe,

I Adverse selection is not always a bad thing, a moderate level
can increase loss coverage.

I This result also holds when there are n risk-groups with risks
µ1 < µ2 < ... < µn.

I This result also holds when the risk µ ∼ Beta(α, β).
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Further Research

Further Research

Other/more general demand e.g. d(µ, π) = τe1−(π
µ
)λ .

Loose restriction on demand elasticities.
Partial restriction on risk classification.
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Ending

Questions?
Thank you!
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